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EXISTENCE AND UNIQUENESS OF WEAK SOLUTIONS FOR

TRANSPORT EQUATIONS

SHENGYI ZHAI AND RONGRONG TIAN

Abstract. For a transport equation with the velocity field that has a partic-

ular form, we prove the existence and uniqueness of weak solutions. Moreover,
we obtain the continuity for the unique weak solution.

1. Introduction

In the last few years, some progress has been made on the well-posedness of the
transport equation:{

∂tu(t, x) + b(t, x) · ∇u(t, x) + c(t, x)u(t, x) = f(t, x), (t, x) ∈ (0, T ]× Rd,
u(0, x) = u0(x), x ∈ Rd, (1)

where T > 0 is a given real number, b : [0, T ] × Rd → Rd, c, f : [0, T ] × Rd → R,
u0 : Rd → R are Borel functions. The first remarkable result in this direction is due
to DiPerna and Lions [12], where the authors derived the well-posedness of (1) in

L1 ∩L∞-setting, if b is of class L1([0, T ];W 1,1
loc (Rd;Rd)) and satisfies suitable global

conditions including L∞-bounds on spatial divergence. Later, Diperna and Lions’
work was strengthen by Lions [14] to the piecewise W 1,1

loc velocity field. Recent-
ly, Le Bris and Lions [13] used the same technique developed in [12] to establish
the existence and uniqueness of solutions for a class of transport equations and
then founded the differentiability of solutions for differential equations with W 1,1

loc

velocity. We also refer to [17] for high order differentiability of solutions.
Using a slightly different philosophy, Ambrosio [1] (also see [3]) studied the con-

tinuity equation, i.e. c(t, x) = divb(t, x) and established the uniqueness of L∞-
solutions by assuming b ∈ BVloc, whose distributional spatial divergence belongs
to L∞. Then using the renormalized technique for BVloc coefficient, Ambrosio
also proved the well-posedness for a class of hyperbolic systems of conservation
laws [2, 4, 5]. But for general b, only with BVloc regularity, counterexamples of
nonuniqueness of weak solutions for (1) have been constructed and studied by many
authors in recent years, such as see [7, 8, 9, 10, 11]. Thus to overcome the obstacle of
nonuniqueness, restrictions need to be imposed on b that will weed out undesirable
solutions.
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In this paper, we study (1) in which b has the following form:

b(t, x) = (b1(t, x1), b2(t, x)), (2)

where x = (x1, x2) ∈ Rd1×Rd2 = Rd, b1 : [0, T ]×Rd1 → Rd1 , b2 : [0, T ]×Rd → Rd2 .
Our source to study (2) stems from conservation laws directly, and now let us state
it briefly. Consider the following inhomogeneous scalar conservation law equation{

∂tρ(t, x) + div(G(t, ρ(t, x))) = A(t, ρ), (t, x) ∈ (0, T ]× Rd,
ρ(t = 0, x) = ρ0(x), x ∈ Rd. (3)

If G and A are smooth, the method of vanishing viscosity implies the existence of
weak solutions for (3). But, it seems to be difficult to get the uniqueness for weak
solutions even for smooth G and A. An alternative, instructive way of viewing
the weak solution ρ is by rewriting (3) in its kinetic form (see [15, 16]) using the
Maxwellian u(t, x, v) = 1(0,ρ(t,x))(v)− 1(ρ(t,x),0)(v),

∂tu(t, x, v) +A(t, v)∂vu(t, x, v) + ∂vG(t, v) · ∇xu(t, x, v)
= ∂vm(t, x, v), (t, x, v) ∈ (0, T ]× Rd × R,

u(t = 0, x, v) = u0(x, v) = 1(0,ρ0(x))(v)− 1(ρ0(x),0)(v), (x, v) ∈ Rd × R.
(4)

Thus, we transform the nonlinear equation (3) into a linear ones, at the price of
increasing the number of independent variables from d to d + 1. In particular,
to prove the uniqueness of solutions for (3), one should prove the uniqueness of
solutions for (4). Since (4) is linear, we may establish the uniqueness of weak
solutions for general G and A. When to study (4), a special feature is that the
initial value should be L1-integrable in the variable x, so we should establish the
well-posedness of the transport problem with u0 ∈ Lp(R;L1(Rd)). In general, we
consider (1) with u0 ∈ Lp(Rd1 ;L1(Rd2)), and in Section 2, we found the well-
posedness of (1), (2).

Notations. D(Rd) and D((0, T ) × Rd) stand for the set of all smooth functions
on Rd and (0, T ) × Rd with compact supports, respectively. Given a measurable
function ς, ς+ is defined by max{ς, 0}. sgn is the sign function defined by sgn(τ) =
1τ>0(τ)− 1τ<0(τ). The letter C will denote a positive constant, whose values may
change in different places.

2. Transport equations

Set ∇ = (∇x1
,∇x2

) and div = divx1
+divx2

, we make the following assumptions:
(H1) : b1 ∈ L1([0, T ];Lqloc(Rd1 ;Rd1)), divx1

b1 ∈ L1([0, T ];L∞(Rd1));

(H2) : b2 ∈ L1([0, T ];Lqloc(Rd1 ;L∞loc(Rd2 ;Rd2))), divx2
b2 ∈ L1([0, T ];L∞(Rd));

(H3) : f ∈ Lp([0, T ]×Rd1 ;L1(Rd2)), u0 ∈ Lp(Rd1 ;L1(Rd2)), c ∈ L1([0, T ];L∞(Rd)),
where p ∈ [1,∞) and 1/p+ 1/q = 1.

Definition 2.1 Let p ∈ [1,∞). u ∈ L∞([0, T ];Lp(Rd1 ;L1(Rd2))) is called a weak
solution of (1), (2) if for every ϕ ∈ D(Rd) and t ∈ [0, T ],∫

Rd

u(t, x)ϕ(x)dx =

∫
Rd

u0(x)ϕ(x)dx+

∫ t

0

∫
Rd

b(s, x) · ∇ϕ(x)u(s, x)dxds

+

∫ t

0

∫
Rd

divb(s, x)ϕ(x)u(s, x)dxds+

∫ t

0

∫
Rd

f(s, x)ϕ(x)dxds

−
∫ t

0

∫
Rd

c(s, x)u(s, x)ϕ(x)dxds. (5)
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Before stating and proving the existence, let us give an auxiliary lemma.

Lemma 2.1([6, Theorem 2.2]) Let A ⊂ Rd be an open set, and let u ∈ W 1,1
loc (A).

Then for any Lipschitz function β : R→ R,

∇[β(u)] = β′(u)∇u.

We are now in a position to state and prove the existence of weak solutions.

Theorem 2.1 (Existence). Let p ∈ [1,∞) and let b, c, u0 and f satisfy hypotheses
(H1)− (H3). Then there exists a weak solution of (1), (2).

Proof. Suppose r > 0. Let B1,r(0) be the ball in Rd1 with radius r and central 0,
and let B2,r(0) be the corresponding ball in Rd2 . Let ρ1 and ρ2 be two regularization
kernels in variables x1 and x2, respectively, i.e.

0 ≤ ρi ∈ D(Rdi),
∫
Rdi

ρi(xi)dxi = 1, i = 1, 2. (6)

For any ε > 0, we set ρε,i(·) = 1
εdi
ρi(
·
ε ), i = 1, 2. Define{

bε,r(t, x) = ((b1(t)1B1,r(0)) ∗ ρε,1, (b2(t)1B1,r(0)1B2,r(0)) ∗ ρε,1 ∗ ρε,2)(x),
cε,r(t, x) = (c(t)1B1,r(0)1B2,r(0)) ∗ ρε,1 ∗ ρε,2(x).

Since f ∈ Lp([0, T ] × Rd1 ;L1(Rd2)), u0 ∈ Lp(Rd1 ;L1(Rd2)), we can choose two
sequences {un0} ⊂ D(Rd) and {fn} ⊂ D((0, T )× Rd) such that

un0 −→ u0 in Lp(Rd1 ;L1(Rd2)), fn −→ f in Lp([0, T ]× Rd1 ;L1(Rd2)) (7)

and {
‖un0‖Lp(Rd1 ;L1(Rd2 )) ≤ C‖u0‖Lp(Rd1 ;L1(Rd2 )),
‖fn‖Lp([0,T ]×Rd1 ;L1(Rd2 )) ≤ C‖f‖Lp([0,T ]×Rd1 ;L1(Rd2 )).

Consider the following approximation problem
∂tun,ε,r(t, x) + bε,r(t, x) · ∇un,ε,r(t, x) + cε,r(t, x)un,ε,r

= fn(t, x), (t, x) ∈ (0, T ]× Rd,
un,ε,r(t = 0, x) = un0 (x), x ∈ Rd.

(8)

By the classical characteristic method, there exists a unique smooth (in x) solution
un,ε,r(t, x) of (8) and un,ε,r(t, x) satisfies (5).

If we choose β(τ) = |τ |, then it is Lipschitz continuous, by virtue of Lemma 2.1,
we obtain

∂tβ(un,ε,r) + bε,r(t, x) · ∇β(un,ε,r) + cε,r(t, x)β′(un,ε,r)un,ε,r(t, x)

= β′(un,ε,r)fn(t, x), (9)

associated with β(un,ε,r(t = 0, x)) = β(un0 (x)). By integrating the identity (9) in
x2 over Rd2 and using the integration by parts, it turns to

∂t

∫
Rd2

|un,ε,r|(t, x)dx2 + b1,ε,r(t, x1) · ∇x1

∫
Rd2

|un,ε,r|(t, x)dx2

+

∫
Rd2

cε,r(t, x)|un,ε,r|(t, x)dx2

=

∫
Rd2

divx2
b2,ε,r(t, x1, x2)|un,ε,r|(t, x1, x2)dx2

+

∫
Rd2

sgn(un,ε,r)fn(t, x1, x2)dx2, (10)
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where we have used the fact β′(τ) = sgn(τ). Setting

vn,ε,r(t, x1) =

∫
Rd2

|un,ε,r|(t, x1, x2)dx2,

it causes to{
∂tvn,ε,r(t, x1) + b1,ε,r(t, x1) · ∇x1

vn,ε,r(t, x1) = gn,ε,r(t, x1),
vn,ε,r(t = 0, x1) =

∫
Rd2
|un0 |(x)dx2,

(11)

where

gn,ε,r(t, x1) =

∫
Rd2

[divx2
b2,ε,r(t, x)− cε,r(t, x)]|un,ε,r|(t, x)dx2

+

∫
Rd2

sgn(un,ε,r)fn(t, x)dx2.

The arguments employed above for β(τ) = |τ | in (8) adapted to β(τ) = |τ |p in
(11) now, yields that

d

dt

∫
Rd1

vpn,ε,r(t, x1)dx1

=

∫
Rd1

divx1
b1,ε,r(t, x1)vpn,ε,r(t, x1)dx1 +

∫
Rd1

pvp−1n,ε,r(t, x1)gn,ε,r(t, x1)dx1

≤ C(t)

∫
Rd1

vpn,ε,r(t, x1)dx1 + ‖fn(t, ·)‖Lp(Rd1 ;L1(Rd2 )),

where

C(t) = ‖divx1
b1,ε,r(t, ·)‖L∞(Rd1 ) + p‖divx2

b2,ε,r(t, ·)‖L∞(Rd)

+p‖cε,r(t, ·)‖L∞(Rd) + (p− 1).

Using the Grönwall lemma, we conclude that∫
Rd1

vpn,ε,r(t, x1)dx1

≤ C

∫
Rd1

[ ∫
Rd2

|un0 |(x)dx2

]p
dx1 + C

∫ T

0

∫
Rd1

[ ∫
Rd2

|fn(x)|dx2
]p
dx1dt.

So ∫
Rd2

[ ∫
Rd1

|un,ε,r|dx2
]p
dx1

≤ C

∫
Rd1

[ ∫
Rd2

|u0|dx2
]p
dx1 + C

∫ T

0

∫
Rd1

[ ∫
Rd2

|f |dx2
]p
dx1dt, (12)

for all t ∈ [0, T ].
The discussion applied above, with a slight change, also gives the estimate∫

Rd

|un,ε,r|p
′
dx ≤ C

[ ∫
Rd

|un0 |p
′
dx+

∫ T

0

∫
Rd

|fn|p
′
dxdt

]
, (13)

for any p′ > p, since un0 ∈ D(Rd) and fn ∈ D((0, T )× Rd).
From (12) and (13), the sequence {un,ε,r} is weakly relatively compact in the s-

pace L∞([0, T ];Lploc(Rd1 ;L1
loc(Rd2))) (also see [12, Proposition II.1]). By extracting

a subsequence if necessary, it converges weakly in L∞([0, T ];Lploc(Rd1 ;L1
loc(Rd2)))

to some u, and now u ∈ L∞([0, T ];Lp(Rd1 ;L1(Rd2))) which satisfies (5). �
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If the velocity field is more regular, the weak solution is unique. Before establish-
ing the uniqueness for weak solutions, we requires some useful lemmas and firstly
one appeals a lemma [12, Lemma 2.1].

Lemma 2.2 Let B ∈ L1([0, T ];W 1,ζ
loc (Rd;Rd)), S ∈ L∞([0, T ];Lζ

′

loc(Rd)), with
1 ≤ ζ ≤ ∞, 1/ζ + 1/ζ ′ = 1. Then

(B · ∇S) ∗ %ε −B · ∇(S ∗ %ε) −→ 0 in L1([0, T ];L1
loc(Rd)) as ε→ 0,

where

%ε =
1

εd
%(
·
ε

) with % ∈ D+(Rd),
∫
Rd

%dx = 1, ε > 0.

From above lemma, one gains:

Lemma 2.3 Suppose p ∈ [1,∞) and q ∈ (1,∞] such that 1/p + 1/q = 1. Let
b(t, x) = (b1(t, x1), b2(t, x)) such that

b1 ∈ L1([0, T ];W 1,q
loc (Rd1 ;Rd1)), b2 ∈ L1([0, T ];Lqloc(R

d1 ;W 1,∞
loc (Rd2 ;Rd2))). (14)

Assume that u ∈ L∞([0, T ];Lploc(Rd1 ;L1
loc(Rd2))) and

∂tu(t, x) + b(t, x) · ∇u(t, x) ∈ L1([0, T ];L1
loc(Rd)). (15)

Then
(i) for any Borel set K ⊂ R with µ1(K) = 0,

µd+1({(t, x) ∈ [0, T ]× Rd; u(t, x) ∈ K
and ∂tu(t, x) + b(t, x) · ∇u(t, x) 6= 0}) = 0; (16)

(ii) for any Lipschitz function β,

∂t[β(u)] + b(t, x) · ∇[β(u)] = β′(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)], (17)

where µ1 and µd+1 denote the standard Lebesgue measure in R and Rd+1, respec-
tively.

Proof. Obviously, (16) is equivalent to

1K(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)] = 0, a.e. (t, x) ∈ [0, T ]× Rd. (18)

Notice that 1K(τ) = d
dτ (
∫ τ
0

1K(s)ds), it suffices to show

β′(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)] = 0, a.e. (t, x) ∈ [0, T ]× Rd,
if one fetches β(τ) =

∫ τ
0

1K(s)ds.
Firstly, we assume K is compact. There exist open sets V1, V2,··· , Vn,···⊂ R such

that Vn+1 ⊂ Vn and K =
⋂
n Vn. By the Urysohn lemma, there exist ϑn ∈ D(Vn)

such that 0 ≤ ϑn ≤ 1, ϑn = 1 on K. Define

βn(τ) =

∫ τ

0

ϑn(s)ds, τ ∈ R,

then βn is smooth, |βn(τ)| ≤ |τ | and β′n(τ)→ 1K(τ) as n→∞. By making use of
the Lebesgue dominated convergence theorem, we get

βn(τ) −→
∫ τ

0

1K(s)ds = β(τ), as n→∞.

Now we claim that

∂t[βn(u)] + b(t, x) · ∇[βn(u)] = β′n(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)]. (19)

We prove it by two steps.
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Step 1 : u is smooth in t.
Let ρ1 and ρ2 be as in (6). Then uε1,ε2 = (u(t) ∗ ρε1,1) ∗ ρε2,2 satisfies

∂t[βn(uε1,ε2)] + b(t, x) · ∇[βn(uε1,ε2)]

= β′n(uε1,ε2)[∂tuε1,ε2 + (b(t, x) · ∇u)ε1,ε2(t, x)− εε], (20)

where ε1 and ε2 are positive real numbers,

εε(t, x) = (b · ∇u)ε1,ε2(t, x)− b(t, x) · ∇uε1,ε2(t, x) =: I1,ε(t, x) + I2,ε(t, x),

and

I1,ε(t, x) = (b1 · ∇x1u)ε1,ε2(t, x)− b1(t, x) · ∇x1uε1,ε2(t, x),

I2,ε(t, x) = (b2 · ∇x2u)ε1,ε2(t, x)− b2(t, x) · ∇x2uε1,ε2(t, x).

For ε2 > 0 be fixed, by (14) and Lemma 2.2,

lim
ε1→0

I1,ε(t, x) = 0 in L1([0, T ];L1
loc(Rd1)), for a.e. x2 ∈ Rd2 .

A subtle argument analogue of Lemma 2.2, also hints that

lim
ε1→0

I1,ε(t, x) = 0 in L1([0, T ];L1
loc(Rd)). (21)

At the same time,

I2,ε(t, x)

= −b2(t, x) · ∇x2

∫
Rd

u(t, y1, y2)ρε1,1(x1 − y1)ρε2,2(x2 − y2)dy1dy2

+〈b2(t, ·, ·) · ∇x2
u(t, ·, ·), ρε1,1(x1 − ·)ρε2,2(x2 − ·)〉

=

∫
Rd

u(t, y1, y2)ρε1,1(x1 − y1)[b2(t, y1, y2)− b2(t, x1, x2)]

·∇x2ρε2,2(x2 − y2)dy1dy2

−
∫
Rd

u(t, y1, y2)ρε1,1(x1 − y1)divy2b2(t, y1, y2)ρε2,2(x2 − y2)dy1dy2

−→
∫
Rd2

u(t, x1, y2)[b2(t, x1, y2)− b2(t, x1, x2)] · ∇x2
ρε2,2(x2 − y2)dy2

−
∫
Rd2

u(t, x1, y2)divy2b2(t, x1, y2)ρε2,2(x2 − y2)dy2, (22)

for almost all (t, x) ∈ [0, T ]×Rd, if we tend ε1 to 0 for fixed ε2. Setting the limit by
I2,ε2(t, x), then Lemma 2.2 uses again (with a slight change), one concludes that

I2,ε2(t, x)→ 0 in L1([0, T ];L1
loc(Rd)), as ε2 → 0.

On the other hand, for any r > 0, if we denote B̃r(0) by the product of two balls

in Rd1 and Rd2 with the same radius r, i.e. B̃r(0) = B1,r(0) × B2,r(0), then one
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has the following estimate∥∥∥∫
Rd

u(t, y1, y2)ρε1,1(x1 − y1)[b2(t, y)− b2(t, x)]

·∇x2ρε2,2(x2 − y2)dy1dy2

∥∥∥
L1([0,T ];L1(B̃r(0)))

=

∫ T

0

∫
B̃r(0)

∣∣∣ ∫
Rd

u(t, y1, y2)ρε1,1(x1 − y1)[b2(t, y)− b2(t, x)]

·∇x2ρε2,2(x2 − y2)dy1dy2

∣∣∣dxdt
≤ C

∫ T

0

dt

∫
B̃r(0)

dx

∫
Rd1

dy1

∫
|y2−x2|≤Cε2

ρε1,1(x1 − y1)|u(t, y1, y2)|

×|b2(t, y)− b2(t, x)|
ε2

dy2

≤ C
[ ∫ T

0

dt

∫
B̃r(0)

dx

∫
Rd1

dy1

∫
|y2−x2|≤Cε2

ρε1,1(x1 − y1)|u(t, y1, y2)|

×|b2(t, y)− b2(t, y1, x2)|
ε2

dy2

+

∫ T

0

dt

∫
B̃r(0)

dx

∫
Rd1

dy1

∫
|y2−x2|≤Cε2

ρε1,1(x1 − y1)|u(t, y1, y2)|

×|b2(t, y1, x2)− b2(t, x)|
ε2

dy2

]
≤ C

[ ∫ T

0

dt

∫
B1,r+1(0)

dy1

∫
B2,r+C+1(0)

|u(t, y)|‖∇y2b2(t, y1, ·)‖L∞(B2,r+C+1)dy2

+
1

ε2

∫ T

0

dt

∫
B1,r+1(0)

dy1

∫
B2,r+C+1(0)

|u(t, y)|‖b2(t, y1, ·)‖L∞(B2,r+C+1)dy2

]
. (23)

From (22) and (23), in view of the Lebesgue dominated convergence theorem, we
gain

lim
ε2→0

lim
ε1→0

I2,ε(t, x) = 0, in L1([0, T ];L1
loc(Rd)). (24)

Observing that β′n is bounded, by letting ε1 tend to 0 first, ε2 tend to 0 next, from
(20), (21) and (24), one obtains the identity (19) for smooth (in t) u.

Step 2 : u ∈ L∞([0, T ];Lploc(Rd1 ;L1
loc(Rd2))).

Let ρ3 be a standard smoothing kernel in t. Then uε3 = u ∗ ρε3,3(t) (ρε3,3(t) =
1
ε3
ρ3( t

ε3
)) is smooth in t for t ∈ (3ε3, T − 3ε3) and

uε3(·, x) −→ u(·, x) in L1[0, T ] for a.e. x ∈ Rd. (25)

Now by Step 1,

∂t[βn(uε3)] + b(t, x) · ∇[βn(uε3)]

= β′n(uε3)[∂tuε3(t, x) + (b(t, x) · ∇u)ε3(t, x)− εε3 ] (26)

for a.e. (t, x) ∈ (3ε3, T − 3ε3)× Rd, where

εε3 = (b(t, x) · ∇u)ε3(t, x)− b(t, x) · ∇uε3(t, x). (27)
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The calculations used in Step 1 from (21) to (24) is applicable here again, from
(25) to (27) , by letting ε3 approach to 0, we get (19), and which suggests that∫ T

0

∫
Rd

β′n(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)]φ(t, x)dxdt

= 〈∂t[βn(u)] + b · ∇[βn(u)], φ〉

= −
∫ T

0

∫
Rd

βn(u)[∂tφ(t, x) + div(b(t, x)φ(t, x))]dxdt, (28)

for every φ ∈ D((0, T )× Rd). Note that for a.e. (t, x) ∈ suppφ,

lim
n→∞

βn(u(t, x)) = lim
n→∞

∫ u(t,x)

0

ϑn(τ)dτ =

∫ u(t,x)

0

1K(τ)dτ = 0 (29)

and

lim
n→∞

β′n(u(t, x)) = lim
n→∞

ϑn(u(t, x) = 1K(u(t, x)). (30)

From (28), (29) and (30), we derive∫ T

0

∫
Rd

1K(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)]φ(t, x)dxdt

= lim
n→∞

∫ T

0

∫
Rd

β′n(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)]φ(t, x)dxdt

= lim
n→∞

〈∂t[βn(u)] + b(t, x) · ∇[βn(u)], φ〉

= − lim
n→∞

∫ T

0

∫
Rd

βn(u)[∂tφ(t, x) + div(b(t, x)φ(t, x))]dxdt = 0.

Since φ ∈ D((0, T ) × Rd) is arbitrary, one proves the conclusion (18) for compact
set K.

For a general Borel set K, we choose a compact set L ⊂ R and define the regular
Borel measure θ on R by

θ(K) =

∫
u−1(K)

|∂tu(t, x) + b(t, x) · ∇u(t, x)|1Ldtdx.

Since for any compact set K ⊂ R with zero Lebesgue measure, θ(K) = 0. One
gains

θ(K) = 0, for any zero Lebesgue measure set K.

Therefore

1K(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)] = 0, a.e. (t, x) ∈ [0, T ]× Rd,

for L is arbitrary.
It remains to show the chain rule (17) for Lipschitz function β. In fact, if we

approximate β by a sequence of smooth functions βk, such that |β′k| ≤ C, then from
(19),

∂t[βk(u)] + b(t, x) · ∇[βk(u)] = β′k(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)].

Notice that

lim
k→∞

β′k(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)] = β′(u)[∂tu(t, x) + b(t, x) · ∇u(t, x)],
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and

lim
k→∞

[
∂t[βk(u)] + b(t, x) · ∇[βk(u)]

]
= ∂t[β(u)] + b(t, x) · ∇[β(u)],

in distributional sense. Thus (17) is valid. �
We are now in a position to state and prove the uniqueness.

Theorem 2.2 (Uniqueness). Let p, b, c, u0 and f be as in Theorem 2.1, and let
(14) hold. We assume further that b1 = b1,1 + b1,2, b2 = b2,1 + b2,2, and

b1,2 · x1 ≥ 0,
|b1,1|

1 + |x1|
∈ L1([0, T ];L1(Rd1)) + L1([0, T ];L∞(Rd1)), (31)

b2,2 · x2 ≥ 0,
|b2,1|

1 + |x2|
∈ L1([0, T ];L1

loc(Rd1 ;L1(Rd2)) + Lqloc(R
d1 ;L∞(Rd2))). (32)

Then the weak solution of the Cauchy problem (1), (2) is unique.

Proof. Assume for the time being that, we have two solutions u1 and u2 to
(1) sharing the same inhomogeneous condition, the same initial data, then the
difference u of u1 and u2 solves the homogeneous problem (1) supplied with initial
data vanishes, so it suffices to show that a weak solution with u0 = 0 and f = 0
vanishes identically.

For any real number M1 > 0, we take β(τ) = |τ | ∧M1. By virtue of Lemma 2.3,
then

∂t[|u| ∧M1] + b1 · ∇x1
[|u| ∧M1] + b2 · ∇x2

[|u| ∧M1]

+c[|u| ∧M1]1[0,M1](|u|)sgn(u) = 0.

For any ϕ2 ∈ D(Rd2), one has

∂tv(t, x1) + b1(t, x1) · ∇x1
v(t, x1) = g(t, x1), (33)

where

v(t, x1) =

∫
Rd2

[|u| ∧M1](t, x1, x2)ϕ2(x2)dx2

and

g(t, x1) =

∫
Rd2

[|u| ∧M1][divx2(b2(t, x)ϕ2(x2))− c(t, x)1[0,M1](|u|)ϕ2(x2)sgn(u)]dx2.

Using Lemma 2.3 again for β(τ) = (|τ | ∧M2)p with some real number M2 > 0,
it follows from (33) that

∂t[|v| ∧M2]p + b1(t, x1) · ∇x1
[|v| ∧M2]p = p[|v| ∧M2]p−1g(t, x1)1[0,M2](|v|)sgn(v),

i.e.

d

dt

∫
Rd1

[|v| ∧M2]p(t, x1)ϕ1(x1)dx1

=

∫
Rd1

[|v| ∧M2]p(t, x1)divx1
(b1(t, x1)ϕ1(x1))dx1

+ p

∫
Rd1

[|v| ∧M2]p−11[0,M2](|v|)sgn(v)g(t, x1)ϕ1dx1,∀ϕ1 ∈ D(Rd1). (34)
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In particular, we choose ϕ1 and ϕ2 above being two cut off functions with respect
to variables x1 and x2, respectively, i.e. ϕi ∈ D(Rdi), 0 ≤ ϕi ≤ 1 and

ϕi(xi) =

{
1, on |xi| ≤ 1,
0, on |xi| ≥ 2,

ϕi(xi) = ϕi(|xi|), ϕ′i ≤ 0, i = 1, 2. (35)

Let

ϕi,r(xi) = ϕi(
xi
r

), for any r > 0, i = 1, 2. (36)

If one replaces ϕ1 and ϕ2 in (34) by ϕ1,n and ϕ2,k in (35) and (36), respectively, it
yields that

d

dt

∫
Rd1

[vk ∧M2]p(t, x1)ϕ1,n(x1)dx1

=

∫
Rd1

[vk ∧M2]p(t, x1)[divx1
b1(t, x1)ϕ1,n(x1)

+b1,2 ·
x1
n|x1|

ϕ′1,n + b1,1(t, x1) · ∇x1
ϕ1,n(x1)]dx1

+p

∫
Rd1

[vk ∧M2]p−1(t, x1)1[0,M2](vk)ϕ1,n(x1)dx1

×
∫
Rd2

[|u| ∧M1](t, x)[divx2
b2(t, x)ϕ2,k(x2)

+ b2,2 ·
x2
k|x2|

ϕ′2,k + b2,1(t, x) · ∇x2ϕ2,k(x2)

−c(t, x)1[0,M1](|u|)ϕ2,k(x2)sgn(u)]dx2

≤
[
‖divx1b1,1(t)‖L∞(Rd1 ) + p‖divx2b2(t)‖L∞(Rd) + p‖c(t)‖L∞(Rd)

]
×
∫
Rd1

[vk ∧M2]p(t, x1)ϕ1,ndx1

+

∫
Rd1

[vk ∧M2]p(t, x1)b1,1(t, x1) · ∇x1ϕ1,n(x1)dx1

+p

∫
Rd1

[vk ∧M2]p−1(t, x1)ϕ1,n(x1)dx1

×
∫
Rd2

[|u| ∧M1](t, x)|b2,1(t, x) · ∇x2ϕ2,k(x2)|dx2, (37)

where

vk(t, x1) =

∫
Rd2

[|u| ∧M1](t, x1, x2)ϕ2,k(x2)dx2, (38)

and in the fifth line in (37) we have used (31) and (32).
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By conditions (H1) and (H2), it follows that

d

dt

∫
Rd1

[vk ∧M2]p(t, x1)ϕ1,n(x1)dx1

≤ C(t)

∫
Rd1

[vk ∧M2]p(t, x1)ϕ1,n(x1)dx1

+C

∫
n≤|x1|≤2n

[vk ∧M2]p(t, x1)
|b1,1(t, x1)|

1 + |x1|
dx1

+C

∫
Rd1

[vk ∧M2]p−1(t, x1)ϕ1,n(x1)dx1

×
∫
k≤|x2|≤2k

[|u| ∧M1](t, x)
|b2,1(t, x)|
1 + |x2|

dx2. (39)

For M1, M2 and n being fixed, if one approaches k to infinity, from (38) and (39),
by condition (32), one gains

d

dt

∫
Rd1

[ ∫
Rd2

[|u| ∧M1](t, x1, x2)dx2 ∧M2

]p
ϕ1,n(x1)dx1

≤ C(t)

∫
Rd1

[ ∫
Rd2

[|u| ∧M1](t, x1, x2)dx2 ∧M2

]p
ϕ1,n(x1)dx1

+C

∫
n≤|x1|≤2n

[ ∫
Rd2

[|u| ∧M1](t, x1, x2)dx2 ∧M2

]p |b1,1(t, x1)|
1 + |x1|

dx1.

By (31), if we tend n to infinity in the above inequality, then

d

dt

∫
Rd1

[ ∫
Rd2

[|u| ∧M1]dx2 ∧M2

]p
dx1

≤ C(t)

∫
Rd1

[ ∫
Rd2

[|u| ∧M1]dx2 ∧M2

]p
dx1. (40)

From (40), by applying a Grönwall type argument, it follows that∫
Rd1

[ ∫
Rd2

[|u| ∧M1]dx2 ∧M2

]p
dx1 = 0,

for u0 = 0. Hence ∫
Rd2

[|u| ∧M1]dx2 ∧M2 = 0.

Since M2 > 0 is arbitrary, we conclude
∫
Rd2

[|u| ∧M1]dx2 = 0. The same argument
procedure used again, one finishes that u = 0 and this achieves the proof. �

More general, we have the following comparison principle.

Theorem 2.3 (Comparison principle). Let b, c, u0 and f be as in Theorem 2.2. If
u0 ≤ 0, f ≤ 0, then u ≤ 0.

Proof. Let u be the unique solution of (1). By Lemma 2.3, for any Lipschitz
function β, β(u) solves

∂t[β(u)] + b(t, x) · ∇[β(u)] + c(t, x)β′(u)u

= β′(u)[∂tu+ b(t, x) · ∇u(t, x) + c(t, x)u] = β′(u)f,

supplied with β(u)|t=0 = β(u0).
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In particular, if we choose β(τ) = τ+ ∧M1, then it follows that [u+ ∧M1](t =
0) ≤ 0 and

∂t[u
+ ∧M1] + b(t, x) · ∇[u+ ∧M1] + c(t, x)1[0,M1](u)[u+ ∧M1] ≤ 0, ∀ t > 0.

The argument applied in Theorem 2.2 for |u|∧M1 and ([
∫
Rd2
|u|∧M1dx2]∧M2)p

adapted to u+ ∧M1 and ([
∫
Rd2

u+ ∧M1dx2]∧M2)p here, combing a Grönwall type
argument, suggests that∫

Rd1

[ ∫
Rd2

[u+ ∧M1]dx2 ∧M2

]p
dx1 ≤ 0.

Employing the same technique discussed in Theorem 2.2, one derives u+ = 0, this
completes the proof. �

It is time for us to give a regularity result.

Theorem 2.4 (Regularity). Let b, c, u0 and f be as in Theorem 2.2. Then the
unique solution u satisfies

u ∈ C([0, T ];Lp(Rd1 ;L1(Rd2))). (41)

Proof. Since the proof for p > 2 is analogue of the issue of 1 ≤ p ≤ 2, we only
concentrate our attention on 1 ≤ p ≤ 2. We approximate u0 and f by un0 and fn
which are in class of L2(Rd) ∩ Lp(Rd1 ;L1(Rd2)) and L2([0, T ] × Rd) ∩ Lp([0, T ] ×
Rd1 ;L1(Rd2)), respectively, such that (7) holds. For any n, there exists a unique
un ∈ L∞(0, T ;L2(Rd)) solving the Cauchy problem

∂tun(t, x) + b(t, x) · ∇un(t, x) + c(t, x)un(t, x)
= fn(t, x), (t, x) ∈ (0, T ]× Rd,

un(t = 0, x) = un0 (x), x ∈ Rd.
(42)

Moreover, for any ϕ ∈ D(Rd), (5) holds true. Therefore,∫
Rd

un(t, x)ϕ(x)dx ∈ C([0, T ]). (43)

By Lemma 2.3, with a cumbersome approximation discussion which is akin to
the computation from (33) to (40), for any t0, t ∈ [0, T ], we end up with∣∣∣‖un(t)‖2L2(Rd) − ‖un(t0)‖2L2(Rd)

∣∣∣
≤ 2

∫ t

t0

‖fn(s)un(s)‖L1(Rd)ds

+

∫ t

t0

‖un(s)‖2L2(Rd)[‖divb(s)− 2c(s)‖L∞(Rd)]ds, (44)

hence ‖un(t)‖L2(Rd) ∈ C([0, T ]).
The same tools used in Theorem 2.2 applies again, one also concludes

‖un(t)− u(t)‖Lp(Rd1 ;L1(Rd2 ))

≤ C
[ ∫ t

0

‖fn(s)− f(s)‖Lp(Rd1 ;L1(Rd2 ))ds+ ‖un0 − u0‖Lp(Rd1 ;L1(Rd2 ))

]
. (45)

From (43) to (45), in order to show (41), it is sufficient to prove un ∈ C([0, T ];L2(Rd)).
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Indeed, for any t0 ∈ [0, T ] and t ∈ [0, T ],

lim sup
t→t0

‖un(t)− un(t0)‖2L2(Rd) = lim sup
t→t0

〈un(t)− un(t0), un(t)− un(t0)〉

= 2 lim sup
t→t0

〈un(t0)− un(t), un(t0)〉,

where the notation 〈·, ·〉 denotes the inner product in L2(Rd). Therefore, for any
ϕ ∈ D(Rd),

lim sup
t→t0

‖un(t)− un(t0)‖2L2(Rd)

≤ 2 lim sup
t→t0

〈un(t0)− un(t), un(t0)− ϕ〉+ 2 lim sup
t→t0

〈un(t0)− un(t), ϕ〉

= 2 lim sup
t→t0

〈un(t0)− un(t), un(t0)− ϕ〉

≤ 4‖un‖L∞(0,T ;L2(Rd))‖un(t0)− ϕ‖L2(Rd).

It follows that

lim sup
t→t0

‖un(t)− un(t0)‖2L2(Rd)

≤ 4‖un‖L∞(0,T ;L2(Rd)) inf
ϕ∈D(Rd)

‖un(t0)− ϕ‖L2(Rd) = 0,

and from this, we accomplish the proof. �
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