
Electronic Journal of Mathematical Analysis and Applications

Vol. 10(1) Jan. 2022, pp. 42–63.

ISSN: 2090-729X(online)

http://math-frac.org/Journals/EJMAA/

————————————————————————————————

D-MYCIELSKIAN GRAPH OF A GRAPH

B. BASAVANAGOUD, PRAVEEN JAKKANNAVAR AND GOUTAM VEERAPUR

Abstract. The idea of constructing a triangle-free k-chromatic graphs, where
k ≥ 3, was initiated in the middle of the twentieth century. Mycielski who gave

a fascinating construction to obtain a triangle-free graph with large chromatic

number known as the Mycielskian of a graph. In this paper, we discuss the
construction of an interesting transformation graph which is also results in a

triangle-free graph with same chromatic number as that of the Mycielskian

of a graph. We call this graph as D-Mycielskian graph of a graph. Also, we
discuss its basic properties such as connectedness, diameter, covering invari-

ants, connectivity, traversability and domination number. Further, we obtain

M-polynomial and Hosoya polynomial of this transformation graph and derive
the expressions for some degree-based and distance-based graph indices of this

graph.

1. Introduction

Throughout this paper, by a graph G = (V,E) we mean a finite undirected
nontrivial graph without loops and multiple edges, where V is the vertex set and
E is an edge set. The open neighbourhood of a vertex v ∈ V (G) is defined as the
set NG(v) consisting all the vertices u which are adjacent to v in G and the closed
neighbourhood of a vertex v ∈ V (G) is defined as the set NG[v] consisting v and
all the vertices u which are adjacent to v in G i.e., NG[v] = NG(v) ∪ {v}. The
degree of a vertex v ∈ V (G), denoted by dG(v) and is defined as |NG(v)|. The
minimum and maximum degree of G are defined as δ(G) = min{dG(x) : x ∈ V }
and ∆(G) = max{dG(x) : x ∈ V }, respectively. The connectivity [26] κ(G) of a
connected graph G is the least positive integer k such that there exists S ⊂ V ,
|S| = k and G \ S is disconnected or reduces to the trivial graph K1. The two
graphs G and H are isomorphic [26] (written G ∼= H) if there exists a one-to-one
correspondence between their point sets which preserves adjacency.

For a graph G = (V,E), a dominating set [28] is a subset D of V such that every
vertex of V not in D is adjacent to at least one vertex in D. The dominating set
D is minimal dominating set of G if no proper subset of D is a dominating set.
The domination number γ(G) of a graph is the cardinality of the smallest minimal
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dominating set of G. Basic graph theoretic terminologies and notations can be
found in [7, 26, 28].

The idea of constructing a triangle-free k-chromatic graphs, where k ≥ 3, was
initiated in the middle of the twentieth century. Mycielski [37] who gave a fasci-
nating construction to obtain a triangle-free graph with large chromatic number
known as the Mycielskian of a graph.

Definition 1. [37] For a graph G = (V,E), the Mycielskian of G, denoted by µ(G),
is the graph with vertex set consisting of the disjoint union V ∪ V ′ ∪ {u}, where
V ′ = {x′ : x ∈ V }, and the edge set E ∪{x′y : xy ∈ E}∪ {x′u : x′ ∈ V ′}. The triad
(V, V ′, u) denote the vertex set of µ(G). Here, we call x′ the twin of x in µ(G) and
vice versa, u is called the root of µ(G) (See Fig. 1.)
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Figure 1. The graph G and its Mycielskian.

Now, we define a new transformation graph which is also results in a triangle-free
graph with same chromatic number as that of the Mycielskian of a graph. We call
this graph as D-Mycielskian graph of a graph.

Definition 2. For a graph G = (V,E), the D-Mycielskian graph of G, denoted by
µγ(G), is the graph with vertex set consisting of the disjoint union V ∪ V ′ ∪ D,
where V ′ = {x′ : x ∈ V }, D = {ui : 1 ≤ i ≤ γ(G)}, and the edge set E ∪ E′ ∪D′,
where E′ = {x′y : xy ∈ E} and D′ = {x′ui : x′ ∈ V ′ and 1 ≤ i ≤ γ(G)}. The triad
(V, V ′, D) denote the vertex set of µγ(G). Here, we call x′ the twin of x in µγ(G)
(See Fig. 2).
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Figure 2. The graph H and its D-Mycielskian graph.
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Note 1: The dark circles denote the vertices of G while the light circles denote the
twin vertices and the dark squares denote the members of D.
Note 2: The word triangle-free construction is used only when the graph (i.e., G)
considered for transformation is triangle-free.

Observation 1. For any graph G, the Mycielskian of G is always an induced
subgraph of D-Mycielskian graph of G.

Remark 1.1. [3] For any graph G without isolated vertices, the Mycielskian of G
is connected.

Theorem 1.1. [16] For any nontrivial connected graph G of order n,

α0 + β0 = α1 + β1 = n.

In this paper, we denote Pn, Cn, Kn, Ka,b, K1,n and Wn for a path, a cycle, a
complete graph, a complete bipartite graph, a star and a wheel, respectively. The
symbol dxe denotes the smallest integer that is greater than or equal to x, bxc
denotes the greatest integer that is smaller than or equal to x.

2. Main results

Theorem 2.1. Let G be any graph of order n and size m. Then

(a) |V (µγ(G))| = 2n+ γ(G),
(b) |E(µγ(G))| = 3m+ nγ(G).

Proof. We prove this result by using definition 2 as follows:

(a) We have, V (µγ(G)) = V ∪ V ′ ∪D =⇒ |V (µγ(G))| = 2n+ γ(G),
(b) We have, E(µγ(G)) = E ∪ E′ ∪ D′, where E′ = {x′y : xy ∈ E} and

D′ = {x′ui : x′ ∈ V ′ and ui ∈ D}. Therefore,

|E(µγ(G))| = |E|+ |E′|+ |D′|

= m+
∑
v∈V

dG(v) + nγ(G)

= 3m+ nγ(G).

�

Theorem 2.2. Let G be any graph of order n. Then

dµγ(G)(x) =

 2dG(x) if x ∈ V,
dG(x) + γ(G) if x ∈ V ′,
n if x ∈ D.

Proof. The proof follows from the definition 2. �

Theorem 2.3. Let G be a graph of order n with δ(G) = min{dG(x) : x ∈ V } and
∆(G) = max{dG(x) : x ∈ V }. Then

δ(µγ(G)) = min{2δ(G), δ(G) + γ(G)},

∆(µγ(G)) =

{
2∆(G) if ∆(G) ≥ n

2 ,
n otherwise.

Proof. The proof follows from the definition 2. �

Theorem 2.4. For any graph G without isolated vertices, the D-Mycielskian graph
µγ(G) is connected.
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Proof. Suppose G is connected. Then by Observation 1.1, µ(G) is connected.
Therefore from Remark 1, the remaining γ(G) − 1 members of D in µγ(G) are
joined by the members of V ′. Hence, µγ(G) is connected.

Suppose G is not connected and has no isolated vertex. Let v1 and v2 are any
two vertices which have no path connecting them in G. Then they are joined by a
path v1v

′
iujv

′
kv2 in µγ(G), where v′i is a twin vertex of vi such that v1vi ∈ E, v′k is a

twin vertex of vk such that v2vk ∈ E, since G has no isolated vertices, and uj ∈ D.
Hence, µγ(G) is connected. �

Theorem 2.5. For any graph G without isolated vertices,

diam(µγ(G)) ≤ 4.

Proof. For any two adjacent vertices of G, their corresponding vertices are adjacent
in µγ(G). For any two non adjacent vertices v and w of G we have two situations,
(i) if dG(v, w) ≤ 4, then there is nothing to prove. (ii) if dG(v, w) > 4, then there
exists a path vv′iujv

′
kw of length 4 in µγ(G), where v′i is a twin vertex of vi such

that v1vi ∈ E, v′k is a twin vertex of vk such that v2vk ∈ E.
Suppose v ∈ V and v′i ∈ V ′. If v′i is a twin vertex of v, then by definition 2,

dG(v, v′i) = 2. If v′i is not a twin vertex of v, then we have two cases as mentioned
below:

Case 1. If v′i is a twin of a vertex w such that vw ∈ E, then v and w are adjacent
in µγ(G).

Case 2. If v′i is a twin of a vertex w such that vw /∈ E, then we have two subcases
in the following order:
Subcase (i). If v′i is a twin of a vertex w and vkw ∈ E, where vvk ∈ E, then
dµγ(G)(v, v

′
i) = 2.

Subcase (ii). If v′i is a twin of a vertex w and vkw ∈ E, where vvk /∈ E, then
dµγ(G)(v, v

′
i) = 3.

If v′, w′ ∈ V ′, then there exists a path v′ujw′ of length two in µγ(G), where
uj ∈ D. If v′ ∈ V ′ and uj ∈ D, then by definition 2, they are adjacent in µγ(G).
For v ∈ V and uj ∈ D, there exists a path vv′iuj of length two in µγ(G), where
v′i ∈ V ′ such that vvi ∈ E, since G has no isolated vertices. Suppose ui, uj ∈ D.
Then there exists a path uiv

′
kuj of length two in µγ(G). Thus for any two vertices

v, w ∈ V (µγ(G)), dµγ(G)(v, w) ≤ 4. �

Corollary 2.6. If G is any graph without isolated vertices and diam(G) ≥ 4, then

diam(µγ(G)) = 4.

Proposition 2.7. If G is triangle-free, then so is µγ(G).

Remark 2.1. If γ(G) = 1, then µγ(G) ∼= µ(G).

Lemma 2.8. [3] Let f : G → H be a graph isomorphism of G onto H. Then
f(NG(x)) = NH(f(x)). Furthermore, G − x ∼= H − f(x), and G − NG[x] ∼= H −
NH [f(x)] under the restriction maps of f to the respective domains.

Theorem 2.9. For any two graphs G and H, µγ(G) ∼= µγ(H) if and only if G ∼= H.

Proof. If G ∼= H, then µγ(G) ∼= µγ(H) is trivial. So assume that G and H are
two graphs without isolated vertices such that µγ(G) ∼= µγ(H). For n = 2 or 3 the
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result is trivial. So, assume that n ≥ 4. If G is of order n, then µγ(G) and µγ(H)
are both of order 2n+ γ(G), hence H is also of order n and γ(H) = γ(G).

Let F : µγ(G) → µγ(H) be the given isomorphism, where V (µγ(G)) and
V (µγ(H)) are given by the triads (V1, V

′
1 , D1) and (V2, V

′
2 , D2) respectively.

Now, we look at the possible images of the vertex ui ∈ D1 of µγ(G) under f . All
the vertices ui ∈ D1 and uj ∈ D2 are of degree n. If f(ui) = uj , then by Lemma
2.8,

G = µγ(G)−
γ(G)⋃
i=1

N [ui] ∼= µγ(H)−
γ(G)⋃
j=1

N [uj ] = H.

Next we claim that f(ui) /∈ V2. Suppose f(ui) ∈ V2. Since dµγ(H)(f(ui)) =
dµγ(G)(ui) = n, it follows from the definition 2 that, in µγ(H), n2 neighbours of
f(ui) belong to V2 while another n

2 neighbours (the twins) belong to V ′2 . (This
forces n to be even.) These n neighbours of f(ui) form an independent subset of
µγ(H). Then H ′ = µγ(H) − Nµγ(H)[f(ui)] ∼= µγ(G) − Nµγ(G)[ui] = G. Now , if
x ∈ V2 is adjacent to f(ui) in µγ(H), then x is adjacent to f(ui)

′, the twin of
f(ui) belonging to V ′2 in µγ(H). Further, dH′(f(ui)

′) = 1 = dG(v), where v ∈ V1
(the vertex set of G) corresponds to f(ui)

′ in µγ(H), then dµγ(G)(v) = 2, while
dµγ(H)(f(ui)

′) = n
2 + 1 > 2, as n ≥ 4. Hence, this case cannot arise.

Finally, suppose f(ui) ∈ V ′2 . Set if f(ui) = y′. Then y, the twin of y′ in
µγ(H), belongs to V2. As dµγ(G)(ui) = n, dµγ(H)(y

′) = n. The vertex y′ has n − 1
neighbours in V2, say, x1, x2, ..., xn−1. Then NH(y) = {x1, x2, ..., xn−1}, and hence
y is also adjacent to x′1, x

′
2, ..., x

′
n−1 in V ′2 . Further, as Nµγ(G)(ui) is independent,

Nµγ(H)(y
′) is also independent. Therefore, H = Kγ(G),n−1 consisting of the edges

{yxi : 1 ≤ i ≤ n − 1}. Moreover, G = µγ(G) −
γ(G)⋃
i=1

N [ui] ∼= µγ(H) −
⋃
N [y′] =

Kγ(G),n−1 consisting of the edges {yx′i : 1 ≤ i ≤ n− 1}. Thus,

G ∼= Kγ(G),n−1 ∼= H.

�

Theorem 2.10. If G is any graph of order n with α0(G), the point covering number
of G, then

α0(µγ(G)) =

{
n+ 1 if G ∼= Kn,
2α0(G) + γ(G) otherwise.

Proof. Suppose G ∼= Kn. Then it is easy to see that all the members of V to-
gether with u ∈ D forms a minimum cover for µγ(G). Thus, α0(µγ(G)) = n + 1.
Suppose G � Kn. Let α0(G) be the point covering number of G and let S =
{v1, v2, ..., vα0(G)} be the point cover of G with |S| = α0(G). Then these vertices in
µγ(G) cover the edges connecting the members of V , and S′ = {v′1, v′2, ..., v′α0(G)}
consisting the twin vertices of the members of S covers the edges connecting the
members of V to the members of V ′, the remaining edges are covered by ui ∈ D,
for 1 ≤ i ≤ γ(G). Thus, Sµ = S ∪ S′ ∪D forms a point cover for µγ(G). Now, we
have to show |Sµ| = α0(µγ(G)). To prove this let S′µ is a point cover of µγ(G) with∣∣S′µ∣∣ = α0(µγ(G)). Here, we need to prove that,

∣∣S′µ∣∣ = |Sµ| . Suppose on contrary

assume that
∣∣S′µ∣∣ 6= |Sµ| . Then we have the following cases:

Case 1. If
∣∣S′µ∣∣ > |Sµ|, then Sµ does not cover all the vertices of µγ(G). Which is

contradiction to the fact that Sµ is a point cover of µγ(G).
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Case 2. If
∣∣S′µ∣∣ < |Sµ|, then let us assume that there exists at least one vertex v in

Sµ such that Sµ − {v} = S′µ, the point cover of µγ(G). Then we have the following
subcases:
Subcase (i). If v ∈ S, then there exists at least one edge e ∈ E which is not
covered by any of the members of Sµ − {v} in µγ(G), which is not possible.
Subcase (ii). If v ∈ S′, then there exists at least one edge e ∈ E′ which is not
covered by any of the members of Sµ − {v} in µγ(G), which is not possible.
Subcase (iii). If v ∈ D, then there exists at least n − |S′| edges which are not
covered by any of the members of Sµ−{v} in µγ(G), which is not possible. There-
fore, our assumption that

∣∣S′µ∣∣ 6= |Sµ| is wrong. Thus,
∣∣S′µ∣∣ = α0(µγ(G)) = |Sµ| .

�

Theorem 2.11. If G is a connected graph of order n with β0(G), the point inde-
pendence number of G, then

β0(µγ(G)) =

{
n if G ∼= Kn,
2β0(G) otherwise.

Proof. Suppose G ∼= Kn. Then it is easy to see that the members of V ′ forms a
maximum point independent set for µγ(G). Thus, β0(µγ(G)) = n. Suppose G � Kn.
Let β0(G) be the point independence number of G and let PI = {v : v ∈ V } be
the point independent set of G with |PI| = β0(G). Then the vertex set Pµ = {vi :
vi ∈ V, 1 ≤ i ≤ β0(G)} ∪ {v′i : v′i ∈ V ′, 1 ≤ i ≤ β0(G)} forms the point independent
set of µγ(G). Now, we have to show |Pµ| = β0(µγ(G)). To prove this let P ′µ is a

point independent set of µγ(G) with
∣∣P ′µ∣∣ = β0(µγ(G)). Here, we need to prove

that,
∣∣P ′µ∣∣ = |Pµ| . Suppose on contrary assume that

∣∣P ′µ∣∣ 6= |Pµ| . Then we have
the following cases:
Case 1. If

∣∣P ′µ∣∣ < |Pµ|, then there exists a vertex v in Pµ such that it is adjacent
to at least one member of P ′µ as P ′µ is the maximal point independent set of µγ(G).
Thus, Pµ is not a point independent set of µγ(G). Which is contradiction to the
fact that Pµ is a point independent set of µγ(G).
Case 2. If

∣∣P ′µ∣∣ > |Pµ|, then for every member vi(1 ≤ i ≤ β0(G)) of P ′µ there exists
at least one vertex v in Pµ such that v and vi are joined by an edge in µγ(G). Which
is contradiction to the fact that P ′µ is a point independent set of µγ(G). Therefore,

our assumption that
∣∣P ′µ∣∣ 6= |Pµ| is wrong. Thus,

∣∣P ′µ∣∣ = β0(µγ(G)) = |Pµ| .
�

To prove the following results we consider the set B, the collection of all bipartite
graphs and the set S = {Pn, Cn,Kn, B : n ≥ 4}, where Pn, Cn and Kn are a path,
a cycle and a complete graph respectively.

Theorem 2.12. If G is a connected graph of order n with α1(G), the line covering
number of G and G /∈ S, then

α1(µγ(G)) =

{
2α1(G) + γ(G) if minimum line cover of G is independent,
2α1(G) otherwise.

Proof. Suppose minimum line cover of G is not independent. Then let α1(G) be the
line covering number of G and L = {ei : ei = vw ∈ E and 1 ≤ i ≤ α1(G)} be the
minimum line cover of G. Clearly, L1 = {e′i : e′i = vw′, 1 ≤ i ≤ α1(G)}, L2 = {ek :
ek = ukvj , 1 ≤ k ≤ γ(G)} and L3 = {ei : ei = vw ∈ E and 1 ≤ i ≤ α1(G)− γ(G)}
all together forms a minimum line cover for µγ(G) and hence α1(µγ(G)) = 2α1(G).
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Suppose minimum line cover of G is independent and let L = {ei : ei = vw ∈
E and 1 ≤ i ≤ α1(G)} be the line cover of G with |L| = α1(G). Then the edge
sets L4 = {e′i : e′i = vw′, 1 ≤ i ≤ α1(G)} and L5 = {e′j : e′j = v′w, 1 ≤ j ≤ α1(G)}
in µγ(G) covers both the members of V and the members of V ′. The remaining
vertices (i.e., the members of D) are covered by L6 = {ek : ek = ukvj , 1 ≤ k ≤
γ(G)}. Thus, Lµ = L4 ∪ L5 ∪ L6 forms a line cover for µγ(G). Now, we have
to show |Lµ| = α1(µγ(G)). To prove this let L′µ is a line cover of µγ(G) with∣∣L′µ∣∣ = α1(µγ(G)). Here, we need to prove that,

∣∣L′µ∣∣ = |Lµ| . Suppose on contrary

assume that
∣∣L′µ∣∣ 6= |Lµ| . Then we have the following cases:

Case 1. If
∣∣L′µ∣∣ > |Lµ|, then Lµ does not cover all the vertices of µγ(G). Which is

contradiction to the fact that Lµ is a point cover of µγ(G).
Case 2. If

∣∣L′µ∣∣ < |Lµ|, then let us assume that there exists at least one edge e in
Lµ such that Lµ − {e} = L′µ, the line cover of µγ(G). Then we have the following
subcases:
Subcase (i). If e ∈ L1 or e ∈ L2, then there exist at least two vertices v ∈ V and
v′ ∈ V ′ which are not covered by any of the members of Lµ − {e} in µγ(G), which
is not possible.
Subcase (ii). If e ∈ L3, then there exists at least one vertex u ∈ D which is
not covered by any of the members of Lµ − {e} in µγ(G), which is not possible.
Therefore, our assumption that

∣∣L′µ∣∣ 6= |Lµ| is wrong. Thus,
∣∣L′µ∣∣ = α1(µγ(G)) =

|Lµ| .
�

Theorem 2.13. If G is a connected graph of order n with α1(G), the line covering
number of G and G ∈ S \B, then

α1(µγ(G)) =

 n+

⌈
dn3 e
2

⌉
if G ∼= Pn or G ∼= Cn,

n+ 1 if G ∼= Kn.

Proof. Suppose G ∼= Pn or G ∼= Cn. Then clearly, L1 = {e′i : e′i = vw′, 1 ≤ i ≤ n−⌈
n
3

⌉
}, L2 = {ek : ek = ukvj , 1 ≤ k ≤ γ(G)} and L3 =

{
ei : ei = vw ∈ E and 1 ≤ i ≤

⌈
dn3 e
2

⌉}
altogether form a minimum line cover for µγ(G) and hence α1(µγ(G)) = n+

⌈
dn3 e
2

⌉
.

Suppose G ∼= Kn and let L = {ei : ei = vw ∈ E and 1 ≤ i ≤ α1(G)} be the line
cover of G with |L| = α1(G). Then the edge sets L4 = {e′i : e′i = vw′, 1 ≤ i ≤
α1(G)} and L5 = {e′j : e′j = v′w, 1 ≤ j ≤ α1(G)} in µγ(G) covers both the mem-
bers of V and the members of V ′. The remaining vertex (i.e., the member of D) is
covered by a line ukv

′ ∈ D′. Thus, Lµ = L4 ∪ L5 ∪ {ukv′} forms a minimum line
cover for µγ(G). �

Theorem 2.14. If G is a connected graph of order n and G ∈ B, then

α1(µγ(G)) =

{
2a+ 1 if a = b,
2(max{a, b}) otherwise.

Proof. Suppose G ∈ B and a = b. Then clearly, E′2 ⊂ E′ such that |E′2| = 2(a− 1),
E3 ⊂ E with |E3| = 1 and D′2 ⊂ D′ having |D′2| = 2 altogether form a minimum
line cover for µγ(G) and hence α1(µγ(G)) = 2a + 1. Suppose G ∈ B and a 6= b.
Then clearly, E′1 ⊂ E′ such that |E′1| = 2(max{a, b}) − 3, E2 ⊂ E with |E2| = 1
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and D′1 ⊂ D′ having |D′1| = 2 altogether form a minimum line cover for µγ(G) and
hence α1(µγ(G)) = 2(max{a, b}). �

The following theorems are immediate from Theorem 1.1, 2.12, 2.13 and 2.14.

Theorem 2.15. If G is a connected graph of order n with β1(G), the line indepen-
dence number of G and G /∈ S, then

β1(µγ(G)) =

{
2β1(G) if minimum line cover of G is independent,
2β1(G) + γ(G) otherwise.

Theorem 2.16. If G is a connected graph of order n with β1(G), the line indepen-
dence number of G and G ∈ S \B, then

β1(µγ(G)) =

 n+
⌈
n
3

⌉
−
⌈
dn3 e
2

⌉
if G ∼= Pn or G ∼= Cn,

n if G ∼= Kn.

Theorem 2.17. If G is a connected graph of order n and G ∈ B, then

β1(µγ(G)) =

{
2a+ 1 if a = b,
2(min{a, b}+ 1) otherwise.

Theorem 2.18. If G has no isolated vertices, then

κ(µγ(G)) ≥ min{2κ(G), κ(G) + γ(G)}.

Proof. Suppose V (G) = V and V (µγ(G)) = V ∪ V ′ ∪D, where V ′ = {v′ : v ∈ V }
and D = {ui : 1 ≤ i ≤ γ(G)}. Let S be a subset of V (µγ(G)) of size κ(G).

If |V ∩ S| < κ(G), then G \ (V ∩ S) is connected. Also, for any vertex v ∈ V ,
v′ is adjacent to κ(G) vertices of V in µγ(G). Therefore, any such vertex v′ of
µγ(G) \ S is adjacent to at least one vertex in G \ (V ∩ S) and also adjacent to ui
(for 1 ≤ i ≤ γ(G)). Thus, µγ(G) \ S is connected. If |V ∩ S| = κ(G), then S ⊆ V .
Since G has no isolated vertices, any vertex v ∈ V \ S is adjacent to some vertex
w′ in V ′, which is in turn adjacent to ui (for 1 ≤ i ≤ γ(G)). Thus, µγ(G) \S is also
connected. Hence, κ(µγ(G)) ≥ min{2κ(G), κ(G) + γ(G)}. �

Theorem 2.19. If G has no isolated vertices, then κ(µγ(G)) = min{2κ(G), κ(G)+
γ(G)} if and only if δ(G) = κ(G).

Proof. If δ(G) = κ(G), then we have

κ(µγ(G)) ≤ δ(µγ(G))

= min{2δ(G), δ(G) + γ(G)}
= min{2κ(G), κ(G) + γ(G)}.

Further by Theorem 2.18, we have κ(µγ(G)) ≥ min{2κ(G), κ(G) + γ(G)}. There-
fore, κ(µγ(G)) = min{2κ(G), κ(G) + γ(G)}.

Conversely, let κ(µγ(G)) = min{2κ(G), κ(G) + γ(G)} = η. Suppose δ(G) 6=
κ(G). Then 1 ≤ κ(G) < δ(G). Let S = {v1, v2, ..., vη} be a minimum vertex cut of
µγ(G). Then we have the following cases:
Case 1. ui /∈ S: Suppose |V ∩ S| ≥ κ(G). Then |V ∩ S| = κ(G) + i, i = 0 to γ(G)
and there is a possibility for G to get disconnected. But since δ(G) ≥ 2, every
vertex in G \ (V ∩ S) is adjacent to at least two vertices of V ′ which in turn are
adjacent to ui, for1 ≤ i ≤ γ(G). Hence, even if we remove an additional vertex from
V ′ the resulting graph will remain connected. That is µγ(G) \ S is connected, a
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contradiction to the fact that S is a vertex cut. If (V ∩S) < κ(G), then G\ (V ∩S)
is connected and every vertex v′ ∈ V ′ is adjacent to at least κ(G) + 1 vertices of G
and hence adjacent to at least one vertex of G \ (V ∩ S). Also, ui are adjacent to
all v′ ∈ V ′. Then µγ(G) \ S is connected, which is again contradiction to the fact
that S is vertex cut.
Case 2. ui ∈ S: Now remove ui from µγ(G) and set G′ = µγ(G) − U , where

U = {ui}γ(G)
i=1 . G′ is connected (as |S| ≥ 2). To disconnect G′ we have to remove

the remaining κ(G) vertices of S. Since δ(G) > κ(G), every vertex in G′ is of degree
at least κ(G) + 1.

If |V ∩(S−U)| < κ(G), thenG\(V ∩(S−U)) is connected and every vertex v′ ∈ V ′
is adjacent to at least κ(G) + 1 vertices of G and hence to at least one vertex of
G\(V ∩(S−U)), so that G′\S is connected, a contradiction. If |V ∩(S−U)| = κ(G),
then there is a possibility for G\(V ∩(S−U)) to be disconnected. If G\(V ∩(S−U))
is connected, we get a contradiction as in case 1. So, let G \ (V ∩ (S − U)) be
disconnected with G1, G2, ..., Gk as its components. Since every vertex of V ∩(S−U)
is adjacent to all components Gi, 1 ≤ i ≤ k, the twins of V ∩ (S−U) are connected
and each v′ ∈ V ′ is adjacent to at least one vertex of G \ (V ∩ (S −U)). Therefore,
µγ(G) \ S is connected, which is again contradiction to the fact that S is a vertex
cut. Thus, δ(G) = κ(G). �

Theorem 2.20. For any graph G,

γ(µγ(G)) =

{
γ(G) + 1 if γ(G) = 1,
γ(G) + 2 otherwise.

Proof. By definition 2, we have G is an induced subgraph of µγ(G). Therefore,
γ(G) vertices dominate all vertices of V in µγ(G) and the remaining vertices of
µγ(G) are dominated either by a member of D if γ(G) = 1 or by a member of D
and a member of V ′ if γ(G) ≥ 2. �

Theorem 2.21. For any graph G, χ(µγ(G)) = χ(G)+1 Where χ(G) is Chromatic
number.

Proof. By definition 2, there are three types of vertices in µγ(G). The members
of V receive the same colour as in G. The members of V ′ receive the same colour
that their twin vertices receive in G. The remaining vertices i.e., the members of D
receive one colour other than those colours of the vertices in V . Thus, χ(µγ(G)) =
χ(G) + 1. �

Theorem 2.22. If G has no vertex of even degree and γ(G) is odd, then µγ(G) is
eulerian.

Theorem 2.23. If the graph G is eulerian of even order and γ(G) is even, then
µγ(G) is eulerian.

Theorem 2.24. If G is hamiltonian, then so is µγ(G).

The converse of the Theorem 3.6 is not true always. i.e., If µγ(G) is hamiltonian,
then G need not be hamiltonian.

An example of non hamiltonian graph whose D-Mycielskian graph is hamiltonian
is depicted in Fig. 3, where hamiltonian cycle is shown with dark lines.

Theorem 2.25. [12] If for all vertices v of G, dG(v) ≥ n
2 , where n ≥ 3, then G is

hamiltonian.
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b b b b b b b br

bc bc

bc bc

rP4 : µγ(P4) :

Figure 3. A path P4 and its D-Mycielskian graph.

Theorem 2.26. If for all vertices v of G, dG(v) ≥ n
2 + γ(G), where n ≥ 3, then

µγ(G) is hamiltonian.

Proof. The proof follows from Theorem 2.25. �

Theorem 2.27. If G is k-cyclic graph of order n and K1,2 is not an induced
subgraph of G having two pendant vertices of G, then µγ(G) is hamiltonian.

An illustrative example of 2-cyclic graph whose D-Mycielskian graph is hamil-
tonian is depicted in Fig. 4, where hamiltonian cycle is shown with dark lines.

b

b

b b

b

b

b

b

b b

b

b

r

r

bc

bc

bc
bc

bc
bc

G : µγ(G) :

Figure 4. A 2-cyclic graph and its D-Mycielskian graph.

3. Graph indices of D-Mycielskian graph of a graph

A graph index is a numerical parameter mathematically derived from the graph
structure. It is a graph invariant, thus it does not depend on the labeling or pictorial
representation of the graph. The Graph indices play an important role in chemical
graph theory. For more details on graph indices refer [19, 20, 33] and references
cited there in. It would be interesting that, if all these graph indices are obtained
from a single expression. This role is played by polynomials. In fact, there are
several graph polynomials like Tutte polynomial [13], matching polynomial [14, 18],
Schultz polynomial [17, 27], Zang-Zang polynomial [46], etc., Among them, the
Hosoya polynomial [31] is the best and well-known polynomial which plays a vital
role in determining distance-based graph indices such as Wiener index [45], hyper
Wiener index [9] of graphs. Similarly, M -polynomial which was introduced in 2015
by Deutsch et al., [11] is useful in determining many degree-based graph indices
(listed in Table 1 and 2). This motivates us to study M -polynomial of some graph
operations and some wheel related graphs. Recently, the study of M -polynomial
are reported in [5, 34, 35, 36].
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Definition 3. [11] Let G be a graph. Then M -polynomial of G is defined as

M(G;x, y) =
∑
i≤j

mij(G)xiyj , (1)

where mij , i, j ≥ 1, is the number [23] of edges uv of G such that {dG(u), dG(v)} =
{i, j}.

Table 1. Operations to Derive degree-based graph indices from
M -polynomial [11].

Notation Graph Index f(x, y) Derivation from M(G;x, y)

M1(G) First Zagreb x+ y (Dx +Dy)(M(G;x, y))|x=y=1

M2(G) Second Zagreb xy (DxDy)(M(G;x, y))|x=y=1

mM2(G) Second modified Zagreb 1
xy (SxSy)(M(G;x, y))|x=y=1

SD(G) Symmetric division index x2+y2

xy (DxSy +DySx)(M(G;x, y))|x=y=1

H(G) Harmonic 2
x+y 2SxJ(M(G;x, y))|x=1

In(G) Inverse sum index xy
x+y SxJDxDy(M(G;x, y))|x=1

where Dx = x∂f(x,y)∂x , Dy = y ∂f(x,y)∂y , Sx =
∫ x
0
f(t,y)
t dt, Sy =

∫ y
0
f(x,t)
t dt and

J(f(x, y)) = f(x, x) are the operators. Two more operators are given in Table 2,
to calculate general sum connectivity index and first general Zagreb index.

Table 2. [6] New operators to derive degree-based graph indices
from M -polynomial.

Notation Graph Index f(x, y) Derivation from M(G;x, y)
χα(G) General sum connectivity (x+ y)α Dα

x (J(M(G;x, y)))|x=1

Mα
1 (G) First general Zagreb xα + yα (Dα

x +Dα
y )(M(G;x, y))|x=y=1

Note 3: Hyper Zagreb index is obtained by taking α = 2 in general sum connec-
tivity index.
Note 4: Taking α = 1, 2, in first general Zagreb index, first Zagreb index and
forgotten graph index are obtained respectively.

The first and second Zagreb indices are amongst the oldest and best known graph
indices defined in 1972 by Gutman [25] as follows:

M1(G) =
∑

v∈V (G)

d2G(v), (2)

and M2(G) =
∑

vw∈E(G)

dG(v) · dG(w), respectively. (3)
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Ashrafi et al. [2] defined the first and second Zagreb coindices as

M1(G) =
∑

uv 6∈E(G)

[dG(u) + dG(v)] and M2(G) =
∑

uv 6∈E(G)

dG(u) · dG(v),

respectively.
The vertex-degree-based graph invariant,

F (G) =
∑

v∈V (G)

d3G(v) (4)

was encountered in [25]. This index is called “forgotten graph index”[15].
Recently, Shirdel et al. [4, 42] introduced a new version of Zagreb index called

hyper-Zagreb index, which is defined for a graph G as

HM(G) =
∑

vw∈E(G)

(dG(v) + dG(w))2. (5)

Recently, Gutman [22] put forward a new coindex called hyper-Zagreb coindex,
which is defined as

HM(G) =
∑

vw/∈E(G)

(dG(v) + dG(w))2. (6)

Recently, Gutman et al. [24] put forward a new index called sigma index, which is
defined as

σ(G) =
∑

vw∈E(G)

(dG(v)− dG(w))2. (7)

The following results are useful to prove our results.

Theorem 3.1. [24] If G is any graph, then

σ(G) = F (G)− 2M2(G).

Theorem 3.2. [29] Let G be any graph of order n and size m. Then

M1(G) +M1(G) = 2m(n− 1).

Theorem 3.3. [21] Let G be a graph of order n and size m. Then

M2(G) = 2m2 − 1

2
M1(G)−M2(G).

Theorem 3.4. [22] Let G be a graph of order n and size m. Then

HM(G) = 4m2 + (n− 2)M1(G)−HM(G).

Theorem 3.5. [41] The Hosoya polynomial satisfies the following conditions:

(i) deg(W (G; q)) equals the diameter of G.
(ii) [qo]W (G; q) =0.

(iii) [q1]W (G; q) = |E(G)|, where E(G) is an edge set of G.

(iv) W (G; 1) =
(|V (G)|

2

)
, where V (G) is the vertex set of G.

(v) W ′(G; 1) = W (G).

One of the oldest and most thoroughly studied distance-based graph index is
Wiener index [45] and it has numerous chemical applications. In 1947, American
physical chemist H. Wiener introduced this index. The Wiener index (or Wiener
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number) [45] of a graph G, denoted by W (G) is the sum of distances between all
(unordered) pairs of vertices of G.

W (G) =
∑
i<j

dG(vi, vj).

The Wiener index of a graph belongs to the molecular structure-descriptors called
graph indices, which are used for the design of molecules with desired properties
[39]. Its mathematical properties are well established. The Wiener polarity index
[45] of a graph G, denoted by Wp(G), is equal to the number of unordered pairs of
vertices of distance three in G.

Wp(G) = |{(u, v)/dG(u, v) = 3}|.

In [45], Wiener used a linear formula involving W (G) and Wp(G) to obtain the
boiling points tB of the paraffins, that is

tB = aW (G) + bWp(G) + c

where a, b and c are constants for a given isomeric group.
In 1988, Hosoya [31] introduced a new distance-based graph polynomial called

Wiener polynomial. For more details refer [1, 9, 11, 23, 30, 43]. The Wiener
polynomial of a connected graph G is denoted by W (G; q) and is defined by,

W (G; q) =
∑
i<j

qdG(vi,vj)

where q is a parameter. Nowadays, the majority of researchers uses the name
Hosoya polynomial instead of Wiener polynomial. The relation between Wiener
polynomial and Wiener index is,

W (G) =
d

dq
(W (G; q))

∣∣∣
q=1

. (8)

Hence, we can derive the expression for the Wiener index of G from that of the
Hosoya polynomial of G. We denote the number of unordered pairs of vertices of dis-
tance four and more than four in G by WF ′(G) (i.e., WF ′(G)) =

∣∣{(u, v)/dG(u, v) ≥
4}
∣∣).
In 1990, Tratch et al. [44] introduced the distance-based index called Tratch-

Stankevitch-Zefirov index, denoted by TSZ(G) and is defined as

TSZ(G) =
∑

u,v∈V (G)

(
1

3
dG(u, v) +

1

2
d2G(u, v) +

1

6
d3G(u, v)

)
.

In 1993, Plavšić et al. [38] introduced another distance-based index called Harary
index [32, 38], which is denoted by H(G) and defined as

Ha(G) =
∑
i<j

1

dG(vi, vj)
. (9)

In the same year Randić [40] introduced another distance-based index which is
generalization of Wiener index and he named it as hyper-Wiener index [10, 40],
which is denoted and defined as follows

WW (G) =
1

2

∑
u,v∈V (G)

(dG(u, v) + d2G(u, v)).
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The relationship between Hosoya polynomial and different distane-based indices
[8] are given below:

Ha(G) =

∫ 1

0

W (G : q)

q
dq, (10)

WW (G) =
1

2

d2

dq2
(qW (G : q))

∣∣∣∣
q=1

, (11)

TSZ(G) =
1

3!

d3

dq3
(
q2W (G : q)

)∣∣∣∣
q=1

. (12)

3.1. Degree-based indices.

Theorem 3.6. If G is a graph with n vertices and m edges, then

M1(µγ(G)) = 5M1(G) + nγ(G)(n+ γ(G)) + 4mγ(G).

Proof. By using Eq. (2), we have

M1(µγ(G)) =
∑

v∈V (µγ(G))

d2µγ(G)(v)

=
∑

v∈V (G)

4d2G(v) +
∑

v∈V (G)

(dG(v) + γ(G))2 +

γ(G)∑
i=1

n2

= 4M1(G) +
∑

v∈V (G)

[
d2G(v) + (γ(G))2 + 2dG(v)γ(G)

]
+ n2γ(G)

= 5M1(G) + nγ(G)(n+ γ(G)) + 4mγ(G).

�

Now, using Theorems 3.2 and 3.6, we have the following theorem.

Theorem 3.7. If G is a graph with n vertices and m edges, then

M1(µγ(G)) = 12mn+ 2mγ(G)− 6m+ 3n2γ(G) + n(γ(G))2 − 2nγ(G)− 5M1(G).

Theorem 3.8. If G is a graph with n vertices and m edges, then

M2(µγ(G)) = 8M2(G) + 2γ(G)M1(G) + 4mnγ(G).

Proof. By using Eq. (3), we have

M2(µγ(G)) =
∑

vw∈E(µγ(G))

dµγ(G)(v) · dµγ(G)(w)

=
∑
vw∈E

4dG(v) · dG(w) +
∑

vx′∈E′

2dG(v)(dG(x) + γ(G))

+
∑

uix′∈D′

n(dG(x) + γ(G))

= 4M2(G) + 2
∑

vx′∈E′

dG(v) · dG(x) + 2γ(G)
∑

vx′∈E′

dG(v)

+n
∑

uix′∈D′

dG(x) + (nγ(G))2

= 8M2(G) + 2γ(G)M1(G) + 4mnγ(G).

�
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Now, using Theorems 3.3, 3.6 and 3.8, we have the following theorem.

Theorem 3.9. If G is a graph with n vertices and m edges, then

M2(µγ(G)) = 18m2 + 2n2(γ(G))2 + 8mnγ(G)−
(

5 + 4γ(G)

2

)
M1(G)

−1

2
n(γ(G))2 − 1

2
n2γ(G)− 2mγ(G)− 8M2(G).

Theorem 3.10. If G is a graph with n vertices and m edges, then

F (µγ(G)) = 9F (G) + γ(G)(3M1(G) + n3) + (γ(G))2(nγ(G) + 6m).

Proof. By using Eq. (4), we have

F (µγ(G)) =
∑

v∈V (µγ(G))

d3µγ(G)(v)

=
∑

v∈V (G)

8d3G(v) +
∑

v∈V (G)

(dG(v) + γ(G))3 +

γ(G)∑
i=1

n3

= 8F (G) +
∑

v∈V (G)

[
d3G(v) + (γ(G))3 + 3dG(v)γ(G)(dG(v) + γ(G))

]
+n3γ(G)

= 9F (G) + γ(G)(3M1(G) + n3) + (γ(G))2(nγ(G) + 6m).

�

Theorem 3.11. If G is a graph with n vertices and m edges, then

HM(µγ(G)) = 4HM(G) + 5F (G) + 7γ(G)M1(G) + 8M2(G) + 2m(3(γ(G))2

+2nγ(G)) + nγ(G)(n+ γ(G))2.

Proof. By using Eq. (5), we have

HM(µγ(G)) =
∑

vw∈E(µγ(G))

(dµγ(G)(v) + dµγ(G)(w))2

=
∑
vw∈E

4(dG(v) + dG(w))2 +
∑

vx′∈E′

(2dG(v) + dG(x) + γ(G))2

+
∑

uix′∈D′

(n+ dG(x) + γ(G))2

= 4HM(G) +
∑

vx′∈E′

[
4d2G(v) + (dG(x) + γ(G))2 + 4dG(v)(dG(x) + γ(G))

]
+

∑
uix′∈D′

[
(n+ γ(G))2 + d2G(x) + 2(n+ γ(G))dG(x)

]
= 4HM(G) + 5F (G) + 7γ(G)M1(G) + 8M2(G) + 2m(3(γ(G))2

+2nγ(G)) + nγ(G)(n+ γ(G))2.

�

Now, using Theorems 3.4, 3.6 and 3.11, we have the following theorem.
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Theorem 3.12. If G is a graph with n vertices and m edges, then

HM(µγ(G)) = 12m2(3 + γ(G)) + 4(γ(G))2(n2 +m) + 2mγ(G)(14n

−3γ(G)− 4) + (15m+ 5nγ(G)− 7γ(G)− 10)M1(G)

+nγ(G)(n+ γ(G))(3m+ nγ(G)− γ(G)− n− 2)

−4HM(G)− 5F (G)− 8M2(G).

Theorem 3.13. If G is a graph with n vertices and m edges, then

σ(µγ(G)) = 9F (G)−γ(G)M1(G)−16M2(G)+nγ(G)(n2−8m)+(γ(G))2(6m+nγ(G)).

Proof. By using Theorems 3.1, 3.8 and 3.10, we can have the desired result. �

Now, we obtain the M -polynomial of D-Mycielskian graph of a graph from which
one can obtain the expressions for degree-based graph indices (as listed in Tables
1 and 2) of D-Mycielskian graph of a graph, The following theorem gives the M -
polynomial of D-Mycielskian graph of a graph.

Theorem 3.14. If G is a graph of order n and size m with the M -polynomial
M(G;x, y) =

∑
i≤j

mij(G)xiyj, then

M(µγ(G);x, y) =
∑
i≤j

mij(G)x2iy2j +
∑
k′≤l′

mk′l′(G)xk
′
yl

′
,

where k′ = min{k, l}, l′ = max{k, l}, and for i′ = min{i, j}, j′ = max{i, j}

mk′l′(G) =

 mi′j′(G) if k = i+ γ(G), l = 2j and i 6= j,
2mi′j′(G) if k = i+ γ(G), l = 2j and i = j,
γ(G)|{v : dv = i}| if k = i+ γ(G), l = n for i = 1, 2, ..., n− 1.

Proof. By definition of D-Mycielskian graph of a graph, we have the degree of the
original vertices of G in µγ(G) is twice the degree of that vertex in G, the degree
dµγ(G)(v

′
i) = dG(vi) + γ(G) of the duplicates v′i of vi ∈ V (G) and the degree of the

vertices ui ∈ D is n. Therefore, we have the following:

m2i2j(µγ(G)) = mij(G)

and

mk′l′(G) =

 mi′j′(G) if k = i+ γ(G), l = 2j and i 6= j,
2mi′j′(G) if k = i+ γ(G), l = 2j and i = j,
γ(G)|{v : dv = i}| if k = i+ γ(G), l = n for i = 1, 2, ..., n− 1.

Thus, we get the desired result by substituting these values in Eq. (1). �

Corollary 3.15. If M -polynomial of D-Mycielskian of a graph G is

M(µγ(G);x, y) =
∑
i≤j

mij(G)x2iy2j +
∑
k′≤l′

mk′l′(G)xk
′
yl

′
,

then

M1(µγ(G)) = 2
∑
i≤j

(i+ j)mij(G) +
∑
k′≤l′

(k′ + l′)mk′l′(G),

M2(µγ(G)) = 4
∑
i≤j

ijmij(G) +
∑
k′≤l′

k′l′mk′l′(G),

mM2(µγ(G)) =
1

4

∑
i≤j

mij(G)

ij
+
∑
k′≤l′

mk′l′(G)

k′l′
,
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SD(µγ(G)) =
∑
i≤j

(i2 + j2)mij(G)

ij
+
∑
k′≤l′

(k′2 + l′2)mk′l′(G)

k′l′
,

H(µγ(G)) =
∑
i≤j

mij(G)

(i+ j)
+ 2

∑
k′≤l′

mk′l′(G)

(k′ + l′)
,

In(µγ(G)) =
∑
i≤j

ij(i+ j)mij(G) +
∑
k′≤l′

k′l′(k′ + l′)mk′l′(G).

Proof. We get the desired results by applying the appropriate operators from Tables
1 and 2 to M -polynomial of µγ(G). �

3.2. Distance-based indices.

Theorem 3.16. If G is any graph without isolated vertices, then

W (µγ(G); q) = WF ′(G)q4 + (3Wp(G) + 2WF ′(G))q3

+

[(
2n+ γ(G)

2

)
− 3WF ′(G)− 3Wp(G)− 3m− nγ(G)

]
q2

+(3m+ nγ(G))q

and

W (µγ(G)) = 4WF ′(G) + 3Wp(G)− 3m− nγ(G) + 2

(
2n+ γ(G)

2

)
.

Proof. Let G be a graph of order n and size m without isolated vertices. Therefore,
from the definition of Hosoya polynomial,

W (µγ(G); q) =
∑

u,v∈V (µγ(G))

qdµγ (G)(u,v).

Since diam(µγ(G)) ≤ 4 for any graph G without isolated vertices. Therefore,
from Theorem 3.5, the highest power of Hosoya polynomial µγ(G) is equal to the
diameter of µγ(G). Let Ai(G) = |{(u, v)/dG(u, v) = i}|. Thus, the expected Hosoya
polynomial for µγ(G) is

W (µγ(G); q) =

4∑
i=1

Ai(µγ(G))qi.

By definition of Ai(G), we have
A1(µγ(G)) = 3m+nγ(G), A4(µγ(G)) = WF ′(G), A3(µγ(G)) = 3Wp(G)+2WF ′(G)
and
A2(µγ(G)) =

(
2n+γ(G)

2

)
− 3WF ′(G)− 3Wp(G)− 3m− nγ(G).

Therefore,

W (µγ(G); q) = WF ′(G)q4 + (3Wp(G) + 2WF ′(G))q3

+

[(
2n+ γ(G)

2

)
− 3WF ′(G)− 3Wp(G)− 3m− nγ(G)

]
q2

+(3m+ nγ(G))q.
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Table 3.

Graph (G) Wp(µγ(G)) WF ′(µγ(G))

Path (Pn, n ≥ 4) n2 − 4n+ 3 n2−7n+12
2

Cycle (Cn, n ≥ 7) n(n− 4) n2−7n
2

Complete (Kn) 0 0
Complete bipartite (Ka,b, 1 < a < b) 0 0
Star (K1,n) 0 0
Wheel (Wn) 0 0

Now, from Eq. (8), the Wiener index for µγ(G) is

W (µγ(G)) =
d

dq
(W (µγ(G); q))

∣∣∣
q=1

= 4WF ′(G) + 3Wp(G)− 3m− nγ(G) + 2

(
2n+ γ(G)

2

)
.

�

Using Theorem 3.16 and Table 3, we obtain the following corollaries.

Corollary 3.17. If Pn, n ≥ 4 is a path of order n, then

W (µγ(Pn); q) =

(
n2 − 7n+ 12

2

)
q4 + (n2 − 4n+ 3)q3

+

[(
2n+

⌈
n
3

⌉
2

)
− n

⌈n
3

⌉
−
(

3n2 − 9n+ 12

2

)]
q2

+
(

3(n− 1) + n
⌈n

3

⌉)
q

and

W (µγ(Pn)) =
(

2n+
⌈n

3

⌉)
+
(

2n+
⌈n

3

⌉
− 1
)
− n

⌈n
3

⌉
+ 2n2 − 14n+ 18.

Corollary 3.18. If Cn, n ≥ 7 is a cycle of order n, then

W (µγ(Cn); q) =

(
n2 − 7n

2

)
q4 + n(n− 4)q3

+

[(
2n+

⌈
n
3

⌉
2

)
− n

⌈n
3

⌉
− 3

2
(n2 − 3n)

]
q2 +

(
3n+ n

⌈n
3

⌉)
q

and

W (µγ(Cn)) = 2

(
2n+

⌈
n
3

⌉
2

)
+−n

⌈n
3

⌉
+ 2n2 − 14n.

Corollary 3.19. If Kn is a complete graph of order n, then

W (µγ(Kn); q) =

(
n2 + 3n

2

)
q2 +

(
3n2 − n

2

)
q

and

W (µγ(Kn)) =
5n(n+ 1)

2
.
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Corollary 3.20. If K1,n is a star graph of order n+ 1, then

W (µγ(K1,n); q) = (2n2 + n+ 2)q2 + (4n+ 1)q

and

W (µγ(K1,n)) = 4n2 + 6n+ 5.

Corollary 3.21. If Ka,b, (1 < a < b) is a complete bipartite graph of order a + b,
then

W (µγ(Ka,b); q) = (2a2 + 2b2 + ab+ a+ b+ 1)q2 + (3ab+ 2a+ 2b)q

and

W (µγ(Ka,b)) = 4(a2 + b2 + a+ b) + 5ab+ 2.

Corollary 3.22. If Wn, n ≥ 3 is a wheel of order n+ 1, then

W (µγ(Wn); q) = (2n2 − 2n+ 2)q2 + (7n+ 1)q

and

W (µγ(Wn)) = 4n2 + 3n+ 5.

Using the relation given in Eq. (10), we obtain the following theorem.

Theorem 3.23. If G is any graph without isolated vertices, then

Ha(µγ(G)) =
1

2

(
2n+ γ(G)

2

)
+

3

2
m+

n

2
γ(G)− 7

12
WF ′(G)− 1

2
Wp(G).

Using Theorem 3.23 and Table 3, we obtain the following corollaries.

Corollary 3.24. If Pn, n ≥ 4 is a path of order n, then

Ha(µγ(Pn)) =
1

2

(
2n+

⌈
n
3

⌉
2

)
+

1

2
n
⌈n

3

⌉
−
(

7n2 − 73n+ 84

24

)
.

Corollary 3.25. If Cn, n ≥ 7 is a cycle of order n, then

Ha(µγ(Cn)) =
1

2

(
2n+

⌈
n
3

⌉
2

)
+

1

2
n
⌈n

3

⌉
−
(

7n2 − 73n

24

)
.

Corollary 3.26. If Kn is a complete graph of order n, then

Ha(µγ(Kn)) =
7n2 + n

4
.

Corollary 3.27. If K1,n is a star graph of order n+ 1, then

Ha(µγ(K1,n)) =
2n2 + 9n+ 4

2
.

Corollary 3.28. If Ka,b, (1 < a < b) is a complete bipartite graph of order a + b,
then

Ha(µγ(Ka,b)) =
2a2 + 2b2 + 7ab+ 5a+ 5b+ 1

2
.

Corollary 3.29. If Wn, n ≥ 3 is a wheel of order n+ 1, then

Ha(µγ(Wn)) = n2 + 6n+ 2.

Using the relation given in Eq. (11), we obtain the following theorem.
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Theorem 3.30. If G is any graph without isolated vertices, then

WW (µγ(G)) = 13WF ′(G) + 9Wp(G) + 3

(
2n+ γ(G)

2

)
− 2nγ(G)− 6m.

Using the relation given in Eq. (12), we obtain the following theorem.

Theorem 3.31. If G is any graph without isolated vertices, then

TSZ(µγ(G)) = 28WF ′(G) + 18Wp(G) + 4

(
2n+ γ(G)

2

)
− 3nγ(G)− 9m.

One can easily obtain the expressions for the hyper-Wiener index and Tratch-
Stankevitch-Zefirov index of the above mentioned standard graph families using
Theorems 3.30 and 3.31 and Table 3, respectively.

4. Conclusion

In this paper, we have introduced a new transformation graph called D-Mycielskian
graph of a graph which is triangle-free with large chromatic number. The basic
properties of this new graph are investigated. In addition, we have obtained M -
polynomial and Hosoya polynomial of D-Mycielskian graph of a graph and derived
the expressions for both degree-based and distance-based graph indices. Now, we
conclude with the following open problems:
Problem 1. Necessary and sufficient conditions for µγ(G) to be eulerian.
Problem 2. Necessary and sufficient conditions for hamiltonicity of µγ(G).

5. Acknowledgement

B. Basavanagoud is partially supported by the University Grants Commission
(UGC), Government of India, New Delhi, through UGC-SAP DRS-III for 2016-
2021: F.510/3/DRS-III/2016(SAP-I) and Praveen Jakkannavar is partially sup-
ported by Directorate of Minorities, Government of Karnataka, Banglore, through
M.Phil/Ph. D. Fellowship 2017-2018: No.DOM/FELLOWSHIP/CR29/2017-18
dated: 09th Aug. 2017.

References

[1] A. A. Ali, Hosoya Polynomials of Pentachains, MATCH Commun. Math. Comput. Chem.,
Vol. 65, 807–819, 2011.
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graphs, MATCH Commun. Math. Chem., Vol. 43, 49–66, 2001.
[24] I. Gutman, M. Togan, A. Yurttas, A. S. Cevik and I. N. Cangul, Inverse problem for sigma

index, MATCH Commun. Math. Chem., Vol. 79, 491–508, 2018.
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