EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS FOR TRANSPORT EQUATIONS

SHENGYI ZHAI AND RONGRONG TIAN

Abstract

For a transport equation with the velocity field that has a particular form, we prove the existence and uniqueness of weak solutions. Moreover, we obtain the continuity for the unique weak solution.

1. Introduction

In the last few years, some progress has been made on the well-posedness of the transport equation:

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)+c(t, x) u(t, x)=f(t, x),(t, x) \in(0, T] \times \mathbb{R}^{d} \tag{1}\\
u(0, x)=u_{0}(x), x \in \mathbb{R}^{d}
\end{array}\right.
$$

where $T>0$ is a given real number, $b:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, c, f:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, $u_{0}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ are Borel functions. The first remarkable result in this direction is due to DiPerna and Lions 12, where the authors derived the well-posedness of (1) in $L^{1} \cap L^{\infty}$-setting, if b is of class $L^{1}\left([0, T] ; W_{l o c}^{1,1}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)\right)$ and satisfies suitable global conditions including L^{∞}-bounds on spatial divergence. Later, Diperna and Lions' work was strengthen by Lions [14] to the piecewise $W_{l o c}^{1,1}$ velocity field. Recently, Le Bris and Lions [13] used the same technique developed in 12 to establish the existence and uniqueness of solutions for a class of transport equations and then founded the differentiability of solutions for differential equations with $W_{l o c}^{1,1}$ velocity. We also refer to [17] for high order differentiability of solutions.

Using a slightly different philosophy, Ambrosio [1] (also see 3]) studied the continuity equation, i.e. $c(t, x)=\operatorname{div} b(t, x)$ and established the uniqueness of $L^{\infty_{-}}$ solutions by assuming $b \in B V_{l o c}$, whose distributional spatial divergence belongs to L^{∞}. Then using the renormalized technique for $B V_{l o c}$ coefficient, Ambrosio also proved the well-posedness for a class of hyperbolic systems of conservation laws [2, 4, 5]. But for general b, only with $B V_{l o c}$ regularity, counterexamples of nonuniqueness of weak solutions for (1) have been constructed and studied by many authors in recent years, such as see [7, 8, 9, 10, 11]. Thus to overcome the obstacle of nonuniqueness, restrictions need to be imposed on b that will weed out undesirable solutions.

[^0]In this paper, we study (1) in which b has the following form:

$$
\begin{equation*}
b(t, x)=\left(b_{1}\left(t, x_{1}\right), b_{2}(t, x)\right), \tag{2}
\end{equation*}
$$

where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{d_{1}} \times \mathbb{R}^{d_{2}}=\mathbb{R}^{d}, b_{1}:[0, T] \times \mathbb{R}^{d_{1}} \rightarrow \mathbb{R}^{d_{1}}, b_{2}:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d_{2}}$. Our source to study (2) stems from conservation laws directly, and now let us state it briefly. Consider the following inhomogeneous scalar conservation law equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho(t, x)+\operatorname{div}(G(t, \rho(t, x)))=A(t, \rho),(t, x) \in(0, T] \times \mathbb{R}^{d}, \tag{3}\\
\rho(t=0, x)=\rho_{0}(x), x \in \mathbb{R}^{d}
\end{array}\right.
$$

If G and A are smooth, the method of vanishing viscosity implies the existence of weak solutions for (3). But, it seems to be difficult to get the uniqueness for weak solutions even for smooth G and A. An alternative, instructive way of viewing the weak solution ρ is by rewriting (3) in its kinetic form (see [15, 16]) using the Maxwellian $u(t, x, v)=1_{(0, \rho(t, x))}(v)-1_{(\rho(t, x), 0)}(v)$,

$$
\left\{\begin{array}{l}
\partial_{t} u(t, x, v)+A(t, v) \partial_{v} u(t, x, v)+\partial_{v} G(t, v) \cdot \nabla_{x} u(t, x, v) \tag{4}\\
\quad=\partial_{v} m(t, x, v), \quad(t, x, v) \in(0, T] \times \mathbb{R}^{d} \times \mathbb{R}, \\
u(t=0, x, v)=u_{0}(x, v)=1_{\left(0, \rho_{0}(x)\right)}(v)-1_{\left(\rho_{0}(x), 0\right)}(v),(x, v) \in \mathbb{R}^{d} \times \mathbb{R}
\end{array}\right.
$$

Thus, we transform the nonlinear equation (3) into a linear ones, at the price of increasing the number of independent variables from d to $d+1$. In particular, to prove the uniqueness of solutions for (3), one should prove the uniqueness of solutions for (4). Since (4) is linear, we may establish the uniqueness of weak solutions for general G and A. When to study (4), a special feature is that the initial value should be L^{1}-integrable in the variable x, so we should establish the well-posedness of the transport problem with $u_{0} \in L^{p}\left(\mathbb{R} ; L^{1}\left(\mathbb{R}^{d}\right)\right)$. In general, we consider (1) with $u_{0} \in L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right.$), and in Section 2, we found the wellposedness of (1), (2).
Notations. $\mathcal{D}\left(\mathbb{R}^{d}\right)$ and $\mathcal{D}\left((0, T) \times \mathbb{R}^{d}\right)$ stand for the set of all smooth functions on \mathbb{R}^{d} and $(0, T) \times \mathbb{R}^{d}$ with compact supports, respectively. Given a measurable function ς, ς^{+}is defined by $\max \{\varsigma, 0\}$. sgn is the sign function defined by $\operatorname{sgn}(\tau)=$ $1_{\tau>0}(\tau)-1_{\tau<0}(\tau)$. The letter C will denote a positive constant, whose values may change in different places.

2. Transport equations

Set $\nabla=\left(\nabla_{x_{1}}, \nabla_{x_{2}}\right)$ and $\operatorname{div}=\operatorname{div}_{x_{1}}+\operatorname{div}_{x_{2}}$, we make the following assumptions: $\left(H_{1}\right): b_{1} \in L^{1}\left([0, T] ; L_{l o c}^{q}\left(\mathbb{R}^{d_{1}} ; \mathbb{R}^{d_{1}}\right)\right), \operatorname{div}_{x_{1}} b_{1} \in L^{1}\left([0, T] ; L^{\infty}\left(\mathbb{R}^{d_{1}}\right)\right)$;
$\left(H_{2}\right): b_{2} \in L^{1}\left([0, T] ; L_{l o c}^{q}\left(\mathbb{R}^{d_{1}} ; L_{l o c}^{\infty}\left(\mathbb{R}^{d_{2}} ; \mathbb{R}^{d_{2}}\right)\right)\right), \operatorname{div}_{x_{2}} b_{2} \in L^{1}\left([0, T] ; L^{\infty}\left(\mathbb{R}^{d}\right)\right)$;
$\left(H_{3}\right): f \in L^{p}\left([0, T] \times \mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right), u_{0} \in L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right), c \in L^{1}\left([0, T] ; L^{\infty}\left(\mathbb{R}^{d}\right)\right)$, where $p \in[1, \infty)$ and $1 / p+1 / q=1$.
Definition 2.1 Let $p \in[1, \infty)$. $u \in L^{\infty}\left([0, T] ; L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)\right)$ is called a weak solution of (1), 22) if for every $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ and $t \in[0, T]$,

$$
\begin{align*}
& \int_{\mathbb{R}^{d}} u(t, x) \varphi(x) d x=\int_{\mathbb{R}^{d}} u_{0}(x) \varphi(x) d x+\int_{0}^{t} \int_{\mathbb{R}^{d}} b(s, x) \cdot \nabla \varphi(x) u(s, x) d x d s \\
& +\int_{0}^{t} \int_{\mathbb{R}^{d}} \operatorname{div} b(s, x) \varphi(x) u(s, x) d x d s+\int_{0}^{t} \int_{\mathbb{R}^{d}} f(s, x) \varphi(x) d x d s \\
& -\int_{0}^{t} \int_{\mathbb{R}^{d}} c(s, x) u(s, x) \varphi(x) d x d s \tag{5}
\end{align*}
$$

Before stating and proving the existence, let us give an auxiliary lemma.
Lemma 2.1([6, Theorem 2.2]) Let $A \subset \mathbb{R}^{d}$ be an open set, and let $u \in W_{l o c}^{1,1}(A)$. Then for any Lipschitz function $\beta: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\nabla[\beta(u)]=\beta^{\prime}(u) \nabla u
$$

We are now in a position to state and prove the existence of weak solutions.
Theorem 2.1 (Existence). Let $p \in[1, \infty)$ and let b, c, u_{0} and f satisfy hypotheses $\left(H_{1}\right)-\left(H_{3}\right)$. Then there exists a weak solution of (1), (2).
Proof. Suppose $r>0$. Let $B_{1, r}(0)$ be the ball in $\mathbb{R}^{d_{1}}$ with radius r and central 0 , and let $B_{2, r}(0)$ be the corresponding ball in $\mathbb{R}^{d_{2}}$. Let ρ_{1} and ρ_{2} be two regularization kernels in variables x_{1} and x_{2}, respectively, i.e.

$$
\begin{equation*}
0 \leq \rho_{i} \in \mathcal{D}\left(\mathbb{R}^{d_{i}}\right), \quad \int_{\mathbb{R}^{d_{i}}} \rho_{i}\left(x_{i}\right) d x_{i}=1, i=1,2 \tag{6}
\end{equation*}
$$

For any $\varepsilon>0$, we set $\rho_{\varepsilon, i}(\cdot)=\frac{1}{\varepsilon^{d_{i}}} \rho_{i}(\dot{\bar{\varepsilon}}), i=1,2$. Define

$$
\left\{\begin{array}{l}
b_{\varepsilon, r}(t, x)=\left(\left(b_{1}(t) 1_{B_{1, r}(0)}\right) * \rho_{\varepsilon, 1},\left(b_{2}(t) 1_{B_{1, r}(0)} 1_{B_{2, r}(0)}\right) * \rho_{\varepsilon, 1} * \rho_{\varepsilon, 2}\right)(x) \\
c_{\varepsilon, r}(t, x)=\left(c(t) 1_{B_{1, r}(0)} 1_{B_{2, r}(0)}\right) * \rho_{\varepsilon, 1} * \rho_{\varepsilon, 2}(x)
\end{array}\right.
$$

Since $f \in L^{p}\left([0, T] \times \mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right), u_{0} \in L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)$, we can choose two sequences $\left\{u_{0}^{n}\right\} \subset \mathcal{D}\left(\mathbb{R}^{d}\right)$ and $\left\{f_{n}\right\} \subset \mathcal{D}\left((0, T) \times \mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
u_{0}^{n} \longrightarrow u_{0} \quad \text { in } L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right), \quad f_{n} \longrightarrow f \text { in } L^{p}\left([0, T] \times \mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right) \tag{7}
\end{equation*}
$$

and

$$
\left\{\begin{array}{l}
\left\|u_{0}^{n}\right\|_{L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)} \leq C\left\|u_{0}\right\|_{L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)}, \\
\left\|f_{n}\right\|_{L^{p}\left([0, T] \times \mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)} \leq C\|f\|_{L^{p}\left([0, T] \times \mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)} .
\end{array}\right.
$$

Consider the following approximation problem

$$
\left\{\begin{array}{l}
\partial_{t} u_{n, \varepsilon, r}(t, x)+b_{\varepsilon, r}(t, x) \cdot \nabla u_{n, \varepsilon, r}(t, x)+c_{\varepsilon, r}(t, x) u_{n, \varepsilon, r} \tag{8}\\
\quad=f_{n}(t, x),(t, x) \in(0, T] \times \mathbb{R}^{d} \\
u_{n, \varepsilon, r}(t=0, x)=u_{0}^{n}(x), x \in \mathbb{R}^{d}
\end{array}\right.
$$

By the classical characteristic method, there exists a unique smooth (in x) solution $u_{n, \varepsilon, r}(t, x)$ of (8) and $u_{n, \varepsilon, r}(t, x)$ satisfies (5).

If we choose $\beta(\tau)=|\tau|$, then it is Lipschitz continuous, by virtue of Lemma 2.1, we obtain

$$
\begin{align*}
& \partial_{t} \beta\left(u_{n, \varepsilon, r}\right)+b_{\varepsilon, r}(t, x) \cdot \nabla \beta\left(u_{n, \varepsilon, r}\right)+c_{\varepsilon, r}(t, x) \beta^{\prime}\left(u_{n, \varepsilon, r}\right) u_{n, \varepsilon, r}(t, x) \\
= & \beta^{\prime}\left(u_{n, \varepsilon, r}\right) f_{n}(t, x) \tag{9}
\end{align*}
$$

associated with $\beta\left(u_{n, \varepsilon, r}(t=0, x)\right)=\beta\left(u_{0}^{n}(x)\right)$. By integrating the identity (9) in x_{2} over $\mathbb{R}^{d_{2}}$ and using the integration by parts, it turns to

$$
\begin{align*}
& \quad \partial_{t} \int_{\mathbb{R}^{d_{2}}}\left|u_{n, \varepsilon, r}\right|(t, x) d x_{2}+b_{1, \varepsilon, r}\left(t, x_{1}\right) \cdot \nabla_{x_{1}} \int_{\mathbb{R}^{d_{2}}}\left|u_{n, \varepsilon, r}\right|(t, x) d x_{2} \\
& \quad+\int_{\mathbb{R}^{d_{2}}} c_{\varepsilon, r}(t, x)\left|u_{n, \varepsilon, r}\right|(t, x) d x_{2} \\
& =\quad \int_{\mathbb{R}^{d_{2}}} \operatorname{div}_{x_{2}} b_{2, \varepsilon, r}\left(t, x_{1}, x_{2}\right)\left|u_{n, \varepsilon, r}\right|\left(t, x_{1}, x_{2}\right) d x_{2} \\
& \quad+\int_{\mathbb{R}^{d_{2}}} \operatorname{sgn}\left(u_{n, \varepsilon, r}\right) f_{n}\left(t, x_{1}, x_{2}\right) d x_{2}, \tag{10}
\end{align*}
$$

where we have used the fact $\beta^{\prime}(\tau)=\operatorname{sgn}(\tau)$. Setting

$$
v_{n, \varepsilon, r}\left(t, x_{1}\right)=\int_{\mathbb{R}^{d_{2}}}\left|u_{n, \varepsilon, r}\right|\left(t, x_{1}, x_{2}\right) d x_{2}
$$

it causes to

$$
\left\{\begin{array}{l}
\partial_{t} v_{n, \varepsilon, r}\left(t, x_{1}\right)+b_{1, \varepsilon, r}\left(t, x_{1}\right) \cdot \nabla_{x_{1}} v_{n, \varepsilon, r}\left(t, x_{1}\right)=g_{n, \varepsilon, r}\left(t, x_{1}\right) \tag{11}\\
v_{n, \varepsilon, r}\left(t=0, x_{1}\right)=\int_{\mathbb{R}^{d_{2}}}\left|u_{0}^{n}\right|(x) d x_{2}
\end{array}\right.
$$

where

$$
\begin{aligned}
g_{n, \varepsilon, r}\left(t, x_{1}\right)= & \int_{\mathbb{R}^{d_{2}}}\left[\operatorname{div}_{x_{2}} b_{2, \varepsilon, r}(t, x)-c_{\varepsilon, r}(t, x)\right]\left|u_{n, \varepsilon, r}\right|(t, x) d x_{2} \\
& +\int_{\mathbb{R}^{d_{2}}} \operatorname{sgn}\left(u_{n, \varepsilon, r}\right) f_{n}(t, x) d x_{2}
\end{aligned}
$$

The arguments employed above for $\beta(\tau)=|\tau|$ in (8) adapted to $\beta(\tau)=|\tau|^{p}$ in (11) now, yields that

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{d_{1}}} v_{n, \varepsilon, r}^{p}\left(t, x_{1}\right) d x_{1} \\
= & \int_{\mathbb{R}^{d_{1}}} \operatorname{div}_{x_{1}} b_{1, \varepsilon, r}\left(t, x_{1}\right) v_{n, \varepsilon, r}^{p}\left(t, x_{1}\right) d x_{1}+\int_{\mathbb{R}^{d_{1}}} p v_{n, \varepsilon, r}^{p-1}\left(t, x_{1}\right) g_{n, \varepsilon, r}\left(t, x_{1}\right) d x_{1} \\
\leq & C(t) \int_{\mathbb{R}^{d_{1}}} v_{n, \varepsilon, r}^{p}\left(t, x_{1}\right) d x_{1}+\left\|f_{n}(t, \cdot)\right\|_{L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)},
\end{aligned}
$$

where

$$
\begin{aligned}
C(t)= & \left\|\operatorname{div}_{x_{1}} b_{1, \varepsilon, r}(t, \cdot)\right\|_{L^{\infty}\left(\mathbb{R}^{d_{1}}\right)}+p\left\|\operatorname{div}_{x_{2}} b_{2, \varepsilon, r}(t, \cdot)\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)} \\
& +p\left\|c_{\varepsilon, r}(t, \cdot)\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}+(p-1)
\end{aligned}
$$

Using the Grönwall lemma, we conclude that

$$
\begin{aligned}
& \int_{\mathbb{R}^{d_{1}}} v_{n, \varepsilon, r}^{p}\left(t, x_{1}\right) d x_{1} \\
\leq & C \int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}\left|u_{0}^{n}\right|(x) d x_{2}\right]^{p} d x_{1}+C \int_{0}^{T} \int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}\left|f_{n}(x)\right| d x_{2}\right]^{p} d x_{1} d t .
\end{aligned}
$$

So

$$
\begin{align*}
& \int_{\mathbb{R}^{d_{2}}}\left[\int_{\mathbb{R}^{d_{1}}}\left|u_{n, \varepsilon, r}\right| d x_{2}\right]^{p} d x_{1} \\
\leq & C \int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}\left|u_{0}\right| d x_{2}\right]^{p} d x_{1}+C \int_{0}^{T} \int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}|f| d x_{2}\right]^{p} d x_{1} d t \tag{12}
\end{align*}
$$

for all $t \in[0, T]$.
The discussion applied above, with a slight change, also gives the estimate

$$
\begin{equation*}
\int_{\mathbb{R}^{d}}\left|u_{n, \varepsilon, r}\right|^{p^{\prime}} d x \leq C\left[\int_{\mathbb{R}^{d}}\left|u_{0}^{n}\right|^{p^{\prime}} d x+\int_{0}^{T} \int_{\mathbb{R}^{d}}\left|f_{n}\right|^{p^{\prime}} d x d t\right] \tag{13}
\end{equation*}
$$

for any $p^{\prime}>p$, since $u_{0}^{n} \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ and $f_{n} \in \mathcal{D}\left((0, T) \times \mathbb{R}^{d}\right)$.
From (12) and $\sqrt{13}$, the sequence $\left\{u_{n, \varepsilon, r}\right\}$ is weakly relatively compact in the space $L^{\infty}\left([0, T] ; L_{l o c}^{p}\left(\mathbb{R}^{d_{1}} ; L_{l o c}^{1}\left(\mathbb{R}^{d_{2}}\right)\right)\right.$) (also see [12, Proposition II.1]). By extracting a subsequence if necessary, it converges weakly in $L^{\infty}\left([0, T] ; L_{l o c}^{p}\left(\mathbb{R}^{d_{1}} ; L_{l o c}^{1}\left(\mathbb{R}^{d_{2}}\right)\right)\right)$ to some u, and now $u \in L^{\infty}\left([0, T] ; L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)\right)$ which satisfies (5).

If the velocity field is more regular, the weak solution is unique. Before establishing the uniqueness for weak solutions, we requires some useful lemmas and firstly one appeals a lemma [12, Lemma 2.1].
Lemma 2.2 Let $B \in L^{1}\left([0, T] ; W_{l o c}^{1, \zeta}\left(\mathbb{R}^{d} ; \mathbb{R}^{d}\right)\right)$, $S \in L^{\infty}\left([0, T] ; L_{l o c}^{\zeta^{\prime}}\left(\mathbb{R}^{d}\right)\right)$, with $1 \leq \zeta \leq \infty, 1 / \zeta+1 / \zeta^{\prime}=1$. Then
$(B \cdot \nabla S) * \varrho_{\varepsilon}-B \cdot \nabla\left(S * \varrho_{\varepsilon}\right) \longrightarrow 0$ in $L^{1}\left([0, T] ; L_{l o c}^{1}\left(\mathbb{R}^{d}\right)\right)$ as $\varepsilon \rightarrow 0$,
where

$$
\varrho_{\varepsilon}=\frac{1}{\varepsilon^{d}} \varrho\left(\frac{\dot{-}}{\varepsilon}\right) \text { with } \varrho \in \mathcal{D}_{+}\left(\mathbb{R}^{d}\right), \quad \int_{\mathbb{R}^{d}} \varrho d x=1, \quad \varepsilon>0 .
$$

From above lemma, one gains:
Lemma 2.3 Suppose $p \in[1, \infty)$ and $q \in(1, \infty]$ such that $1 / p+1 / q=1$. Let $b(t, x)=\left(b_{1}\left(t, x_{1}\right), b_{2}(t, x)\right)$ such that

$$
\begin{equation*}
b_{1} \in L^{1}\left([0, T] ; W_{l o c}^{1, q}\left(\mathbb{R}^{d_{1}} ; \mathbb{R}^{d_{1}}\right)\right), \quad b_{2} \in L^{1}\left([0, T] ; L_{l o c}^{q}\left(\mathbb{R}^{d_{1}} ; W_{l o c}^{1, \infty}\left(\mathbb{R}^{d_{2}} ; \mathbb{R}^{d_{2}}\right)\right)\right) \tag{14}
\end{equation*}
$$

Assume that $u \in L^{\infty}\left([0, T] ; L_{l o c}^{p}\left(\mathbb{R}^{d_{1}} ; L_{l o c}^{1}\left(\mathbb{R}^{d_{2}}\right)\right)\right)$ and

$$
\begin{equation*}
\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x) \in L^{1}\left([0, T] ; L_{l o c}^{1}\left(\mathbb{R}^{d}\right)\right) \tag{15}
\end{equation*}
$$

Then
(i) for any Borel set $K \subset \mathbb{R}$ with $\mu_{1}(K)=0$,

$$
\begin{align*}
& \mu_{d+1}\left(\left\{(t, x) \in[0, T] \times \mathbb{R}^{d} ; u(t, x) \in K\right.\right. \\
& \left.\left.\quad \text { and } \partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x) \neq 0\right\}\right)=0 \tag{16}
\end{align*}
$$

(ii) for any Lipschitz function β,

$$
\begin{equation*}
\partial_{t}[\beta(u)]+b(t, x) \cdot \nabla[\beta(u)]=\beta^{\prime}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right], \tag{17}
\end{equation*}
$$

where μ_{1} and μ_{d+1} denote the standard Lebesgue measure in \mathbb{R} and \mathbb{R}^{d+1}, respectively.
Proof. Obviously, (16) is equivalent to

$$
\begin{equation*}
1_{K}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right]=0, \text { a.e. }(t, x) \in[0, T] \times \mathbb{R}^{d} \tag{18}
\end{equation*}
$$

Notice that $1_{K}(\tau)=\frac{d}{d \tau}\left(\int_{0}^{\tau} 1_{K}(s) d s\right)$, it suffices to show

$$
\beta^{\prime}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right]=0, \text { a.e. }(t, x) \in[0, T] \times \mathbb{R}^{d}
$$

if one fetches $\beta(\tau)=\int_{0}^{\tau} 1_{K}(s) d s$.
Firstly, we assume K is compact. There exist open sets $V_{1}, V_{2}, \ldots, V_{n}, \ldots \subset \mathbb{R}$ such that $V_{n+1} \subset V_{n}$ and $K=\bigcap_{n} V_{n}$. By the Urysohn lemma, there exist $\vartheta_{n} \in \mathcal{D}\left(V_{n}\right)$ such that $0 \leq \vartheta_{n} \leq 1, \vartheta_{n}=1$ on K. Define

$$
\beta_{n}(\tau)=\int_{0}^{\tau} \vartheta_{n}(s) d s, \tau \in \mathbb{R}
$$

then β_{n} is smooth, $\left|\beta_{n}(\tau)\right| \leq|\tau|$ and $\beta_{n}^{\prime}(\tau) \rightarrow 1_{K}(\tau)$ as $n \rightarrow \infty$. By making use of the Lebesgue dominated convergence theorem, we get

$$
\beta_{n}(\tau) \longrightarrow \int_{0}^{\tau} 1_{K}(s) d s=\beta(\tau), \text { as } n \rightarrow \infty
$$

Now we claim that

$$
\begin{equation*}
\partial_{t}\left[\beta_{n}(u)\right]+b(t, x) \cdot \nabla\left[\beta_{n}(u)\right]=\beta_{n}^{\prime}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right] . \tag{19}
\end{equation*}
$$

We prove it by two steps.

Step 1 : u is smooth in t.

Let ρ_{1} and ρ_{2} be as in (6). Then $u_{\varepsilon_{1}, \varepsilon_{2}}=\left(u(t) * \rho_{\varepsilon_{1}, 1}\right) * \rho_{\varepsilon_{2}, 2}$ satisfies

$$
\begin{align*}
& \partial_{t}\left[\beta_{n}\left(u_{\varepsilon_{1}, \varepsilon_{2}}\right)\right]+b(t, x) \cdot \nabla\left[\beta_{n}\left(u_{\varepsilon_{1}, \varepsilon_{2}}\right)\right] \\
= & \beta_{n}^{\prime}\left(u_{\varepsilon_{1}, \varepsilon_{2}}\right)\left[\partial_{t} u_{\varepsilon_{1}, \varepsilon_{2}}+(b(t, x) \cdot \nabla u)_{\varepsilon_{1}, \varepsilon_{2}}(t, x)-\epsilon_{\varepsilon}\right], \tag{20}
\end{align*}
$$

where ε_{1} and ε_{2} are positive real numbers,

$$
\epsilon_{\varepsilon}(t, x)=(b \cdot \nabla u)_{\varepsilon_{1}, \varepsilon_{2}}(t, x)-b(t, x) \cdot \nabla u_{\varepsilon_{1}, \varepsilon_{2}}(t, x)=: I_{1, \varepsilon}(t, x)+I_{2, \varepsilon}(t, x)
$$

and

$$
\begin{aligned}
& I_{1, \varepsilon}(t, x)=\left(b_{1} \cdot \nabla_{x_{1}} u\right)_{\varepsilon_{1}, \varepsilon_{2}}(t, x)-b_{1}(t, x) \cdot \nabla_{x_{1}} u_{\varepsilon_{1}, \varepsilon_{2}}(t, x), \\
& I_{2, \varepsilon}(t, x)=\left(b_{2} \cdot \nabla_{x_{2}} u\right)_{\varepsilon_{1}, \varepsilon_{2}}(t, x)-b_{2}(t, x) \cdot \nabla_{x_{2}} u_{\varepsilon_{1}, \varepsilon_{2}}(t, x) .
\end{aligned}
$$

For $\varepsilon_{2}>0$ be fixed, by (14) and Lemma 2.2,

$$
\lim _{\varepsilon_{1} \rightarrow 0} I_{1, \varepsilon}(t, x)=0 \text { in } L^{1}\left([0, T] ; L_{l o c}^{1}\left(\mathbb{R}^{d_{1}}\right)\right), \text { for a.e. } x_{2} \in \mathbb{R}^{d_{2}}
$$

A subtle argument analogue of Lemma 2.2, also hints that

$$
\begin{equation*}
\lim _{\varepsilon_{1} \rightarrow 0} I_{1, \varepsilon}(t, x)=0 \text { in } L^{1}\left([0, T] ; L_{l o c}^{1}\left(\mathbb{R}^{d}\right)\right) \tag{21}
\end{equation*}
$$

At the same time,

$$
\begin{align*}
& I_{2, \varepsilon}(t, x) \\
= & -b_{2}(t, x) \cdot \nabla_{x_{2}} \int_{\mathbb{R}^{d}} u\left(t, y_{1}, y_{2}\right) \rho_{\varepsilon_{1}, 1}\left(x_{1}-y_{1}\right) \rho_{\varepsilon_{2}, 2}\left(x_{2}-y_{2}\right) d y_{1} d y_{2} \\
& +\left\langle b_{2}(t, \cdot, \cdot) \cdot \nabla_{x_{2}} u(t, \cdot, \cdot), \rho_{\varepsilon_{1}, 1}\left(x_{1}-\cdot\right) \rho_{\varepsilon_{2}, 2}\left(x_{2}-\cdot\right)\right\rangle \\
= & \int_{\mathbb{R}^{d}} u\left(t, y_{1}, y_{2}\right) \rho_{\varepsilon_{1}, 1}\left(x_{1}-y_{1}\right)\left[b_{2}\left(t, y_{1}, y_{2}\right)-b_{2}\left(t, x_{1}, x_{2}\right)\right] \\
& \cdot \nabla_{x_{2}} \rho_{\varepsilon_{2}, 2}\left(x_{2}-y_{2}\right) d y_{1} d y_{2} \\
& -\int_{\mathbb{R}^{d}} u\left(t, y_{1}, y_{2}\right) \rho_{\varepsilon_{1}, 1}\left(x_{1}-y_{1}\right) \operatorname{div}_{y_{2}} b_{2}\left(t, y_{1}, y_{2}\right) \rho_{\varepsilon_{2}, 2}\left(x_{2}-y_{2}\right) d y_{1} d y_{2} \\
\longrightarrow & \int_{\mathbb{R}^{d_{2}}} u\left(t, x_{1}, y_{2}\right)\left[b_{2}\left(t, x_{1}, y_{2}\right)-b_{2}\left(t, x_{1}, x_{2}\right)\right] \cdot \nabla_{x_{2}} \rho_{\varepsilon_{2}, 2}\left(x_{2}-y_{2}\right) d y_{2} \\
& -\int_{\mathbb{R}^{d_{2}}} u\left(t, x_{1}, y_{2}\right) \operatorname{div}_{y_{2}} b_{2}\left(t, x_{1}, y_{2}\right) \rho_{\varepsilon_{2}, 2}\left(x_{2}-y_{2}\right) d y_{2} \tag{22}
\end{align*}
$$

for almost all $(t, x) \in[0, T] \times \mathbb{R}^{d}$, if we tend ε_{1} to 0 for fixed ε_{2}. Setting the limit by $I_{2, \varepsilon_{2}}(t, x)$, then Lemma 2.2 uses again (with a slight change), one concludes that

$$
I_{2, \varepsilon_{2}}(t, x) \rightarrow 0 \text { in } L^{1}\left([0, T] ; L_{l o c}^{1}\left(\mathbb{R}^{d}\right)\right), \text { as } \varepsilon_{2} \rightarrow 0
$$

On the other hand, for any $r>0$, if we denote $\tilde{B}_{r}(0)$ by the product of two balls in $\mathbb{R}^{d_{1}}$ and $\mathbb{R}^{d_{2}}$ with the same radius r, i.e. $\tilde{B}_{r}(0)=B_{1, r}(0) \times B_{2, r}(0)$, then one
has the following estimate

$$
\begin{align*}
& \| \int_{\mathbb{R}^{d}} u\left(t, y_{1}, y_{2}\right) \rho_{\varepsilon_{1}, 1}\left(x_{1}-y_{1}\right)\left[b_{2}(t, y)-b_{2}(t, x)\right] \\
& \cdot \nabla_{x_{2}} \rho_{\varepsilon_{2}, 2}\left(x_{2}-y_{2}\right) d y_{1} d y_{2} \|_{L^{1}\left([0, T] ; L^{1}\left(\tilde{B}_{r}(0)\right)\right)} \\
&=\left.\int_{0}^{T} \int_{\tilde{B}_{r}(0)}\right|_{\mathbb{R}^{d}} u\left(t, y_{1}, y_{2}\right) \rho_{\varepsilon_{1}, 1}\left(x_{1}-y_{1}\right)\left[b_{2}(t, y)-b_{2}(t, x)\right] \\
& \leq \quad C \int_{0}^{T} d t \int_{\tilde{B}_{r}(0)} d x \int_{\mathbb{R}^{d_{1}}} d y_{1} \int_{\left|y_{2}-x_{2}\right| \leq C \varepsilon_{2}} \rho_{\varepsilon_{1}, 1}\left(x_{1}-y_{1}\right)\left|u\left(t, y_{1}, y_{2}\right)\right| \\
& \times \frac{\left|b_{2}(t, y)-b_{2}(t, x)\right|}{\varepsilon_{2}} d y_{2} \\
& \leq \quad C \int_{0}^{T} d t \int_{\tilde{B}_{r}(0)} d x \int_{\mathbb{R}^{d_{1}}} d y_{1} \int_{\left|y_{2}-x_{2}\right| \leq C \varepsilon_{2}} \rho_{\varepsilon_{1}, 1}\left(x_{1}-y_{1}\right)\left|u\left(t, y_{1}, y_{2}\right)\right| \\
& \times \frac{\left|b_{2}(t, y)-b_{2}\left(t, y_{1}, x_{2}\right)\right|}{\varepsilon_{2}} d y_{2} \\
&+\int_{0}^{T} d t \int_{\tilde{B}_{r}(0)} d x \int_{\mathbb{R}^{d_{1}}} d y_{1} \int_{\left|y_{2}-x_{2}\right| \leq C \varepsilon_{2}} \rho_{\varepsilon_{1}, 1}\left(x_{1}-y_{1}\right)\left|u\left(t, y_{1}, y_{2}\right)\right| \\
&\left.\times \frac{\left|b_{2}\left(t, y_{1}, x_{2}\right)-b_{2}(t, x)\right|}{\varepsilon_{2}} d y_{2}\right] \\
& \leq \quad C \int_{0}^{T} d t \int_{B_{1, r+1}(0)} d y_{1} \int_{B_{2, r+C+1}(0)}|u(t, y)|\left\|\nabla_{y_{2}} b_{2}\left(t, y_{1}, \cdot\right)\right\|_{L^{\infty}\left(B_{2, r+C+1}\right)} d y_{2} \\
&\left.+\frac{1}{\varepsilon_{2}} \int_{0}^{T} d t \int_{B_{1, r+1}(0)} d y_{1} \int_{B_{2, r+C+1}(0)}|u(t, y)|\left\|b_{2}\left(t, y_{1}, \cdot\right)\right\|_{L^{\infty}\left(B_{2, r+C+1}\right)} d y_{2}\right] \cdot(23)
\end{align*}
$$

From $\sqrt[22]{ }$ and 23 , in view of the Lebesgue dominated convergence theorem, we gain

$$
\begin{equation*}
\lim _{\varepsilon_{2} \rightarrow 0} \lim _{\varepsilon_{1} \rightarrow 0} I_{2, \varepsilon}(t, x)=0, \quad \text { in } \quad L^{1}\left([0, T] ; L_{l o c}^{1}\left(\mathbb{R}^{d}\right)\right) \tag{24}
\end{equation*}
$$

Observing that β_{n}^{\prime} is bounded, by letting ε_{1} tend to 0 first, ε_{2} tend to 0 next, from (20), 21) and 24), one obtains the identity (19) for smooth (in t) u.

Step $2: u \in L^{\infty}\left([0, T] ; L_{l o c}^{p}\left(\mathbb{R}^{d_{1}} ; L_{l o c}^{1}\left(\mathbb{R}^{d_{2}}\right)\right)\right)$.
Let ρ_{3} be a standard smoothing kernel in t. Then $u_{\varepsilon_{3}}=u * \rho_{\varepsilon_{3}, 3}(t)\left(\rho_{\varepsilon_{3}, 3}(t)=\right.$ $\left.\frac{1}{\varepsilon_{3}} \rho_{3}\left(\frac{t}{\varepsilon_{3}}\right)\right)$ is smooth in t for $t \in\left(3 \varepsilon_{3}, T-3 \varepsilon_{3}\right)$ and

$$
\begin{equation*}
u_{\varepsilon_{3}}(\cdot, x) \longrightarrow u(\cdot, x) \text { in } L^{1}[0, T] \text { for a.e. } x \in \mathbb{R}^{d} \tag{25}
\end{equation*}
$$

Now by Step 1,

$$
\begin{align*}
& \partial_{t}\left[\beta_{n}\left(u_{\varepsilon_{3}}\right)\right]+b(t, x) \cdot \nabla\left[\beta_{n}\left(u_{\varepsilon_{3}}\right)\right] \\
= & \beta_{n}^{\prime}\left(u_{\varepsilon_{3}}\right)\left[\partial_{t} u_{\varepsilon_{3}}(t, x)+(b(t, x) \cdot \nabla u)_{\varepsilon_{3}}(t, x)-\epsilon_{\varepsilon_{3}}\right] \tag{26}
\end{align*}
$$

for a.e. $(t, x) \in\left(3 \varepsilon_{3}, T-3 \varepsilon_{3}\right) \times \mathbb{R}^{d}$, where

$$
\begin{equation*}
\epsilon_{\varepsilon_{3}}=(b(t, x) \cdot \nabla u)_{\varepsilon_{3}}(t, x)-b(t, x) \cdot \nabla u_{\varepsilon_{3}}(t, x) . \tag{27}
\end{equation*}
$$

The calculations used in Step 1 from 21 to 24 is applicable here again, from (25) to 27), by letting ε_{3} approach to 0 , we get (19), and which suggests that

$$
\begin{align*}
& \int_{0}^{T} \int_{\mathbb{R}^{d}} \beta_{n}^{\prime}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right] \phi(t, x) d x d t \\
= & \left\langle\partial_{t}\left[\beta_{n}(u)\right]+b \cdot \nabla\left[\beta_{n}(u)\right], \phi\right\rangle \\
= & -\int_{0}^{T} \int_{\mathbb{R}^{d}} \beta_{n}(u)\left[\partial_{t} \phi(t, x)+\operatorname{div}(b(t, x) \phi(t, x))\right] d x d t, \tag{28}
\end{align*}
$$

for every $\phi \in \mathcal{D}\left((0, T) \times \mathbb{R}^{d}\right)$. Note that for a.e. $(t, x) \in \operatorname{supp} \phi$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta_{n}(u(t, x))=\lim _{n \rightarrow \infty} \int_{0}^{u(t, x)} \vartheta_{n}(\tau) d \tau=\int_{0}^{u(t, x)} 1_{K}(\tau) d \tau=0 \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \beta_{n}^{\prime}(u(t, x))=\lim _{n \rightarrow \infty} \vartheta_{n}\left(u(t, x)=1_{K}(u(t, x))\right. \tag{30}
\end{equation*}
$$

From (28), 29) and (30), we derive

$$
\begin{aligned}
& \int_{0}^{T} \int_{\mathbb{R}^{d}} 1_{K}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right] \phi(t, x) d x d t \\
= & \lim _{n \rightarrow \infty} \int_{0}^{T} \int_{\mathbb{R}^{d}} \beta_{n}^{\prime}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right] \phi(t, x) d x d t \\
= & \lim _{n \rightarrow \infty}\left\langle\partial_{t}\left[\beta_{n}(u)\right]+b(t, x) \cdot \nabla\left[\beta_{n}(u)\right], \phi\right\rangle \\
= & -\lim _{n \rightarrow \infty} \int_{0}^{T} \int_{\mathbb{R}^{d}} \beta_{n}(u)\left[\partial_{t} \phi(t, x)+\operatorname{div}(b(t, x) \phi(t, x))\right] d x d t=0 .
\end{aligned}
$$

Since $\phi \in \mathcal{D}\left((0, T) \times \mathbb{R}^{d}\right)$ is arbitrary, one proves the conclusion 18) for compact set K.

For a general Borel set K, we choose a compact set $L \subset \mathbb{R}$ and define the regular Borel measure θ on \mathbb{R} by

$$
\theta(K)=\int_{u^{-1}(K)}\left|\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right| 1_{L} d t d x .
$$

Since for any compact set $K \subset \mathbb{R}$ with zero Lebesgue measure, $\theta(K)=0$. One gains

$$
\theta(K)=0, \text { for any zero Lebesgue measure set } K
$$

Therefore

$$
1_{K}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right]=0, \text { a.e. }(t, x) \in[0, T] \times \mathbb{R}^{d}
$$

for L is arbitrary.
It remains to show the chain rule (17) for Lipschitz function β. In fact, if we approximate β by a sequence of smooth functions β_{k}, such that $\left|\beta_{k}^{\prime}\right| \leq C$, then from (19),

$$
\partial_{t}\left[\beta_{k}(u)\right]+b(t, x) \cdot \nabla\left[\beta_{k}(u)\right]=\beta_{k}^{\prime}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right] .
$$

Notice that

$$
\lim _{k \rightarrow \infty} \beta_{k}^{\prime}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right]=\beta^{\prime}(u)\left[\partial_{t} u(t, x)+b(t, x) \cdot \nabla u(t, x)\right],
$$

and

$$
\lim _{k \rightarrow \infty}\left[\partial_{t}\left[\beta_{k}(u)\right]+b(t, x) \cdot \nabla\left[\beta_{k}(u)\right]\right]=\partial_{t}[\beta(u)]+b(t, x) \cdot \nabla[\beta(u)]
$$

in distributional sense. Thus (17) is valid.
We are now in a position to state and prove the uniqueness.
Theorem 2.2 (Uniqueness). Let p, b, c, u_{0} and f be as in Theorem 2.1, and let (14) hold. We assume further that $b_{1}=b_{1,1}+b_{1,2}, b_{2}=b_{2,1}+b_{2,2}$, and

$$
\begin{gather*}
b_{1,2} \cdot x_{1} \geq 0, \quad \frac{\left|b_{1,1}\right|}{1+\left|x_{1}\right|} \in L^{1}\left([0, T] ; L^{1}\left(\mathbb{R}^{d_{1}}\right)\right)+L^{1}\left([0, T] ; L^{\infty}\left(\mathbb{R}^{d_{1}}\right)\right) \tag{31}\\
b_{2,2} \cdot x_{2} \geq 0, \frac{\left|b_{2,1}\right|}{1+\left|x_{2}\right|} \in L^{1}\left([0, T] ; L_{l o c}^{1}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)+L_{l o c}^{q}\left(\mathbb{R}^{d_{1}} ; L^{\infty}\left(\mathbb{R}^{d_{2}}\right)\right)\right) \tag{32}
\end{gather*}
$$

Then the weak solution of the Cauchy problem (1), (2) is unique.
Proof. Assume for the time being that, we have two solutions u_{1} and u_{2} to (1) sharing the same inhomogeneous condition, the same initial data, then the difference u of u_{1} and u_{2} solves the homogeneous problem (1) supplied with initial data vanishes, so it suffices to show that a weak solution with $u_{0}=0$ and $f=0$ vanishes identically.

For any real number $M_{1}>0$, we take $\beta(\tau)=|\tau| \wedge M_{1}$. By virtue of Lemma 2.3, then

$$
\begin{aligned}
& \partial_{t}\left[|u| \wedge M_{1}\right]+b_{1} \cdot \nabla_{x_{1}}\left[|u| \wedge M_{1}\right]+b_{2} \cdot \nabla_{x_{2}}\left[|u| \wedge M_{1}\right] \\
& +c\left[|u| \wedge M_{1}\right] 1_{\left[0, M_{1}\right]}(|u|) \operatorname{sgn}(u)=0 .
\end{aligned}
$$

For any $\varphi_{2} \in \mathcal{D}\left(\mathbb{R}^{d_{2}}\right)$, one has

$$
\begin{equation*}
\partial_{t} v\left(t, x_{1}\right)+b_{1}\left(t, x_{1}\right) \cdot \nabla_{x_{1}} v\left(t, x_{1}\right)=g\left(t, x_{1}\right), \tag{33}
\end{equation*}
$$

where

$$
v\left(t, x_{1}\right)=\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right]\left(t, x_{1}, x_{2}\right) \varphi_{2}\left(x_{2}\right) d x_{2}
$$

and
$g\left(t, x_{1}\right)=\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right]\left[\operatorname{div}_{x_{2}}\left(b_{2}(t, x) \varphi_{2}\left(x_{2}\right)\right)-c(t, x) 1_{\left[0, M_{1}\right]}(|u|) \varphi_{2}\left(x_{2}\right) \operatorname{sgn}(u)\right] d x_{2}$.
Using Lemma 2.3 again for $\beta(\tau)=\left(|\tau| \wedge M_{2}\right)^{p}$ with some real number $M_{2}>0$, it follows from (33) that
$\partial_{t}\left[|v| \wedge M_{2}\right]^{p}+b_{1}\left(t, x_{1}\right) \cdot \nabla_{x_{1}}\left[|v| \wedge M_{2}\right]^{p}=p\left[|v| \wedge M_{2}\right]^{p-1} g\left(t, x_{1}\right) 1_{\left[0, M_{2}\right]}(|v|) \operatorname{sgn}(v)$,
i.e.

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathbb{R}^{d_{1}}}\left[|v| \wedge M_{2}\right]^{p}\left(t, x_{1}\right) \varphi_{1}\left(x_{1}\right) d x_{1} \\
= & \int_{\mathbb{R}^{d_{1}}}\left[|v| \wedge M_{2}\right]^{p}\left(t, x_{1}\right) \operatorname{div}_{x_{1}}\left(b_{1}\left(t, x_{1}\right) \varphi_{1}\left(x_{1}\right)\right) d x_{1} \\
& +p \int_{\mathbb{R}^{d_{1}}}\left[|v| \wedge M_{2}\right]^{p-1} 1_{\left[0, M_{2}\right]}(|v|) \operatorname{sgn}(v) g\left(t, x_{1}\right) \varphi_{1} d x_{1}, \forall \varphi_{1} \in \mathcal{D}\left(\mathbb{R}^{d_{1}}\right) . \tag{34}
\end{align*}
$$

In particular, we choose φ_{1} and φ_{2} above being two cut off functions with respect to variables x_{1} and x_{2}, respectively, i.e. $\varphi_{i} \in \mathcal{D}\left(\mathbb{R}^{d_{i}}\right), 0 \leq \varphi_{i} \leq 1$ and

$$
\varphi_{i}\left(x_{i}\right)=\left\{\begin{array}{l}
1, \text { on }\left|x_{i}\right| \leq 1, \tag{35}\\
0, \text { on }\left|x_{i}\right| \geq 2,
\end{array} \quad \varphi_{i}\left(x_{i}\right)=\varphi_{i}\left(\left|x_{i}\right|\right), \quad \varphi_{i}^{\prime} \leq 0, \quad i=1,2\right.
$$

Let

$$
\begin{equation*}
\varphi_{i, r}\left(x_{i}\right)=\varphi_{i}\left(\frac{x_{i}}{r}\right), \quad \text { for any } r>0, \quad i=1,2 . \tag{36}
\end{equation*}
$$

If one replaces φ_{1} and φ_{2} in (34) by $\varphi_{1, n}$ and $\varphi_{2, k}$ in (35) and (36), respectively, it yields that

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathbb{R}^{d_{1}}}\left[v_{k} \wedge M_{2}\right]^{p}\left(t, x_{1}\right) \varphi_{1, n}\left(x_{1}\right) d x_{1} \\
= & \int_{\mathbb{R}^{d_{1}}}\left[v_{k} \wedge M_{2}\right]^{p}\left(t, x_{1}\right)\left[\operatorname{div}_{x_{1}} b_{1}\left(t, x_{1}\right) \varphi_{1, n}\left(x_{1}\right)\right. \\
& \left.+b_{1,2} \cdot \frac{x_{1}}{n\left|x_{1}\right|} \varphi_{1, n}^{\prime}+b_{1,1}\left(t, x_{1}\right) \cdot \nabla_{x_{1}} \varphi_{1, n}\left(x_{1}\right)\right] d x_{1} \\
& +p \int_{\mathbb{R}^{d_{1}}}\left[v_{k} \wedge M_{2}\right]^{p-1}\left(t, x_{1}\right) 1_{\left[0, M_{2}\right]}\left(v_{k}\right) \varphi_{1, n}\left(x_{1}\right) d x_{1} \\
& \times \int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right](t, x)\left[\operatorname{div}_{x_{2}} b_{2}(t, x) \varphi_{2, k}\left(x_{2}\right)\right. \\
& +b_{2,2} \cdot \frac{x_{2}}{k\left|x_{2}\right|} \varphi_{2, k}^{\prime}+b_{2,1}(t, x) \cdot \nabla_{x_{2}} \varphi_{2, k}\left(x_{2}\right) \\
& \left.-c(t, x) 1_{\left[0, M_{1}\right]}(|u|) \varphi_{2, k}\left(x_{2}\right) \operatorname{sgn}(u)\right] d x_{2} \\
\leq & {\left[\left\|\operatorname{div}_{x_{1}} b_{1,1}(t)\right\|_{L^{\infty}\left(\mathbb{R}^{d_{1}}\right)}+p\left\|\operatorname{div}_{x_{2}} b_{2}(t)\right\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}+p\|c(t)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}\right] } \\
& \times \int_{\mathbb{R}^{d_{1}}}\left[v_{k} \wedge M_{2}\right]^{p}\left(t, x_{1}\right) \varphi_{1, n} d x_{1} \\
& +\int_{\mathbb{R}^{d_{1}}}\left[v_{k} \wedge M_{2}\right]^{p}\left(t, x_{1}\right) b_{1,1}\left(t, x_{1}\right) \cdot \nabla_{x_{1}} \varphi_{1, n}\left(x_{1}\right) d x_{1} \\
& +p \int_{\mathbb{R}^{d_{1}}}\left[v_{k} \wedge M_{2}\right]^{p-1}\left(t, x_{1}\right) \varphi_{1, n}\left(x_{1}\right) d x_{1} \\
& \times \int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right](t, x)\left|b_{2,1}(t, x) \cdot \nabla_{x_{2}} \varphi_{2, k}\left(x_{2}\right)\right| d x_{2}, \tag{37}
\end{align*}
$$

where

$$
\begin{equation*}
v_{k}\left(t, x_{1}\right)=\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right]\left(t, x_{1}, x_{2}\right) \varphi_{2, k}\left(x_{2}\right) d x_{2} \tag{38}
\end{equation*}
$$

and in the fifth line in (37) we have used (31) and (32).

By conditions $\left(H_{1}\right)$ and $\left(H_{2}\right)$, it follows that

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathbb{R}^{d_{1}}}\left[v_{k} \wedge M_{2}\right]^{p}\left(t, x_{1}\right) \varphi_{1, n}\left(x_{1}\right) d x_{1} \\
\leq \quad & C(t) \int_{\mathbb{R}^{d_{1}}}\left[v_{k} \wedge M_{2}\right]^{p}\left(t, x_{1}\right) \varphi_{1, n}\left(x_{1}\right) d x_{1} \\
+ & C \int_{n \leq\left|x_{1}\right| \leq 2 n}\left[v_{k} \wedge M_{2}\right]^{p}\left(t, x_{1}\right) \frac{\left|b_{1,1}\left(t, x_{1}\right)\right|}{1+\left|x_{1}\right|} d x_{1} \\
+ & C \int_{\mathbb{R}^{d_{1}}}\left[v_{k} \wedge M_{2}\right]^{p-1}\left(t, x_{1}\right) \varphi_{1, n}\left(x_{1}\right) d x_{1} \\
& \times \int_{k \leq\left|x_{2}\right| \leq 2 k}\left[|u| \wedge M_{1}\right](t, x) \frac{\left|b_{2,1}(t, x)\right|}{1+\left|x_{2}\right|} d x_{2} . \tag{39}
\end{align*}
$$

For M_{1}, M_{2} and n being fixed, if one approaches k to infinity, from (38) and (39), by condition 32 , one gains

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right]\left(t, x_{1}, x_{2}\right) d x_{2} \wedge M_{2}\right]^{p} \varphi_{1, n}\left(x_{1}\right) d x_{1} \\
\leq & C(t) \int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right]\left(t, x_{1}, x_{2}\right) d x_{2} \wedge M_{2}\right]^{p} \varphi_{1, n}\left(x_{1}\right) d x_{1} \\
& +C \int_{n \leq\left|x_{1}\right| \leq 2 n}\left[\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right]\left(t, x_{1}, x_{2}\right) d x_{2} \wedge M_{2}\right]^{p} \frac{\left|b_{1,1}\left(t, x_{1}\right)\right|}{1+\left|x_{1}\right|} d x_{1} .
\end{aligned}
$$

By (31), if we tend n to infinity in the above inequality, then

$$
\begin{align*}
& \frac{d}{d t} \int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right] d x_{2} \wedge M_{2}\right]^{p} d x_{1} \\
\leq & C(t) \int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right] d x_{2} \wedge M_{2}\right]^{p} d x_{1} \tag{40}
\end{align*}
$$

From (40), by applying a Grönwall type argument, it follows that

$$
\int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right] d x_{2} \wedge M_{2}\right]^{p} d x_{1}=0
$$

for $u_{0}=0$. Hence

$$
\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right] d x_{2} \wedge M_{2}=0
$$

Since $M_{2}>0$ is arbitrary, we conclude $\int_{\mathbb{R}^{d_{2}}}\left[|u| \wedge M_{1}\right] d x_{2}=0$. The same argument procedure used again, one finishes that $u=0$ and this achieves the proof.

More general, we have the following comparison principle.
Theorem 2.3 (Comparison principle). Let b, c, u_{0} and f be as in Theorem 2.2. If $u_{0} \leq 0, f \leq 0$, then $u \leq 0$.
Proof. Let u be the unique solution of (1). By Lemma 2.3, for any Lipschitz function $\beta, \beta(u)$ solves

$$
\begin{aligned}
& \partial_{t}[\beta(u)]+b(t, x) \cdot \nabla[\beta(u)]+c(t, x) \beta^{\prime}(u) u \\
= & \beta^{\prime}(u)\left[\partial_{t} u+b(t, x) \cdot \nabla u(t, x)+c(t, x) u\right]=\beta^{\prime}(u) f,
\end{aligned}
$$

supplied with $\left.\beta(u)\right|_{t=0}=\beta\left(u_{0}\right)$.

In particular, if we choose $\beta(\tau)=\tau^{+} \wedge M_{1}$, then it follows that $\left[u^{+} \wedge M_{1}\right](t=$ $0) \leq 0$ and

$$
\partial_{t}\left[u^{+} \wedge M_{1}\right]+b(t, x) \cdot \nabla\left[u^{+} \wedge M_{1}\right]+c(t, x) 1_{\left[0, M_{1}\right]}(u)\left[u^{+} \wedge M_{1}\right] \leq 0, \quad \forall t>0 .
$$

The argument applied in Theorem 2.2 for $|u| \wedge M_{1}$ and $\left(\left[\int_{\mathbb{R}^{d_{2}}}|u| \wedge M_{1} d x_{2}\right] \wedge M_{2}\right)^{p}$ adapted to $u^{+} \wedge M_{1}$ and $\left(\left[\int_{\mathbb{R}^{d_{2}}} u^{+} \wedge M_{1} d x_{2}\right] \wedge M_{2}\right)^{p}$ here, combing a Grönwall type argument, suggests that

$$
\int_{\mathbb{R}^{d_{1}}}\left[\int_{\mathbb{R}^{d_{2}}}\left[u^{+} \wedge M_{1}\right] d x_{2} \wedge M_{2}\right]^{p} d x_{1} \leq 0
$$

Employing the same technique discussed in Theorem 2.2, one derives $u^{+}=0$, this completes the proof.

It is time for us to give a regularity result.
Theorem 2.4 (Regularity). Let b, c, u_{0} and f be as in Theorem 2.2. Then the unique solution u satisfies

$$
\begin{equation*}
u \in \mathcal{C}\left([0, T] ; L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)\right) \tag{41}
\end{equation*}
$$

Proof. Since the proof for $p>2$ is analogue of the issue of $1 \leq p \leq 2$, we only concentrate our attention on $1 \leq p \leq 2$. We approximate u_{0} and f by u_{0}^{n} and f_{n} which are in class of $L^{2}\left(\mathbb{R}^{d}\right) \cap L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)$ and $L^{2}\left([0, T] \times \mathbb{R}^{d}\right) \cap L^{p}([0, T] \times$ $\left.\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)$, respectively, such that 77 holds. For any n, there exists a unique $u_{n} \in L^{\infty}\left(0, T ; L^{2}\left(\mathbb{R}^{d}\right)\right)$ solving the Cauchy problem

$$
\left\{\begin{array}{l}
\partial_{t} u_{n}(t, x)+b(t, x) \cdot \nabla u_{n}(t, x)+c(t, x) u_{n}(t, x) \tag{42}\\
\quad=f_{n}(t, x),(t, x) \in(0, T] \times \mathbb{R}^{d} \\
u_{n}(t=0, x)=u_{0}^{n}(x), x \in \mathbb{R}^{d}
\end{array}\right.
$$

Moreover, for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$, (5) holds true. Therefore,

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} u_{n}(t, x) \varphi(x) d x \in \mathcal{C}([0, T]) \tag{43}
\end{equation*}
$$

By Lemma 2.3, with a cumbersome approximation discussion which is akin to the computation from $\sqrt[33]{ }$ to , for any $t_{0}, t \in[0, T]$, we end up with

$$
\begin{align*}
& \left|\left\|u_{n}(t)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}-\left\|u_{n}\left(t_{0}\right)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}\right| \\
\leq & 2 \int_{t_{0}}^{t}\left\|f_{n}(s) u_{n}(s)\right\|_{L^{1}\left(\mathbb{R}^{d}\right)} d s \\
& +\int_{t_{0}}^{t}\left\|u_{n}(s)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2}\left[\|\operatorname{div} b(s)-2 c(s)\|_{L^{\infty}\left(\mathbb{R}^{d}\right)}\right] d s \tag{44}
\end{align*}
$$

hence $\left\|u_{n}(t)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} \in \mathcal{C}([0, T])$.
The same tools used in Theorem 2.2 applies again, one also concludes

$$
\begin{align*}
& \left\|u_{n}(t)-u(t)\right\|_{L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)} \\
\leq & C\left[\int_{0}^{t}\left\|f_{n}(s)-f(s)\right\|_{L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)} d s+\left\|u_{0}^{n}-u_{0}\right\|_{L^{p}\left(\mathbb{R}^{d_{1}} ; L^{1}\left(\mathbb{R}^{d_{2}}\right)\right)}\right] . \tag{45}
\end{align*}
$$

From (43) to 45), in order to show 41, it is sufficient to prove $u_{n} \in \mathcal{C}\left([0, T] ; L^{2}\left(\mathbb{R}^{d}\right)\right)$.

Indeed, for any $t_{0} \in[0, T]$ and $t \in[0, T]$,

$$
\begin{aligned}
\limsup _{t \rightarrow t_{0}}\left\|u_{n}(t)-u_{n}\left(t_{0}\right)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} & =\limsup _{t \rightarrow t_{0}}\left\langle u_{n}(t)-u_{n}\left(t_{0}\right), u_{n}(t)-u_{n}\left(t_{0}\right)\right\rangle \\
& =2 \limsup _{t \rightarrow t_{0}}\left\langle u_{n}\left(t_{0}\right)-u_{n}(t), u_{n}\left(t_{0}\right)\right\rangle,
\end{aligned}
$$

where the notation $\langle\cdot, \cdot\rangle$ denotes the inner product in $L^{2}\left(\mathbb{R}^{d}\right)$. Therefore, for any $\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
& \limsup _{t \rightarrow t_{0}}\left\|u_{n}(t)-u_{n}\left(t_{0}\right)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \\
\leq & 2 \limsup _{t \rightarrow t_{0}}\left\langle u_{n}\left(t_{0}\right)-u_{n}(t), u_{n}\left(t_{0}\right)-\varphi\right\rangle+2 \limsup _{t \rightarrow t_{0}}\left\langle u_{n}\left(t_{0}\right)-u_{n}(t), \varphi\right\rangle \\
= & 2 \limsup _{t \rightarrow t_{0}}\left\langle u_{n}\left(t_{0}\right)-u_{n}(t), u_{n}\left(t_{0}\right)-\varphi\right\rangle \\
\leq & 4\left\|u_{n}\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\mathbb{R}^{d}\right)\right)}\left\|u_{n}\left(t_{0}\right)-\varphi\right\|_{L^{2}\left(\mathbb{R}^{d}\right)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
& \limsup _{t \rightarrow t_{0}}\left\|u_{n}(t)-u_{n}\left(t_{0}\right)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}^{2} \\
& \leq \quad 4\left\|u_{n}\right\|_{L^{\infty}\left(0, T ; L^{2}\left(\mathbb{R}^{d}\right)\right)} \inf _{\varphi \in \mathcal{D}\left(\mathbb{R}^{d}\right)}\left\|u_{n}\left(t_{0}\right)-\varphi\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}=0,
\end{aligned}
$$

and from this, we accomplish the proof.
Acknowledgements. This work was partially supported by the National Natural Science Foundation of China (11901442).

References

[1] L. Ambrosio, Transport equation and Cauchy problem for $B V$ vector fields, Invent. Math. 158 (2004) 227-260.
[2] L. Ambrosio, F. Bouchut, C. De Lellis, Well-posedness for a class of hyperbolic systems of conservation laws in several space dimensions, Comm. Part. Diff. Eqs. 29 (2004) 1635-1651.
[3] L. Ambrosio, G. Crippa, Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields, Lect. Notes Unione Mat. Ital. 5 (2008) 3-57.
[4] L. Ambrosio, C. De Lellis, Existence of solutions for a class of hyperbolic systems of conservation laws in several space dimensions, Int. Math. Res. Not. 41 (2003) 2205-2220.
[5] L. Ambrosio, G. Crippa, A. Figalli, L. Spinolo, Some new well-posedness results for continuity and transport equations, and applications to the chromatography system, SIAM J. Math. Anal. 41 (2009) 1890-1920
[6] F. Bouchut, Renormalized solutions to the Vlasov equation with coefficients of bounded variation, Arch. Ration. Mech. An. 157 (2001) 75-90 .
[7] A. Bressan, An ill posed Cauchy problem for a hyperbolic system in two space dimensions, Rend. Sem. Mat. Univ. Padova 110 (2003) 103-117.
[8] F. Colombini, T. Luo, J. Rauch, Uniqueness and nonuniqueness for nonsmooth divergence free transport, Sémin. Équ. Dériv. Partielles 2002-2003(XXII).
[9] F. Colombini, T. Luo, J. Rauch, Nearly Lipschitzean divergence-free transport propagates neither continuity nor $B V$ regularity, Comm. Math. Sci. 2 (2004) 207-212.
[10] G. Crippa, C. De Lellis, Oscillatory solutions to transport equations, Indiana Univ. Math. J. 55 (2006) 1-13.
[11] N. Depauw, Non unicitédes solutions bornées pour un champ de vecteurs $B V$ en dehors d'un hyperplan, C.R. Acad. Sci. Paris 337 (2003) 249-252.
[12] R.J. DiPerna, P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547.
[13] C. Le. Bris, P.L. Lions, Renormalized solutions of some transport equations with partially $W^{1,1}$ velocities and applications, Ann. Mat. Pur. Appl. 183 (2004) 97-130.
[14] P.L. Lions, Sur les équations différentielles ordinaires et les équations de transport C. R. Acad. Sci., Paris Sér. I, Math. 326 (1998) 833-838.
[15] P.L. Lions, B. Perthame, E. Tadmor, A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Am. Math. Soc. 7 (1994) 169-191.
[16] B. Perthame, E. Tadmor, A Kinetic equation with kinetic entropy functions for scalar conservation laws, Commun. Math. Phys. 136 (1991) 501-517.
[17] J. Wei, X. Yang, The renormalized solutions for transport equations with particular forms, Electron. J. Math. Anal. Appl. 2 (2014) 99-116.

Shengyi Zhai
College of Science, Wuhan University of Technology, Wuhan 430070, China
Rongrong Tian
College of Science, Wuhan University of Technology, Wuhan 430070, China
E-mail address: tianrr06@sina.com

[^0]: 2010 Mathematics Subject Classification. 35F10.
 Key words and phrases. Transport equation, Existence, Uniqueness.
 Submitted Jan. 7, 2021. Revised Feb. 5, 2021.

