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RIGHT AND LEFT DISLOCATED b-METRIC SPACES AND

FIXED POINT THEOREMS

MUJEEB UR RAHMAN

Abstract. Using the concept of generalized contraction, some fixed point
theorems are investigated in the context of right and left dislocated b-metric
spaces. We have proved φ-contraction and Reich type contraction in right and

left dislocated b-metric spaces.

1. Introduction

One branch of generalizations of celebrated Banach contraction principle is based
on the replacement of contraction condition imposed on T : X → X, where (X, d)
is a complete metric space. The weaker condition described by Browder [1] as,
d(Tx, Ty) ≤ φd(x, y) for all x, y ∈ X, where φ is a comparison function introduced
by Berinde [2]. Reich [3] generalized the Banach contraction principle by introduc-
ing a new type of contraction condition which were given the name of Reich type
contraction. In similar direction Istratescu [4] introduced the convex type contrac-
tion and generalized Banach contraction principle for such a type of contraction
condition.

The notion of b-metric space was introduced by Czerwik [5] in connection with
some problems concerning with the convergence of non-measurable functions with
respect to measure. Fixed point theorems regarding b-metric spaces was obtained
in [6] and [7]. In 2013, Shukla [8] generalized the notion of b-metric spaces and
introduced the concept of partial b-metric spaces. Rahman and Sarwar [9] further
generalized the concept of b-metric space and initiated the notion of dislocated
quasi-b-metric space. Fixed point theorems in dislocated quasi-b-metric spaces are
established by the researchers in [10] and [11].

Recently in 2017, Mujeeb and Sarwar [12] investigated right and left dislocated
b-metric spaces and proved some fixed point results in such type of spaces.

In this work, we have proved φ-contraction and Reich type of contraction in the
setting of right and left dislocated b-metric space which generalize and extend some
existing fixed point results of the literature in these newly discovered spaces.
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2. Preliminaries

Definition 2.1.[9]. Let X be a non-empty set and k ≥ 1 be a real number then
a mapping d : X ×X → [0,∞) is called dislocated quasi-b-metric if ∀ x, y, z ∈ X

(d1) d(x, y) = d(y, x) = 0 implies that x = y;
(d2) d(x, y) ≤ k[d(x, z) + d(z, y)].

The pair (X, d) is called dislocated quasi-b-metric space or shortly (dq b-metric)
space.
Definition 2.2.[12]. Let X be a non empty set. Let k ≥ 1 be a real number then
a mapping d : X × X → [0,∞) is called right dislocated b-metric if ∀ x, y, z ∈ X
satisfying

rd1) d(x, y) = d(y, x) = 0 implies that x = y;
rd2) d(x, y) ≤ k[d(x, z) + d(y, z)].

And the pair (X, d) is called right dislocated b-metric (rd b-metric) space.
Definition 2.3.[12]. Let X be a non empty set. Let k ≥ 1 be a real number then
a mapping d : X × X → [0,∞) is called left dislocated b-metric if ∀ x, y, z ∈ X
satisfying

ld1) d(x, y) = d(y, x) = 0 implies that x = y;
ld2) d(x, y) ≤ k[d(z, x) + d(z, y)].

And the pair (X, d) is called left dislocated b-metric (ld b-metric) space.
Remarks. For some interesting properties and examples of right and left dislocated
b-metric space see [12].
Definition 2.4.[12]. A sequence {xn} in X is called rd b-convergent in X if there
exists x ∈ X such that lim

n→∞
d(x, xn) = 0. In this case x is called the rd b-limit of

the sequence {xn}.
Unlike b-metric space rd b-metric space need not be left and right convergent. But
in case of rd b-metric space it is rd b-convergent only.
Definition 2.5.[12]. A sequence {xn} in X is called ld b-convergent in X if there
exists x ∈ X such that lim

n→∞
d(xn, x) = 0. In this case x is called the ld b-limit of

the sequence {xn}.
In case of ld b-metric space a convergent sequence need only to be ld b-convergent.
Remarks. Since the notion of ld b-metric space is look like a dual notion of rd b-
metric space. Therefore, we state the following definitions and some basic properties
for right dislocated b-metric spaces only which may be easily carried out for left
dislocated b-metric spaces.
The following definitions can be found in [12].
Definition 2.6. A sequence {xn} in rd or ld b-metric space is called Cauchy
sequence if for ϵ > 0 there exist n0 ∈ N , such that for m > n ≥ n0, we have
d(xn, xm) < ϵ.
Definition 2.7. A rd or ld b−metric space (X, d) is said to be complete if every
Cauchy sequence in X converges to a point in X.
Definition 2.8. Let (X, d) be a rd or ld b-metric space. A mapping T : X → X
is called contraction if k ≥ 1 there exists a constant α ∈ [0, 1) with kα < 1 and for
all x, y ∈ X satisfying

d(Tx, Ty) ≤ αd(x, y).

The following result may be seen in [12].
Lemma 1. Every subsequence of rd or ld b-convergent sequence to x0 is rd b-
convergent to x0.
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Lemma 2. Limit of convergent sequence in rd or ld b-metric space is unique.
Lemma 3. Let (X, d) be a rd or ld b-metric space and {xn} be a sequence in rd
b-metric space such that

d(xn, xn+1) ≤ αd(xn−1, xn) (1)

for n = 1, 2, 3, ... and 0 ≤ αk < 1 where α ∈ [0, 1) and k is defined in rd b-metric
space. Then {xn} is a Cauchy sequence in X.
Lemma 4. Let (X, d) be a rd or ld b-metric space. If T : X → X is a contraction.
Then T is rd b-continuous.
Theorem 1. Let (X, d) be a complete rd or (ld) b-metric space. If T : X → X is
a contraction. Then T has a unique fixed point.
Theorem 2.[13]. Every φ-contraction T : X → X where (X, d) is a complete
metric space, is a Picard’s operator.
Definition 2.9.[2]. A map φ : R+ → R+ is called comparison function if it satisfies:

(1) φ is monotonic increasing;
(2) The sequence {φn(t)}∞n=0 converge to zero for all t ∈ R+ where φn stand

for nth iterate of φ.
If φ satisfies:

(3)
∞∑
k=0

φk(t) converge for all t ∈ R+.

Then φ is called (c)-comparison function.
Thus every comparison function is c-comparison function. A prototype example for
comparison function is

φ(t) = αt t ∈ R+ 0 ≤ α < 1.

Some more examples and properties of comparison and c-comparison function
can be found in [2].

3. Main Results

Theorem 1. Let (X, d) be a complete right (left) dislocated b-metric space and
T : X → X be a continuous function for k ≥ 1 satisfying

d(Tx, Ty) ≤ φd(x, y) (2)

for all x, y ∈ X where φ is a comparison function. Then T has a unique fixed point
in X.
Proof. Let x0 be arbitrary in X we define a sequence {xn} in X as following

x0, x1 = Tx0, x2 = Tx1, .............., xn+1 = Txn for all n ∈ N.

Now to show that {xn} is a Cauchy sequence in X consider

d(xn, xn+1) = d(Txn−1, Txn).

Using (2) we have

d(xn, xn+1) ≤ φd(xn−1, xn). (3)

Similarly one can show that

d(xn−1, xn) ≤ φd(xn−2, xn−1). (4)

Putting (3) in (4) we have

d(xn, xn+1) ≤ φ2d(xn−2, xn−1).
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Proceeding in similar manner we get

d(xn−1, xn) ≤ φnd(x0, x1). (5)

To show that {xn} is a Cauchy sequence consider m > n and using (rd2) or (ld2)
we have

d(xn, xm) ≤ k · d(xn, xn+1) + k2 · d(xn+1, xn+2) + k3 · d(xn+2, xn+3) + .........

Using (5) the above equation become

d(xn, xm) ≤ k · φnd(x0, x1) + k2 · φn+1d(x0, x1) + k3 · φn+2d(x0, x1) + .........

Since φ is a comparison function so taking n,m → ∞ we get

lim
n,m→∞

d(xn, xm) = 0.

Which show that {xn} is a Cauchy sequence in complete right (left) dislocated
b-metric space X. So there exists z ∈ X such that xn → z as n → ∞.

Now to show that z is the fixed point of T . Since xn → z as n → ∞ using the
continuity of T we have

lim
n→∞

Txn = Tz

which implies that
lim

n→∞
xn+1 = Tz.

Thus Tz = z. So z is the fixed point of T .
Uniqueness: Suppose that T has two fixed points z and w for z ̸= w. Consider

d(z, w) = d(Tz, Tw).

Using (2) we have
d(z, w) ≤ φd(z, w).

Since φ is a comparison function so the above inequality is possible only if d(z, w) =
0 similarly one can show that d(w, z) = 0. So by (d1) z = w. Hence T has a unique
fixed point in X.
Remark. Theorem 1 generalize Banach contraction principle and the result estab-
lished by Matkowski [13] in right (left) dislocated b-metric spaces.

Theorem 2. Let (X, d) be a complete right or (left) dislocated b-metric space
and T : X → X is a continuous self-mapping satisfying

d(Tx, Ty) ≤ α · d(x, y) + β · d(x, Tx) + γ · d(y, Ty) (6)

for all x, y ∈ X and α, β, γ ≥ 0 with kα + kβ + γ < 1 where k ≥ 1. Then T has a
unique fixed point in X.
Proof. Let x0 be arbitrary in X we define a sequence {xn} in X as following

x0, x1 = Tx0, x2 = Tx1, ..........., xn+1 = Txn.

Now to show that {xn} is a Cauchy sequence consider

d(xn, xn+1) = d(Txn−1, Txn).

Using (6) we have

d(xn, xn+1) = d(Txn−1, Txn) ≤ α·d(xn−1+xn)+β ·d(xn−1, Txn−1)+γ ·d(xn, Txn).

By the definition of the sequence we get

d(xn, xn+1) ≤ α · d(xn−1, xn) + β · d(xn−1, xn) + γ · d(xn, xn+1).
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Simplification yields

d(xn, xn+1) ≤
α+ β

1− γ
· d(xn−1, xn).

Let

h =
α+ β

1− γ
<

1

k
.

So the above inequality become

d(xn, xn+1) ≤ h · d(xn−1, xn).

Also

d(xn−1, xn) ≤ h · d(xn−2, xn−1).

Thus

d(xn, xn+1) ≤ h2 · d(xn−2, xn−1).

Similarly proceeding we get

d(xn, xn+1) ≤ hn · d(x0, x1).

Since h < 1
k . Taking limit n → ∞, so hn → 0 and

lim
n→∞

d(xn, xn+1) = 0.

So by Lemma 3 {xn} is a Cauchy sequence in complete right or (left) dislocated
b-metric space so there must exist u ∈ X such that

lim
n→∞

(xn, u) = 0.

Now to show that u is the fixed point of T . Since xn → u as n → ∞ using the
continuity of T we have

lim
n→∞

Txn = Tu

which implies that

lim
n→∞

xn+1 = Tu.

Thus Tu = u. So u is the fixed point of T .
Uniqueness: Let T have two fixed points i.e u, v with u ̸= v then we have

d(u, v) = d(Tu, Tv) ≤ α · d(u, v) + β · d(u, Tu) + γ · d(v, Tv)

d(u, v) = d(Tu, Tv) ≤ α · d(u, v) + β · d(u, u) + γ · d(v, v).
Putting u = v in (6) one can easily show that d(u, u) = d(v, v) = 0. Thus the above
equation become

d(u, v) ≤ α · d(u, v).
The above inequality is possible only if d(u, v) = 0 similarly one can show that
d(v, u) = 0. So by (d1) we get that u = v. Thus fixed point of T is unique.
Corollary. Let (X, d) be a complete right or (left) dislocated b-metric space and
T : X → X is a continuous self-mapping satisfying

d(Tx, Ty) ≤ α · d(x, y) + β · d(x, Tx)

for all x, y ∈ X and α, β ≥ 0 with kα+ kβ < 1 where k ≥ 1. Then T has a unique
fixed point in X.
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Corollary. Let (X, d) be a complete right or (left) dislocated b-metric space
and T : X → X is a continuous self-mapping satisfying

d(Tx, Ty) ≤ α · d(x, y)
for all x, y ∈ X and α ≥ 0 with 0 ≤ kα < 1 where k ≥ 1. Then T has a unique
fixed point in X.
Remarks. Theorem 2 generalize Reich type contraction and extend Banach con-
traction principle and convex type contraction in complete right or (left) dislocated
b-metric spaces.
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