LINEARIZED OSCILLATION THEORY OF SECOND ORDER NEUTRAL IMPULSIVE DIFFERENCE EQUATIONS

G. N. CHHATRIA ${ }^{\dagger}$ AND A. K. TRIPATHY*

Abstract. This article studies the oscillation of solutions of a class of second order nonlinear neutral impulsive difference equations of the form:

$$
\left\{\begin{array}{l}
\Delta^{2}[u(n)-p(n) f(u(n-\alpha))]+q(n) h(u(n-\beta))=0, n \neq m_{j} \\
\underline{\Delta}\left[\Delta\left(u\left(m_{j}-1\right)-p\left(m_{j}-1\right) f\left(u\left(m_{j}-\alpha-1\right)\right)\right)\right] \\
\quad+r\left(m_{j}-1\right) h\left(u\left(m_{j}-\beta-1\right)\right)=0, j \in \mathbb{N}
\end{array}\right.
$$

for the various ranges of the neutral coefficient. The technique employed here is due to the linearization method by using the Banach contraction principle and Knaster-Tarski fixed point theorem. In addition, some illustrative examples are given to verify our main results.

1. Introduction

In this work, we consider a second order nonlinear neutral impulsive difference equations of the form:

$$
(E)\left\{\begin{array}{l}
\Delta^{2}[u(n)-p(n) f(u(n-\alpha))]+q(n) h(u(n-\beta))=0, n \neq m_{j} \tag{1}\\
\underline{\Delta}\left[\Delta\left(u\left(m_{j}-1\right)-p\left(m_{j}-1\right) f\left(u\left(m_{j}-\alpha-1\right)\right)\right)\right] \\
+r\left(m_{j}-1\right) h\left(u\left(m_{j}-\beta-1\right)\right)=0, j \in \mathbb{N}
\end{array}\right.
$$

where α, β are positive integers, $p \in \mathbb{R}-\{0\}, q, r \in \mathbb{R}_{+}, f, h \in C(\mathbb{R}, \mathbb{R})$ and m_{j}, $j \in \mathbb{N}$ are the discrete moments of impulsive effect such that $m_{1}<m_{2}<\cdots<m_{j}$ with the properties $\lim _{j \rightarrow \infty} m_{j}=\infty$ and $\rho=\max \{\alpha, \beta\} \leq \max \left\{m_{j}-m_{j-1}\right\}<\infty$. Here, Δ is the forward difference operator defined by $\Delta u(n)=u(n+1)-u(n)$ and $\underline{\Delta}$ is the difference operator defined by $\underline{\Delta} u\left(m_{j}-1\right)=u\left(m_{j}\right)-u\left(m_{j}-1\right)$.

By a solution of (E) we mean a real valued function $u(n)$ defined on $\mathbb{N}\left(n_{0}-\rho\right)=$ $\left\{n_{0}-\rho, \ldots n_{0}, n_{0}+1, \ldots\right\}$ which satisfy (E) for $n \geq n_{0}$ with the initial conditions $u(i)=\phi(i), i=n_{0}-\rho, \cdots, n_{0}$, where $\phi(i), i=n_{0}-\rho, \cdots, n_{0}$ are given. A nontrivial solution $u(n)$ of (E) is said to be nonoscillatory, if it is either eventually positive or

[^0]eventually negative. Otherwise, the solution is said to be oscillatory. (E) is said to be oscillatory if all its solutions are oscillatory.

The objective of this work is to establish linearized oscillation theory for highly nonlinear neutral impulsive difference equations (E) by using Banach contraction principle and Knaster-Tarski fixed point theorem in the ranges $-\infty<p(n)<$ $-1,-1<p(n) \leq 0$ and $0 \leq p(n)<1$. To understand the theory, we refer the monographs [8] and [9, and about the development of impulsive equations we refer [10, 15 and 16 .

Indeed, (1) is called as the nonimpulsive difference equation which is so called as difference equation and to its solution $u(n)$ when we apply impulse $m_{j}, j \in \mathbb{N}$, we find an impulsive solution $u\left(m_{j}\right)$ satisfying (2) and together we have our impulsive difference equation (E). It is a challenge to study $\sqrt{1} /(E)$ with and without fixed point theory via the Qualitative Behaviour of Solutions method.

Let the linear impulsive system associated with the nonlinear impulsive system (E) be

$$
\left(E_{l}\right)\left\{\begin{array}{l}
\Delta^{2}[y(n)-p y(n-\alpha)]+q y(n-\beta)=0, n \neq m_{j} \\
\underline{\Delta}\left[\Delta\left(y\left(m_{j}-1\right)-p y\left(m_{j}-\alpha-1\right)\right)\right]+r y\left(m_{j}-\beta-1\right)=0, j \in \mathbb{N}
\end{array}\right.
$$

and in [20], the authors have predicted the possible solution of $\left(E_{l}\right)$ as

$$
\begin{equation*}
y(n)=\lambda^{n} A^{i\left(n_{0}, n\right)}, n_{0}>\rho=\max \{\alpha, \beta\} \tag{3}
\end{equation*}
$$

where $i\left(n_{0}, n\right)=j=$ number of impulsive points $m_{j}, j \in \mathbb{N}$ between n_{0} to n and $A \neq 0$ is a real number which is called as the pulsatile constant. But, it is not that much simple to predict the solution of (E) when nothing is known about (E). In this work, we establish the linearized oscillation results (E) through its limiting equation of type (3). Of course, some results of [20] are our state of art along with fixed point theory. As long as (3) is concerned, the study of (1) is a special case study of (E) and the approach of neutral equation is a general discussion comparing to the study of nonneutral equations (see for e.g. [2, [3, 13], [23]- [26]). We study (E) with a general set up, and in this direction we refer some of the works [1, 4, 5, 6, 7, 12, 14, [17]-21] and [22] and the references cited there in.

2. Preliminaries

In this section, we present some existing results from [20] for our discussion in which we have the following notations:

- $i(n-\beta, n)=l_{1}$ is the number of impulsive points between $n-\beta$ to n,
- $i(n-\alpha, n)=l_{2}$ is the number of impulsive points between $n-\alpha$ to n.

Theorem 2.1. Let $\alpha>\beta$ and $r \neq q \neq 0$. Then $\left(E_{l}\right)$ admits an oscillatory solution in the impulsive form (3) if and only if the algebraic equation

$$
\begin{equation*}
\left[\frac{1}{\lambda}\left(1-\frac{r}{q}\right)+\frac{r}{q}\right]^{l_{1}}(\lambda-1)^{2}-p \lambda^{-\alpha}\left[\frac{1}{\lambda}\left(1-\frac{r}{q}\right)+\frac{r}{q}\right]^{l_{1}-l_{2}}(\lambda-1)^{2}+q \lambda^{-\beta}=0 \tag{4}
\end{equation*}
$$

has at least one real root λ with $\lambda<1-\frac{q}{r}$ for $\frac{r}{q}>1$ and $\lambda>1-\frac{q}{r}$ for $\frac{r}{q}<1$.
Remark 2.2. In Theorem 2.1, we may note that
$i\left(n_{0}, n-\alpha\right)-i\left(n_{0}, n-\beta\right)=-i(n-\alpha, n-\beta)=-[i(n-\alpha, n)-i(n-\beta, n)]=l_{1}-l_{2}$
for $\alpha>\beta$. If $\alpha<\beta$, then we find

$$
i\left(n_{0}, n-\alpha\right)-i\left(n_{0}, n-\beta\right)=i(n-\beta, n-\alpha)=i(n-\beta, n)-i(n-\alpha, n)=l_{1}-l_{2}
$$

and hence $i\left(n_{0}, n-\alpha\right)-i\left(n_{0}, n-\beta\right)=l_{1}-l_{2}$. Therefore, Theorem 2.1 holds for any $\alpha, \beta \in \mathbb{R}_{+}$.
Theorem 2.3. Let the assumptions of Theorem 2.1 hold. Then $\left(E_{l}\right)$ admits an eventually positive solution in the form of (3) if and only if (4) has at least one real root λ with $\lambda>1-\frac{q}{r}$ for $\frac{r}{q}>1$ and $\lambda<1-\frac{q}{r}$ for $\frac{r}{q}<1$.
Theorem 2.4. Let $q, r>0$ such that $r>q$. Then
(1) for $p>0$ and $\alpha<\beta,\left(E_{l}\right)$ has an oscillation in the form of (3) if and only if (4) has no positive real root in $\left[1-\frac{q}{r}, \infty\right)$;
(2) for $p<0,\left(E_{l}\right)$ has an oscillation in the form of (3) if and only if (4) has no positive real root in $\left[1-\frac{q}{r}, \infty\right)$.

3. Linearized Oscillation

This section deals with the linearized oscillation criteria for the system (E). Of course, the criteria are obtained by means of its limiting impulsive equation in the form of $\left(E_{l}\right)$ for different ranges of the neutral coefficient $p(n)$.

Theorem 3.1. Let $p(n)<-1$ be such that $\lim _{n \rightarrow \infty} p(n)=p_{0} \in(-\infty,-1)$. Assume that
$\left(H_{1}\right) \lim _{n \rightarrow \infty} q(n)=q_{0} \in(0, \infty)$ and $\liminf _{n \rightarrow \infty} r(n)=r_{0} \in(0, \infty)$,
$\left(H_{2}\right) u f(u)>0, \frac{f(u)}{u} \geq 1$ for $u \neq 0$ and $\lim _{u \rightarrow 0} \frac{f(u)}{u}=1$,
$\left(H_{3}\right)$ vh $(v)>0$ for $v \neq 0, \liminf _{|v| \rightarrow \infty}|h(v)| \geq v_{0}>0$ and $\lim _{v \rightarrow 0} \frac{h(v)}{v}=1$,
$\left(H_{4}\right) \quad \sum_{s=n^{*}}^{\infty} q(s)+\sum_{j=1}^{\infty} r\left(m_{j}-1\right)=\infty$
and
$\left(H_{5}\right) \quad \sum_{s=n^{*}}^{\infty}\left[\sum_{t=n^{*}}^{s-1} q(t)+\sum_{n^{*} \leq m_{j}-1 \leq s-1} r\left(m_{j}-1\right)\right]=\infty, s>n^{*}+1$
hold. If the limiting impulsive system of (E)

$$
\left\{\begin{array}{l}
\Delta^{2}\left[w(n)-\left(\varepsilon-p_{0}\right) w(n-\alpha)\right]+\left(q_{0}-\varepsilon\right) w(n-\beta)=0, n \neq m_{j} \\
\underline{\Delta}\left[\Delta\left(w\left(m_{j}-1\right)-\left(\varepsilon-p_{0}\right) w\left(m_{j}-\alpha-1\right)\right)\right]+r_{0} w\left(m_{j}-\beta-1\right)=0, j \in \mathbb{N}
\end{array}\right.
$$

has no positive real root in $\left[1-\frac{q_{0}}{r_{0}}, \infty\right)$ for $r_{0}>q_{0}$ and some $\varepsilon>0$, then every solution of the system (E) oscillates.
Proof. Let $u(n)$ be a nonoscillatory solution of (E). Without loss of generality, we may assume that $u(n)>0, u(n-\alpha)>0$ and $u(n-\beta)>0$ for $n \geq n_{0}>\max \{\alpha, \beta\}$ due to $\left(H_{2}\right)$ and $\left(H_{3}\right)$. Setting

$$
\begin{aligned}
& z(n)=u(n)-p(n) f(u(n-\alpha)) \\
& z\left(m_{j}-1\right)=u\left(m_{j}-1\right)-p\left(m_{j}-1\right) f\left(u\left(m_{j}-\alpha-1\right)\right)
\end{aligned}
$$

in (E), we obtain

$$
\left(E_{1}\right)\left\{\begin{array}{l}
\Delta^{2} z(n)=-q(n) h(u(n-\beta)) \leq 0, n \neq m_{j} \\
\underline{\Delta}\left(\Delta z\left(m_{j}-1\right)\right)=-r\left(m_{j}-1\right) h\left(u\left(m_{j}-\beta-1\right)\right) \leq 0, j \in \mathbb{N} .
\end{array}\right.
$$

Hence, we can find an $n_{1}>n_{0}+\beta+1$ such that $\Delta z(n)$ is nonincreasing for $n \geq n_{1}$. Let there exists $n_{2}>n_{1}$ such that $\Delta z(n)>0$ for $n \geq n_{2}$. Summing the impulsive $\operatorname{system}\left(E_{1}\right)$ from n_{2} to $n-1\left(n>n_{2}+1\right)$, we get

$$
\Delta z(n)-\Delta z\left(n_{2}\right)-\sum_{n_{2} \leq m_{j}-1 \leq n-1} \underline{\Delta}\left(\Delta z\left(m_{j}-1\right)\right)=-\sum_{s=n_{2}}^{n-1} q(s) h(u(n-\beta))
$$

that is,
$\sum_{s=n_{2}}^{n-1} q(s) h(u(n-\beta))+\sum_{n_{2} \leq m_{j}-1 \leq n-1} r\left(m_{j}-1\right) h\left(u\left(m_{j}-\beta-1\right)\right)=-\Delta z(n)+\Delta z\left(n_{2}\right)$.
Using $\left(H_{3}\right)$, it follows that

$$
\begin{aligned}
h_{0}\left[\sum_{s=n_{2}}^{n-1} q(s)+\sum_{n_{2} \leq m_{j}-1 \leq n-1} r\left(m_{j}-1\right)\right] & \leq-\Delta z(n)+\Delta z\left(n_{2}\right) \\
& \leq \Delta z\left(n_{2}\right)
\end{aligned}
$$

which is a contradiction to $\left(H_{4}\right)$. Ultimately, $\Delta z(n)<0$ for $n \geq n_{2}$ and hence $z(n)>0$ is nonincreasing for $n \geq n_{2}$. Now, summing the impulsive system $\left(E_{1}\right)$ from n_{2} to $n-1$, we get

$$
\begin{aligned}
\sum_{s=n_{2}}^{n-1} q(s) h(u(n-\sigma)) & +\sum_{n_{2} \leq m_{j}-1 \leq n-1} r\left(m_{j}-1\right) h\left(u\left(m_{j}-\sigma-1\right)\right) \\
& =\Delta z\left(n_{2}\right)-\Delta z(n) \leq-\Delta z(n)
\end{aligned}
$$

that is,

$$
\begin{aligned}
\sum_{s=n_{2}}^{n-1}\left[\sum_{t=n_{2}}^{s-1} q(t) h(u(t-\sigma))+\sum_{n_{2} \leq m_{j}-1 \leq s-1} r\left(m_{j}-1\right) h\left(u\left(m_{j}-\sigma-1\right)\right)\right] & \leq z\left(n_{2}\right)-z(n) \\
& \leq z\left(n_{2}\right) \\
& <\infty
\end{aligned}
$$

due to $\left(H_{1}\right),\left(H_{3}\right)$ and $\left(H_{5}\right)$ implies that $\liminf _{n \rightarrow \infty} u(n)=0$. Applying [11, Lemma 2.1.], it follows that $\lim _{n \rightarrow \infty} z(n)=0$. Consequently,

$$
\begin{aligned}
0=\lim _{n \rightarrow \infty} z(n) & =\limsup _{n \rightarrow \infty} z(n) \\
& \geq \limsup _{n \rightarrow \infty}(-p(n) f(u(n-\tau))) \\
& \geq \limsup _{n \rightarrow \infty}(-p(n) u(n-\tau) \\
& =-p_{0} \limsup _{n \rightarrow \infty} u(n)
\end{aligned}
$$

leads to the fact that $\lim _{n \rightarrow \infty} u(n)=0$. Because $m_{j}-1, m_{j}-\tau-1, \cdots$ are the nonimpulsive points, then $\lim _{j \rightarrow \infty} u\left(m_{j}-1\right)=0$. Since $m_{j}-1<m_{j}<n$, then an application of Sandwich theorem shows that $\lim _{j \rightarrow \infty} u\left(m_{j}\right)=0$. Denote

$$
\begin{aligned}
& P(n)=-p(n) \frac{f(u(n-\alpha))}{u(n-\alpha)}, \quad Q(n)=q(n) \frac{h(u(n-\beta))}{u(n-\beta)} \\
& \text { and } R\left(m_{j}-1\right)=r\left(m_{j}-1\right) \frac{h\left(u\left(m_{j}-\beta-1\right)\right)}{u\left(m_{j}-\beta-1\right)}
\end{aligned}
$$

Indeed,

$$
\begin{gathered}
\lim _{n \rightarrow \infty} Q(n)=\lim _{n \rightarrow \infty} q(n) \lim _{n \rightarrow \infty} \frac{h(u(n-\beta))}{u(n-\beta)}=q_{0}, \\
\liminf _{n \rightarrow \infty} R(n) \geq \liminf _{n \rightarrow \infty} r(n) \lim _{n \rightarrow \infty} \frac{h(u(n-\beta))}{u(n-\beta)}=r_{0}
\end{gathered}
$$

and

$$
\limsup _{n \rightarrow \infty} P(n)=\limsup _{n \rightarrow \infty}(-p(n)) \lim _{n \rightarrow \infty} \frac{f(u(n-\alpha))}{u(n-\alpha)}=-p_{0}
$$

due to $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$. Using above substitutions in (E), we obtain
$\left(E_{2}\right)\left\{\begin{array}{l}\Delta^{2}[u(n)+P(n) u(n-\alpha)]+Q(n) u(n-\beta)=0, n \neq m_{j}, j \in \mathbb{N} \\ \underline{\Delta}\left[\Delta\left(u\left(m_{j}-1\right)+P\left(m_{j}-1\right) u\left(m_{j}-\alpha-1\right)\right)\right]+R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right)=0 .\end{array}\right.$
Taking sum to $\left(E_{2}\right)$ from n_{2} to $n-1$, we get

$$
\Delta Z(n)-\Delta Z\left(n_{2}\right)+\sum_{s=n_{2}}^{n-1} Q(s) u(s-\beta)+\sum_{n_{2} \leq m_{j}-1 \leq n-1} R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right)=0
$$

where $Z(n)=u(n)+P(n) u(n-\alpha)$. Similar to the argument for the case $\Delta z(n)<0$, it is easy to show that $\Delta Z(n)<0$ due to $\left(H_{3}\right)$ and $\left(H_{4}\right)$. As $\Delta Z(n)$ is nonincreasing, the above relation reduces to

$$
\Delta Z(n)+\sum_{s=n_{2}}^{n-1} Q(s) u(s-\beta)+\sum_{n_{2} \leq m_{j}-1 \leq n-1} R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right) \leq 0
$$

that is,
$Z(l)-Z(n)+\sum_{s=n}^{l-1}\left[\sum_{t=n_{2}}^{s-1} Q(t) u(t-\beta)+\sum_{n_{2} \leq m_{j}-1 \leq s-1} R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right)\right] \leq 0$.
As a result

$$
Z(n) \geq \sum_{s=n}^{\infty}\left[\sum_{t=n_{2}}^{s-1} Q(t) u(t-\beta)+\sum_{n_{2} \leq m_{j}-1 \leq s-1} R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right)\right]
$$

which is equivalent to

$$
\begin{align*}
u(n) \geq \frac{1}{P(n+\alpha)}[-u(n+\alpha) & +\sum_{s=n+\alpha}^{\infty}\left[\sum_{t=n_{2}}^{s-1} Q(t) u(t-\beta)\right. \\
& \left.\left.+\sum_{n_{2} \leq m_{j}-1 \leq s-1} R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right)\right]\right] \tag{5}
\end{align*}
$$

Let $\gamma>1$ and $\varepsilon \in\left(0, q_{0}\right)$ be given such that $(1-\gamma) p_{0}<\varepsilon$. Suppose that there exists $n_{3}>n_{2}+1$ such that

$$
P(n)<\frac{\varepsilon-p_{0}}{\gamma} \quad, \quad Q(n)>q_{0}-\varepsilon, R\left(m_{j}-1\right)>r_{0}
$$

Then for $n \geq n_{3}$, (5) reduces to

$$
\begin{align*}
u(n) \geq & \frac{\gamma}{\varepsilon-p_{0}} \times \\
& {\left[-u(n+\alpha)+\sum_{s=n+\alpha}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{s=n_{3}}^{s-1} u(t-\beta)+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} u\left(m_{j}-\beta-1\right)\right]\right] } \tag{6}
\end{align*}
$$

Let $X=l_{\infty}^{n_{3}}$ be the Banach space of all real valued bounded functions $y(n)$ with sup norm defined by

$$
\|y\|=\sup \left\{|y(n)|: n \geq n_{3}\right\}
$$

Consider a closed subset Ω of X such that

$$
\Omega=\left\{y \in X: 0 \leq y(n) \leq 1, n \geq n_{3}\right\}
$$

and for $y \in \Omega, n \geq n_{3}$ define
$(T y)(n)=\left\{\begin{array}{l}T y\left(n_{3}+\rho\right), n_{3} \leq n \leq n_{3}+\rho, \\ \frac{1}{\left(\varepsilon-p_{0}\right) u(n)}\left[-u(n+\alpha) y(n+\alpha)+\sum_{s=n+\alpha}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(t-\beta) y(t-\beta)\right.\right. \\ \left.\left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} u\left(m_{j}-\beta-1\right) y\left(m_{j}-\beta-1\right)\right]\right], n>n_{3}+\rho .\end{array}\right.$
For $y \in \Omega$ and due to (6), we have

$$
\begin{aligned}
T y(n) & \leq \frac{1}{\left(\varepsilon-p_{0}\right) u(n)}\left[-u(n+\alpha)+\sum_{s=n+\alpha}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(t-\beta)\right.\right. \\
& \left.\left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} u\left(m_{j}-\beta-1\right)\right]\right] \\
& \leq \frac{1}{\gamma}<1
\end{aligned}
$$

and $T y(n) \geq 0$ implies that $T y(n) \in \Omega$ for every $n \geq n_{3}$. Now, for $y_{1}, y_{2} \in \Omega$

$$
\begin{aligned}
\left|T y_{1}(n)-T y_{2}(n)\right| & \leq \frac{1}{\left(\varepsilon-p_{0}\right) u(n)}\left[-u(n+\alpha)\left|y_{1}(n+\alpha)-y_{2}(n+\alpha)\right|\right. \\
& +\sum_{s=n+\alpha}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(t-\beta)\left|y_{1}(t-\beta)-y_{2}(t-\beta)\right|\right. \\
& \left.\left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} u\left(m_{j}-\beta-1\right)\left|y_{1}\left(m_{j}-\beta-1\right)-y_{2}\left(m_{j}-\beta-1\right)\right|\right]\right]
\end{aligned}
$$

implies that

$$
\begin{aligned}
\left|T y_{1}(n)-T y_{2}(n)\right| & \leq \frac{1}{\left(\varepsilon-p_{0}\right) u(n)}\left[-u(n+\alpha)+\sum_{s=n+\alpha}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(t-\beta)\right.\right. \\
& \left.\left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} u\left(m_{j}-\beta-1\right)\right]\right]\left\|y_{1}-y_{2}\right\| \\
& \leq \frac{1}{\gamma}\left\|y_{1}-y_{2}\right\|
\end{aligned}
$$

that is,

$$
\left\|T y_{1}-T y_{2}\right\| \leq \frac{1}{\gamma}\left\|y_{1}-y_{2}\right\|
$$

Since $\frac{1}{\gamma}<1$, then T is a contraction. By Banach's fixed point theorem [8], T has a unique fixed point $y \in \Omega$ such that $T y=y$, that is,

$$
y(n)=\left\{\begin{array}{l}
y\left(n_{3}+\rho\right), n_{3} \leq n \leq n_{3}+\rho, \\
\frac{1}{\left(\varepsilon-p_{0}\right) u(n)}\left[-u(n+\alpha) y(n+\alpha)+\sum_{s=n+\alpha}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(t-\beta) y(t-\beta)\right.\right. \\
\left.\left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} u\left(m_{j}-\beta-1\right) y\left(m_{j}-\beta-1\right)\right]\right], n>n_{3}+\rho
\end{array}\right.
$$

Setting $w(n)=u(n) y(n)$ for $n \geq n_{3}+\rho$, we obtain

$$
\begin{aligned}
& w(n)=\frac{1}{\left(\varepsilon-p_{0}\right)} \\
& {\left[-w(n+\alpha)+\sum_{s=n+\alpha}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} w(t-\beta)+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} w\left(m_{j}-\beta-1\right)\right]\right]}
\end{aligned}
$$

which is a positive solution of the impulsive system
$\left(E_{3}\right)\left\{\begin{array}{l}\Delta^{2}\left[w(n)-\left(\varepsilon-p_{0}\right) w(n-\alpha)\right]+\left(q_{0}-\varepsilon\right) w(n-\beta)=0, n \neq m_{j} \\ \underline{\Delta}\left[\Delta\left(w\left(m_{j}-1\right)-\left(\varepsilon-p_{0}\right) w\left(m_{j}-\alpha-1\right)\right)\right]+r_{0} w\left(m_{j}-\beta-1\right)=0, j \in \mathbb{N}\end{array}\right.$
whose characteristic equation is given by

$$
\begin{aligned}
& {\left[\frac{1}{\lambda}\left(1-\frac{r_{0}}{\left(q_{0}-\varepsilon\right)}\right)+\frac{r_{0}}{\left(q_{0}-\varepsilon\right)}\right]^{l_{1}}(\lambda-1)^{2}} \\
& -\left(\varepsilon-p_{0}\right) \lambda^{-\alpha}\left[\frac{1}{\lambda}\left(1-\frac{r_{0}}{\left(q_{0}-\varepsilon\right)}\right)+\frac{r_{0}}{\left(q_{0}-\varepsilon\right)}\right]^{l_{1}-l_{2}}(\lambda-1)^{2}+\left(q_{0}-\varepsilon\right) \lambda^{-\beta}=0
\end{aligned}
$$

By Theorem 2.3, w(n) is a positive solution of $\left(E_{3}\right)$ if and only if

$$
\lambda>1-\frac{\left(q_{0}-\varepsilon\right)}{r_{0}}>1-\frac{q_{0}}{r_{0}}
$$

for $\frac{r_{0}}{q_{0}}>1$, a contradiction due to Theorem 2.4. This completes the proof of the theorem.
Remark 3.2. The prototype of the functions f and h in Theorem 3.1 satisfying $\left(H_{2}\right)$ and $\left(H_{3}\right)$ could be of the form

$$
G(u)=u\left(1+|u|^{\gamma}\right), u \in \mathbb{R}, \gamma>0
$$

Theorem 3.3. Let $-1<p(n) \leq 0$ and $\lim _{n \rightarrow \infty} p(n)=p_{0} \in(-1,0]$. Assume that $\left(H_{1}\right)-\left(H_{5}\right)$ hold. If the limiting impulsive system

$$
\left\{\begin{array}{l}
\Delta^{2}\left[y(n)-\left(p_{0}-\varepsilon_{1}\right) y(n-\alpha)\right]+\left(q_{0}-\varepsilon\right) y(n-\beta)=0, n \neq m_{j} \\
\underline{\Delta}\left[\Delta\left(y\left(m_{j}-1\right)-\left(p_{0}-\varepsilon_{1}\right) y\left(m_{j}-\alpha-1\right)\right)\right]+r_{0} y\left(m_{j}-\beta-1\right)=0, j \in \mathbb{N}
\end{array}\right.
$$

has no positive real roots in $\left[1-\frac{q_{0}}{r_{0}}, \infty\right)$ for $r_{0}>q_{0}$ and for some $\varepsilon_{1}, \varepsilon>0$, then every solution of the system (E) oscillates.
Proof. Let $u(n)$ be a nonoscillatory solution of (E). Proceeding as in the proof of Theorem 3.1, we have $\lim _{n \rightarrow \infty} u(n)=0$ and $\lim _{j \rightarrow \infty} u\left(m_{j}-1\right)=0$ and then an application of Sandwich theorem gives $\lim _{j \rightarrow \infty} u\left(m_{j}\right)=0$. Denote

$$
\begin{aligned}
& P(n)=p(n) \frac{f(u(n-\alpha))}{u(n-\alpha)}, \quad Q(n)=q(n) \frac{h(u(n-\beta))}{u(n-\beta)} \\
& \text { and } R\left(m_{j}-1\right)=r\left(m_{j}-1\right) \frac{h\left(u\left(m_{j}-\beta-1\right)\right)}{u\left(m_{j}-\beta-1\right)}
\end{aligned}
$$

Due to $\left(H_{1}\right),\left(H_{2}\right)$ and $\left(H_{3}\right)$, it follows that $\lim _{n \rightarrow \infty} Q(n)=q_{0}, \liminf _{j \rightarrow \infty} R\left(m_{j}-\right.$ $1) \geq r_{0}$ and $\lim \sup _{n \rightarrow \infty} P(n)=-p_{0}$. Therefore, (E) can be written as

$$
\left(E_{4}\right)\left\{\begin{array}{l}
\Delta^{2}[u(n)+P(n) u(n-\alpha)]+Q(n) u(n-\beta)=0, n \neq m_{j} \\
\underline{\Delta}\left[\Delta\left(u\left(m_{j}-1\right)+P\left(m_{j}-1\right) u\left(m_{j}-\alpha-1\right)\right)\right] \\
+R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right)=0, j \in \mathbb{N} .
\end{array}\right.
$$

Summing $\left(E_{4}\right)$ twice and then using the argument as in Theorem 3.1, we find

$$
\begin{align*}
u(n) \geq & -P(n) u(n-\alpha) \\
& +\sum_{s=n}^{\infty}\left[\sum_{t=n_{2}}^{s-1} Q(t) u(t-\beta)+\sum_{n_{2} \leq m_{j}-1 \leq s-1} R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right)\right] . \tag{7}
\end{align*}
$$

Let $\varepsilon \in\left(0, q_{0}\right)$ and $\varepsilon_{1} \in\left(0,1+p_{0}\right)$. Suppose that there exists $n_{3}>n_{2}+1$ such that

$$
Q(n)>q_{0}-\varepsilon, R\left(m_{j}-1\right)>r_{0}, P(n)<\varepsilon_{1}-p_{0}
$$

for $n \geq n_{3}$. Then for $n \geq n_{3},(7)$ reduces to

$$
\begin{align*}
u(n) \geq & \left(p_{0}-\varepsilon_{1}\right) u(n-\alpha) \\
& +\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{s=n_{2}}^{s-1} u(t-\beta)+r_{0} \sum_{n_{2} \leq m_{j}-1 \leq s-1} u\left(m_{j}-\beta-1\right)\right] \tag{8}
\end{align*}
$$

Let $X=l_{\infty}^{n_{3}}$ be the Banach space of all real valued bounded functions $y(n)$ with sup norm defined by

$$
\|y\|=\sup \left\{|y(n)|: n \geq n_{3}\right\}
$$

Set

$$
\Omega=\left\{y \in X: y(n)=u(n) \text { for } n_{3} \leq n \leq n_{3}+\rho \text { and } 0 \leq y(n) \leq u(n), n>n_{3}+\rho\right\}
$$

For $y_{1}, y_{2} \in \Omega$, we define a partial order $y_{1} \leq y_{2}$ on Ω means that $y_{1}(n) \leq y_{2}(n)$ for all $n \geq n_{3}$. Because $\lim _{n \rightarrow \infty} u(n)=0$ and by the definition Ω, it follows that $\inf \Omega$ exist in Ω. Let $\phi \subset \Omega^{*} \subset \Omega$ be such that

$$
\Omega^{*}=\left\{y \in X: y_{1}(n) \leq y(n) \leq y_{2}(n), 0 \leq y_{1}(n), y_{2}(n) \leq u(n), n \geq n_{3}\right\}
$$

Since $\lim \sup _{n \rightarrow \infty} u(n)=0$, then we can find $\left\{n_{k}\right\} \subset\{n\}$ such that $\sup \Omega^{*} \in \Omega$ as long as $y_{2}\left(n_{k}\right) \leq u\left(n_{k}\right)$ holds for $n_{k} \geq n_{3}, k \in \mathbb{N}$. Next, we define
$(T y)(n)=\left\{\begin{array}{l}T y\left(n_{3}+\rho\right), n_{3} \leq n \leq n_{3}+\rho, \\ \left(p_{0}-\varepsilon_{1}\right) y(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} y(t-\beta)\right. \\ \left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} y\left(m_{j}-\beta-1\right)\right], n>n_{3}+\rho .\end{array}\right.$
Then for $y \in \Omega$ and using (8), it follows that

$$
\begin{aligned}
T y(n) & \leq\left(p_{0}-\epsilon_{1}\right) y(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} y(t-\beta)+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} y\left(m_{j}-\beta-1\right)\right] \\
& \leq\left(p_{0}-\epsilon_{1}\right) u(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(t-\beta)+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} u\left(m_{j}-\beta-1\right)\right] \\
& \leq u(n)
\end{aligned}
$$

and $T y(n) \geq 0$ for $n \geq n_{3}$ implies that $T y(n) \in \Omega$ for every $n \geq n_{3}$. For $y_{1}, y_{2} \in \Omega$ with $y_{1} \leq y_{2}$, it is easy to verify that $T y_{1} \leq T y_{2}$. Being a closed subspace of X, Ω is a partially ordered Banach space. Therefore, by Knaster-Tarski fixed point theorem [8], T has a unique fixed point $y \in \Omega$ such that $T y=y$, that is,

$$
y(n)= \begin{cases}y\left(n_{3}+\rho\right), & n_{3} \leq n \leq n_{3}+\rho, \\ \left(p_{0}-\varepsilon_{1}\right) y(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} y(t-\beta)\right. & \\ \left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} y\left(m_{j}-\beta-1\right)\right], & n>n_{3}+\rho\end{cases}
$$

Therefore, for $n \geq n_{3}+\rho$, we obtain

$$
\begin{aligned}
& y(n)= \\
& \left(p_{0}-\varepsilon_{1}\right) y(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} y(t-\beta)+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq s-1} y\left(m_{j}-\beta-1\right)\right] .
\end{aligned}
$$

We may note that, $y(n)$ is a positive solution of the impulsive system
$\left(E_{5}\right)\left\{\begin{array}{l}\Delta^{2}\left[y(n)-\left(p_{0}-\varepsilon_{1}\right) y(n-\alpha)\right]+\left(q_{0}-\varepsilon\right) y(n-\beta)=0, n \neq m_{j} \\ \Delta\left[\Delta\left(y\left(m_{j}-1\right)-\left(p_{0}-\varepsilon_{1}\right) y\left(m_{j}-\alpha-1\right)\right)\right]+r_{0} y\left(m_{j}-\beta-1\right)=0, j \in \mathbb{N} .\end{array}\right.$
Indeed, its characteristic equation is given by

$$
\begin{aligned}
& {\left[\frac{1}{\lambda}\left(1-\frac{r_{0}}{\left(q_{0}-\varepsilon\right)}\right)+\frac{r_{0}}{\left(q_{0}-\varepsilon\right)}\right]^{l_{1}}(\lambda-1)^{2}} \\
& -\left(p_{0}-\varepsilon_{1}\right) \lambda^{-\alpha}\left[\frac{1}{\lambda}\left(1-\frac{r_{0}}{\left(q_{0}-\varepsilon\right)}\right)+\frac{r_{0}}{\left(q_{0}-\varepsilon\right)}\right]^{l_{1}-l_{2}}(\lambda-1)^{2}+\left(q_{0}-\varepsilon\right) \lambda^{-\beta}=0
\end{aligned}
$$

Due to Theorem 2.3, $y(n)$ is a positive solution of $\left(E_{5}\right)$ if and only if

$$
\lambda>1-\frac{\left(q_{0}-\varepsilon\right)}{r_{0}}>1-\frac{q_{0}}{r_{0}}
$$

for $\frac{r_{0}}{q_{0}}>1$, a contradiction due to Theorem 2.4. This completes the proof of the theorem.
Theorem 3.4. Let $\alpha \leq \beta$. Let $0 \leq p(n)<1$ be such that $\lim _{n \rightarrow \infty} p(n)=p_{0} \in$ $[0,1)$. Assume that $\left(H_{1}\right),\left(H_{3}\right),\left(H_{4}\right),\left(H_{5}\right)$ and
$\left(H_{6}\right) u f(u)>0, \frac{f(u)}{u} \leq 1$ for $u \neq 0$ and $\lim _{u \rightarrow 0} \frac{f(u)}{u}=1$
hold. If the limiting impulsive system

$$
\left\{\begin{array}{l}
\Delta^{2}\left[w(n)-\gamma\left(p_{0}-\epsilon\right) w(n-\alpha)\right]+\gamma\left(q_{0}-\varepsilon\right) w(n-\beta)=0, n \neq m_{j} \\
\underline{\Delta}\left[\Delta\left(w\left(m_{j}-1\right)-\gamma\left(p_{0}-\epsilon\right) w\left(m_{j}-\alpha-1\right)\right)\right]+\gamma r_{0} w\left(m_{j}-\beta-1\right)=0, j \in \mathbb{N}
\end{array}\right.
$$

has no positive real root in $\left[1-\frac{q_{0}}{r_{0}}, \infty\right)$ for $r_{0}>q_{0}$ and for some $\epsilon, \gamma, \varepsilon>0$, then every solution of (E) oscillates.
Proof. Let $u(n)$ be a nonoscillatory solution of (E). Then proceeding as in the proof of Theorem 3.1, we have that $\Delta z(n)<0$ and $z(n)$ is monotonic for $n \geq n_{1}$. Suppose there exists $n_{2}>n_{1}$ such that $z(n)<0$ for $n \geq n_{2}$. Since $\Delta z(n)$ is nonincreasing, then we can find a $n_{3}>n_{2}+1$ and a constant $C>0$ such that $\Delta z(n) \leq-C$ for $n \geq n_{3}$ and hence $\Delta z\left(m_{j}-1\right) \leq-C$. Therefore,

$$
z(n)-z\left(n_{3}\right)-\sum_{n_{3} \leq m_{j}-1 \leq n-1} \Delta z\left(m_{j}-1\right) \leq-\sum_{s=n_{3}}^{n-1} C
$$

implies that

$$
z(n) \leq z\left(n_{3}\right)-\left[\sum_{s=n_{3}}^{n-1} C+\sum_{n_{3} \leq m_{j}-1 \leq n-1} C\right]
$$

that is, $\lim _{n \rightarrow \infty} z(n)=-\infty$. By Sandwich theorem and due to $m_{j}-1<m_{j}<n$, we obtain $\lim _{j \rightarrow \infty} z\left(m_{j}\right)=-\infty$. On the other hand, $z(n)<0$ for $n \geq n_{3}$ implies that

$$
u(n) \leq p(n) f(u(n-\alpha)) \leq u(n-\alpha) \leq u(n-2 \alpha) \leq u(n-3 \alpha) \cdots \leq u\left(n_{3}\right)
$$

and analogously,

$$
u\left(m_{j}-1\right) \leq u\left(m_{j}-\alpha-1\right) \leq u\left(m_{j}-2 \alpha-1\right) \leq u\left(m_{j}-3 \alpha-1\right) \cdots \leq u\left(n_{3}\right)
$$

due to the nonimpulsive points $m_{j}-1, m_{j}-\alpha-1, m_{j}-2 \alpha-1, \cdots$. Therefore, $u(n)$ is bounded for all nonimpulsive points. We assert that $u\left(m_{j}\right)$ is bounded. If not, let it be $\lim _{j \rightarrow \infty} u\left(m_{j}\right)=+\infty$. Therefore,

$$
\begin{aligned}
z\left(m_{j}\right) & =u\left(m_{j}\right)+p\left(m_{j}\right) f\left(u\left(m_{j}-\alpha\right)\right) \\
& \geq u\left(m_{j}\right)-f\left(u\left(m_{j}-\alpha\right)\right) \\
& \geq u\left(m_{j}\right)-u\left(m_{j}-\alpha\right) \geq u\left(m_{j}\right)-b
\end{aligned}
$$

implies that $z\left(m_{j}\right)>0$ as $j \rightarrow \infty$, a contradiction, where $u\left(m_{j}-\alpha\right) \leq b$. So, our assertation holds. Ultimately, $z(n)$ is bounded for every n, a contradiction. Thus, $z(n)>0$ for $n \geq n_{2}$. Proceeding as in the proof of Theorem 2.1, we obtain $\lim \inf _{n \rightarrow \infty} u(n)=0$ and $\lim _{n \rightarrow \infty} z(n)=0$. Clearly,

$$
\begin{aligned}
0=\lim _{n \rightarrow \infty} z(n) & =\limsup _{n \rightarrow \infty} z(n) \\
& \geq \limsup _{n \rightarrow \infty}(u(n)-p(n) f(u(n-\alpha))) \\
& \geq \limsup _{n \rightarrow \infty} u(n)-\liminf _{n \rightarrow \infty}(p(n) u(n-\alpha) \\
& =\left(1-p_{0}\right) \limsup _{n \rightarrow \infty} u(n)
\end{aligned}
$$

implies that $\limsup _{n \rightarrow \infty} u(n)=0$ and hence $\lim _{n \rightarrow \infty} u(n)=0$. Also, $\lim _{j \rightarrow \infty} u\left(m_{j}-\right.$ 1) $=0$ for nonimpulsive points $m_{j}-1, m_{j}-\tau-1, \cdots$. Due to Sandwich theorem and for $m_{j}-1<m_{j}<n$, we have $\lim _{j \rightarrow \infty} u\left(m_{j}\right)=0$. Denote

$$
\begin{aligned}
& P(n)=p(n) \frac{f(u(n-\alpha))}{u(n-\alpha)}, \quad Q(n)=q(n) \frac{h(u(n-\beta))}{u(n-\beta)} \\
& \text { and } R\left(m_{j}-1\right)=r\left(m_{j}-1\right) \frac{h\left(u\left(m_{j}-\beta-1\right)\right)}{u\left(m_{j}-\beta-1\right)} .
\end{aligned}
$$

Then, the system (E) can be written as

$$
\left(E_{6}\right)\left\{\begin{array}{l}
\Delta^{2}[u(n)-P(n) u(n-\alpha)]+Q(n) u(n-\beta)=0, n \neq m_{j} \\
\underline{\Delta}\left[\Delta\left(u\left(m_{j}-1\right)-P\left(m_{j}-1\right) u\left(m_{j}-\alpha-1\right)\right)\right] \\
\quad+R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right)=0, j \in \mathbb{N} .
\end{array}\right.
$$

By $\left(H_{1}\right),\left(H_{3}\right)$ and $\left(H_{6}\right)$, it follows that

$$
\begin{gathered}
\lim _{n \rightarrow \infty} Q(n)=\lim _{n \rightarrow \infty} q(n) \lim _{n \rightarrow \infty} \frac{h(u(n-\beta))}{u(n-\beta)}=q_{0}, \\
\liminf _{j \rightarrow \infty} R\left(m_{j}-1\right) \geq \liminf _{j \rightarrow \infty} r\left(m_{j}-1\right) \lim _{j \rightarrow \infty} \frac{h\left(u\left(m_{j}-\beta-1\right)\right)}{u\left(m_{j}-\beta-1\right)}=r_{0}
\end{gathered}
$$

and

$$
\liminf _{n \rightarrow \infty} P(n) \geq \liminf _{n \rightarrow \infty} p(n) \lim _{n \rightarrow \infty} \frac{f(u(n-\alpha))}{u(n-\alpha)}=p_{0} .
$$

Let $\varepsilon \in\left(0, q_{0}\right), \epsilon \in\left(0,1-p_{0}\right)$ and $0<\gamma<1$. Suppose that there exists $n_{3} \geq n_{2}+1$ such that

$$
Q(n)>q_{0}-\varepsilon, R\left(m_{j}-1\right)>r_{0}, P(n)>\left(p_{0}-\epsilon\right) .
$$

Summing (E_{6}) twice, we get

$$
\begin{align*}
u(n) & =P(n) u(n-\alpha)+\sum_{s=n}^{\infty}\left[\sum_{t=n_{3}}^{s-1} Q(t) u(t-\beta)+\sum_{n_{3} \leq m_{j}-1 \leq s-1} R\left(m_{j}-1\right) u\left(m_{j}-\beta-1\right)\right] \\
& \geq\left(p_{0}-\epsilon\right) u(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(t-\beta)+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq t-1} u\left(m_{j}-\beta-1\right)\right] . \tag{9}
\end{align*}
$$

Let $X=l_{\infty}^{n_{3}}$ be the Banach space of all real valued bounded functions $y(n)$ with the sup norm defined by

$$
\|y\|=\sup \left\{|y(n)|: n \geq n_{3}\right\}
$$

Consider a closed subset Ω of X such that

$$
\Omega=\left\{y \in X: 0 \leq y(n) \leq 1, n \geq n_{3}\right\}
$$

For $y \in \Omega$ and $n \geq n_{3}$, we define

$$
(T y)(n)=\left\{\begin{array}{l}
T y\left(n_{3}+\rho\right), n_{3} \leq n \leq n_{3}+\rho, \\
\frac{\gamma}{u(n)}\left[\left(p_{0}-\epsilon\right) u(n-\alpha) y(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(t-\beta) y(t-\beta)\right.\right. \\
\left.\left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq t-1} u\left(m_{j}-\beta-1\right) y\left(m_{j}-\beta-1\right)\right]\right], n>n_{3}+\rho
\end{array}\right.
$$

For $y \in \Omega$ and using (9), we have
$T y(n)$

$$
\begin{aligned}
& \leq \frac{\gamma}{u(n)}\left[\left(p_{0}-\epsilon\right) u(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(t-\beta)+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq t-1} u\left(m_{j}-\beta-1\right)\right]\right] \\
& \leq \gamma<1
\end{aligned}
$$

and $T y(n) \geq 0$ implies that $T y(n) \in \Omega$ for $n \geq n_{3}$. For $y_{1}, y_{2} \in \Omega$, we have

$$
\begin{aligned}
\left|T y_{1}(n)-T y_{2}(n)\right| & \leq \frac{\gamma}{|u(n)|}\left[\left(p_{0}-\epsilon\right) u(n-\alpha)\left|y_{1}(n-\alpha)-y_{2}(n-\alpha)\right|\right. \\
& +\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} u(n-\beta)\left|y_{1}(t-\beta)-y_{2}(t-\beta)\right|\right. \\
& \left.\left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq t-1} u\left(m_{j}-\beta-1\right)\left|y_{1}\left(m_{j}-\beta-1\right)-y_{2}\left(m_{j}-\beta-1\right)\right|\right]\right]
\end{aligned}
$$

which implies

$$
\begin{aligned}
\left|T y_{1}(n)-T y_{2}(n)\right| & \leq \frac{\gamma}{|u(n)|}\left[\left(p_{0}-\epsilon\right) u(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{s=n_{3}}^{s-1} u(t-\beta)\right.\right. \\
& \left.\left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq t-1} u\left(m_{j}-\beta-1\right)\right]\right]\left\|y_{1}-y_{2}\right\| \\
& \leq \gamma\left\|y_{1}-y_{2}\right\|
\end{aligned}
$$

that is,

$$
\left\|T y_{1}-T y_{2}\right\| \leq \gamma\left\|y_{1}-y_{2}\right\|
$$

Since $\gamma<1$, then T is a contraction. By Banach's fixed point theorem [8], T has a unique fixed point $y \in \Omega$ such that $T y=y$. Thus,
$y(n)=\left\{\begin{array}{l}y\left(n_{3}+\rho\right), n_{3} \leq n \leq n_{3}+\rho, \\ \frac{\gamma}{u(n)}\left[\left(p_{0}-\epsilon\right) u(n-\alpha) y(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{s=n_{3}}^{s-1} u(t-\beta) y(t-\beta)\right.\right. \\ \left.\left.+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq t-1} u\left(m_{j}-\beta-1\right) y\left(m_{j}-\beta-1\right)\right]\right], n>n_{3}+\rho .\end{array}\right.$
If we set $w(n)=u(n) y(n)$ for $n \geq n_{3}+\rho$, then
$w(n)=$
$\gamma\left[\left(p_{0}-\epsilon\right) w(n-\alpha)+\sum_{s=n}^{\infty}\left[\left(q_{0}-\varepsilon\right) \sum_{t=n_{3}}^{s-1} w(t-\beta)+r_{0} \sum_{n_{3} \leq m_{j}-1 \leq t-1} w\left(m_{j}-\beta-1\right)\right]\right]$
which is a positive solution of the impulsive system
$\left(E_{7}\right)\left\{\begin{array}{l}\Delta^{2}\left[w(n)-\gamma\left(p_{0}-\epsilon\right) w(n-\alpha)\right]+\gamma\left(q_{0}-\varepsilon\right) w(n-\beta)=0, n \neq m_{j} \\ \underline{\Delta}\left[\Delta\left(w\left(m_{j}-1\right)-\gamma\left(p_{0}-\epsilon\right) w\left(m_{j}-\alpha-1\right)\right)\right]+\gamma r_{0} w\left(m_{j}-\beta-1\right)=0, j \in \mathbb{N} .\end{array}\right.$
Indeed, its characteristic equation is given by

$$
\begin{aligned}
& {\left[\frac{1}{\lambda}\left(1-\frac{r_{0}}{q_{0}-\varepsilon}\right)+\frac{r_{0}}{q_{0}-\varepsilon}\right]^{\mu}(\lambda-1)^{2}} \\
& -\gamma\left(p_{0}-\epsilon\right) \lambda^{-\alpha}\left[\frac{1}{\lambda}\left(1-\frac{r_{0}}{q_{0}-\varepsilon}\right)+\frac{r_{0}}{q_{0}-\varepsilon}\right]^{\mu-\nu}(\lambda-1)^{2}+\gamma\left(q_{0}-\varepsilon\right) \lambda^{-\beta}=0 .
\end{aligned}
$$

Because of Theorem 2.3,w(n) is a positive solution of $\left(E_{7}\right)$ if and only if

$$
\lambda>1-\frac{\gamma\left(q_{0}-\varepsilon\right)}{\gamma r_{0}}=1-\frac{\left(q_{0}-\varepsilon\right)}{r_{0}}>1-\frac{q_{0}}{r_{0}}
$$

for $\frac{r_{0}}{q_{0}}>1$, a contradiction due to Theorem 2.4. This completes the proof of the theorem.
Remark 3.5. The prototype of the functions h and f in Theorem 3.4 satisfying $\left(H_{2}\right)$ and $\left(H_{6}\right)$ respectively could be of the form

$$
h(u)=u\left(1+|u|^{\gamma}\right), u \in \mathbb{R}, \gamma>0
$$

and

$$
f(u)=\frac{u}{\left(1+|u|^{\gamma}\right)}, u \in \mathbb{R}, \gamma>0
$$

4. Discussion and Examples

The solutions of nonlinear impulsive equations behave in peculiar ways and these ways can be developed by means of different techniques incorporated in the method. Linearized oscillation is one of them in which fixed point theory is a key. An attempt was made here to establish the sufficient conditions with the fact that the solution space of nonlinear equation is reducing to the solution space of its limiting equation. But, we guess that under what condition the converse will be true. May be due to our method, we could not view this technique for the critical points $p(n)=1,-1$.

We conclude this section with the following examples to illustrate our main results:
Example 4.1. For $n>2$, consider

$$
\left(E_{8}\right)\left\{\begin{array}{l}
\Delta^{2}[u(n)-p(n) f(u(n-1))]+q(n) h(u(n-2))=0, n \neq 3 j \\
\underline{\Delta}\left[\Delta\left(u\left(m_{j}-1\right)-p\left(m_{j}-1\right) f\left(u\left(m_{j}-2\right)\right)\right)\right] \\
\quad+r\left(m_{j}-1\right) h\left(u\left(m_{j}-3\right)\right)=0, j \in \mathbb{N},
\end{array}\right.
$$

where $p(n)=-2+e^{-(n+1)}, q(n)=0.1+e^{-\left(n^{2}+1\right)}, r\left(m_{j}-1\right)=6\left(2+\cos \left(m_{j}-1\right)\right)$, $m_{j}=3 j, j \in \mathbb{N}, f(u)=u(1+|u|)$ and $h(u)=u$. The limiting equation of $\left(E_{8}\right)$ is given by

$$
\left(E_{9}\right)\left\{\begin{array}{l}
\Delta^{2}\left[y(n)-p_{0} y(n-1)\right]+q_{0} y(n-2)=0, n \neq 3 j \\
\underline{\Delta}\left[\Delta\left(y\left(m_{j}-1\right)-p_{0} y\left(m_{j}-2\right)\right)\right]+r_{0} y\left(m_{j}-3\right)=0, j \in \mathbb{N},
\end{array}\right.
$$

where $p_{0}=-2, q_{0}=0.1, r_{0}=6$. Clearly, $\left(E_{8}\right)$ has no positive real roots in $\left[1-\frac{q_{0}}{r_{0}}, \infty\right)=[0.983, \infty)$ and hence by Theorem 3.1, every solution of $\left(E_{9}\right)$ oscillates. Let $l_{1}=5$ and $l_{2}=2$. We may note that $\left(E_{8}\right)$ has an oscillatory solution $y(n)=$ $(0.967213)^{n}(-1)^{i(3, n)}$ due to Theorem 2.1.
Example 4.2. For $n>3$, consider

$$
\left(E_{10}\right)\left\{\begin{array}{l}
\Delta^{2}[u(n)-p(n) f(u(n-1))]+q(n) h(u(n-3))=0, n \neq 3 j \\
\Delta\left[\Delta\left(u\left(m_{j}-1\right)-p\left(m_{j}-1\right) f\left(u\left(m_{j}-2\right)\right)\right)\right] \\
\quad+r\left(m_{j}-1\right) h\left(u\left(m_{j}-4\right)\right)=0, j \in \mathbb{N}
\end{array}\right.
$$

where $p(n)=\frac{1}{2}\left(1+\frac{1}{n}\right), q(n)=\frac{6 n^{3}+16 n^{2}+10 n+2}{n(2 n+2)(2 n+4)}, r\left(m_{j}-1\right)=\frac{1}{2}\left(4+\frac{1}{2 m_{j}-2}-\frac{1}{2 m_{j}}-\right.$ $\left.\frac{1}{2 m_{j}+4}-\frac{1}{2 m_{j}+6}\right), m_{j}=3 j, j \in \mathbb{N}, f(u)=u$ and $h(u)=u\left(1+u^{2}\right)$. The limiting equation of $\left(E_{10}\right)$ is given by

$$
\left(E_{11}\right)\left\{\begin{array}{l}
\Delta^{2}\left[y(n)-p_{0} y(n-1)\right]+q_{0} y(n-3)=0, n \neq 3 j \\
\underline{\Delta}\left[\Delta\left(y\left(m_{j}-1\right)-p_{0} y\left(m_{j}-2\right)\right)\right]+r_{0} y\left(m_{j}-4\right)=0, j \in \mathbb{N},
\end{array}\right.
$$

where $p_{0}=\frac{1}{2}, q_{0}=\frac{3}{2}, r_{0}=2$. Clearly, $\left(E_{11}\right)$ has no positive real roots in [$1-$ $\left.\frac{q_{0}}{r_{0}}, \infty\right)=[0.25, \infty)$ and hence by Theorem 3.4, every solution of (E_{10}) oscillates. In particular, $u(n)=(-1)^{n}$ is an oscillatory solution of first equation of $\left(E_{10}\right)$. We may note that the second equation of $\left(E_{10}\right)$ has a solution $2^{i(3, n)}$. Let $l_{1}=3$ and $l_{2}=1$, then by Theorem 2.4 every solution of (E_{11}) oscillates.

References

[1] L. Berezansky and E. Braverman, Linearized oscillation theory for a nonlinear delay impulsive equation, J. Comput. Appl. Math., 161 (2003), 477-495.
[2] L. Berezansky and E. Braverman, Linearized oscillation theory for a nonlinear equation with a distributed delay, Math. Comput. Model. 48 (2008), 287-304.
[3] E. Braverman and B. Karpuz, Linearized oscillation theory for a nonlinear nonautonomous difference equations, 3-19 (2020), Difference Equations and Discrete Dynamical Systems with Applications, Springer Proceeding in Mathematics and Statistics 312.
[4] G. N. Chhatria, Nonoscillation of first order neutral impulsive difference equations, Int. J. Difference Equ., 14 (2019), 115-125.
[5] G. N. Chhatria, On oscillatory second order impulsive neutral difference equations, AIMS Math., 5 (2020), 2433-2447.
[6] G. N. Chhatria, Application of characteristic equation of first order neutral impulsive difference equations, J. Anal., (2020).
https://doi.org/10.1007/s41478-020-00255-9.
[7] Y. Duan, W. Feng and J. Yan, Linearized oscillation of nonlinear impulsive delay differential equations, Comput. Math. Appl. 44 (2002), 1267-1274.
[8] L. H. Erbe, Q. Kong and B. G. Zhang, Oscillation Theory for Functional Differential Equations, Marcel Dekker, New York, 1995.
[9] I. Gyori and G. Ladas, Oscillation Theory of Delay Differential Equations with Applications, Claredon Press, New York, 1991.
[10] V. Lakshmikantham, D. D. Bainov and P. S. Simieonov, Oscillation Theory of Impulsive Differential Equations World Scientific, Singapore, 1989.
[11] N. Parhi and A. K. Tripathy, Oscillation of forced nonlinear neutral delay difference equations of first order, Czech. Math. J. 53 (2002), 83-101.
[12] M. Peng, Oscillation theorems of second order nonlinear neutral delay difference equations with impulse, Comput. Math. Appl. 44 (2002), 741-748.
[13] D. H. Peng, M. A. Han and H. Y. Wang, Linearized oscillations of first order nonlinear neutral delay difference equations, Comput, Math. Appl. 45 (2003), 1785-1796.
[14] M. Peng, Oscillation criteria for second order impulsive delay difference equations, Appl. Math. Comput. 146 (2003), 227-235.
[15] A. M. Samoilenko and N. A. Perestynk, Differential Equations with Impulse Effect, Visca Skola, Kiev, 1987.
[16] I. Stamova, G. Stamov, Applied Impulsive Mathematical Models, CMS Books in Mathematics, Springer, Switzerland, (2016).
[17] A. K. Tripathy and G. N. Chhatria, Oscillation criteria for forced first order nonlinear neutral impulsive difference system, Tatra Mt. Math. Publ. 71 (2018), 175-193.
[18] A. K. Tripathy and G. N. Chhatria, Oscillation criteria for first order neutral impulsive difference equations with constant coefficients, Differ. Equ. Dyn. Syst., (2019). https://doi.org/10.1007/s12591-019-00495-7.
[19] A. K. Tripathy and G. N. Chhatria, On oscillatory first order neutral impulsive difference equations, Math. Bohem., 145 (2020), 361-375.
[20] A. K. Tripathy and G. N. Chhatria, On the behaviour of solutions of neutral impulsive difference equations of second order, Math. Commun., 25 (2020), 297-314.
[21] A. K. Tripathy and G. N. Chhatria, Nonlinear second order impulsive difference equations and their oscillation properties, Tatra Mt. Math. Publ. 76 (2020), 171-190.
[22] G. P. Wei, The persistance of nonoscillatory solutions of difference equation under impulsive perturbations, Comput. Math. Appl. 50 (2005), 1579-1586.
[23] Y. Xiao, S. Tang and L Chen, A linearized oscillation result for odd order neutral difference equations, Indian J. Pure Appl. Math. 33 (2002), 277-286.
[24] Z. Zhou and J. S. Yu, Linearized oscillation theorems for neutral difference equations, Israel J. Math. 114 (1999), 149-156.
[25] Z. Zhou, J. Yu and G. Lei, Oscillations for even order neutral difference equations, Korean J. Comput. and Math. 7 (2000), 601-610.
[26] Z. Zhou and Z. Lin, Some results on the linearized oscillation of the odd order neutral difference equations, Appl. Anal. 82 (2003), 401-409.
G. N. Chhatria

Department of Mathematics, Sambalpur University, Sambalpur-768019, India
Email address: c.gokulananda@gmail.com
A. K. TRIPATHY

Department of Mathematics, Sambalpur University, Sambalpur-768019, India
Email address: arun_tripathy70@rediffmail.com

[^0]: 2010 Mathematics Subject Classification. 39A10, 39A12, 39A21.
 Key words and phrases. Oscillation, Nonoscillation, Impulsive difference equation, Fixed point theory, Linearization.

 The first author work is supported by Rajiv Gandhi National fellowship(UGC), New Delhi, India, Letter No. F1-17.1/2017-18/RGNF-2017-18-SC-ORI-35849.
 Submitted Feb. 13, 2021, Revised Mar. 12, 2021.

