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SUM OF THE SQUARES OF TERMS OF GAUSSIAN
GENERALIZED TRIBONACCI SEQUENCES: CLOSED FORM

FORMULAS OF
∑n

k=1GW
2
k

Y. SOYKAN, E. TAŞDEMIR AND M. GÖCEN

Abstract. In this paper, closed forms of the sum formulas
∑n
k=1GW

2
k ,
∑n
k=1GWk+2GWk

and
∑n
k=1GWk+1GWk for the squares of Gaussian generalized Tribonacci

numbers are presented. As special cases, we give sum formulas of Gaussian
Tribonacci, Gaussian Tribonacci-Lucas, Gaussian Padovan, Gaussian Perrin,
Gaussian Narayana and some other third order linear recurrence sequences.
All the summing formulas of well known recurrence sequences are linear ex-
cept the cases Gaussian Pell-Padovan and Gaussian Padovan-Perrin.

1. Introduction

The sequence of Fibonacci numbers {Fn} is defined by

Fn = Fn−1 + Fn−2, n ≥ 2, F0 = 0, F1 = 1.

The Fibonacci numbers and their generalizations have many interesting prop-
erties and applications to almost every field. The generalized Tribonacci sequence
{Wn(W0,W1,W2; r, s, t)}n≥0 (or shortly {Wn}n≥0) is defined as follows:

Wn = rWn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (1)

where W0,W1,W2 are arbitrary complex numbers and r, s, t are real numbers.
The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = −s
t
W−(n−1) −

r

t
W−(n−2) +

1

t
W−(n−3)

for n = 1, 2, 3, ... when t 6= 0. Therefore, recurrence (1) holds for all integer n.
If we set r = s = t = 1 andW0 = 0,W1 = 1,W2 = 1 then {Wn} is the well-known

Tribonacci sequence and if we set r = s = t = 1 and W0 = 3,W1 = 1,W2 = 3 then
{Wn} is the well-known Tribonacci-Lucas sequence.
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In fact, the generalized Tribonacci sequence is the generalization of the well-
known sequences like Tribonacci, Tribonacci-Lucas, Padovan (Cordonnier), Per-
rin, Padovan-Perrin, Narayana, third order Jacobsthal and third order Jacobsthal-
Lucas.
We now present some background about Gaussian and Gaussian generalized

Tribonacci numbers. In literature, there have been so many studies of the sequences
of Gaussian numbers. A Gaussian integer z is a complex number whose real and
imaginary parts are both integers, i.e., z = a + ib, a, b ∈ Z. These numbers is
denoted by Z[i]. The norm of a Gaussian integer a + ib, a, b ∈ Z is its Euclidean
norm, that is, N(a + ib) =

√
a2 + b2 =

√
(a+ ib)(a− ib). For more information

about this kind of integers, see the work of Fraleigh [4].
If we use together sequences of integers defined recursively and Gaussian type in-

tegers, we obtain a new sequences of complex numbers such as Gaussian Fibonacci,
Gaussian Lucas, Gaussian Pell, Gaussian Pell-Lucas and Gaussian Jacobsthal num-
bers; Gaussian Padovan and Gaussian Pell-Padovan numbers; Gaussian Tribonacci
numbers.
The Gaussian generalized Tribonacci sequence {GWn(GW0, GW1, GW2; r, s, t)}n≥0

(or shortly {GWn}n≥0) is defined as follows:

GWn = rGWn−1 + sGWn−2 + tGWn−3, GW0 = W0 +W−1i, (2)

GW1 = W1 +W0i, GW2 = W2 +W1i, n ≥ 3

where r, s, t are real numbers.
The sequence {GWn}n≥0 can be extended to negative subscripts by defining

GW−n = −s
t
GW−(n−1) −

r

t
GW−(n−2) +

1

t
GW−(n−3)

for n = 1, 2, 3, ... when t 6= 0. Therefore, recurrence (2) holds for all integer n.
Note that for n ≥ 0

GWn = Wn + iWn−1. (3)

and

GW−n = W−n + iW−n−1

In fact, the Gaussian generalized Tribonacci sequence is the generalization of the
well-known sequences like Gaussian Tribonacci, Gaussian Tribonacci-Lucas, Gauss-
ian Padovan (Cordonnier), Gaussian Perrin, Gaussian Padovan-Perrin, Gaussian
Narayana, Gaussian third order Jacobsthal and Gaussian third order Jacobsthal-
Lucas. In literature, for example, the following names and notations (see Table 1)
are used for the special case of r, s, t and initial values.

Table 1 A few special case of Gaussian generalized Tribonacci sequences.
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Sequences (Numbers) Notation
Gaussian Tribonacci {GTn} = {Wn(0, 1, 1 + i; 1, 1, 1)}

Gaussian Tribonacci-Lucas {GKn} = {Wn(3− i, 1 + 3i, 3 + i; 1, 1, 1)}
Gaussian third order Pell {GP (3)n } = {Wn(0, 1, 2 + i; 2, 1, 1)}

Gaussian third order Pell-Lucas {GQ(3)n } = {Wn(3− i, 2 + 3i, 6 + 2i; 2, 1, 1)}
Gaussian third order modified Pell {GE(3)n } = {Wn(−i, 1, 1 + i; 2, 1, 1)}
Gaussian Padovan (Cordonnier) {GPn} = {Wn(1, 1 + i, 1 + i; 0, 1, 1)}

Gaussian Perrin {GEn} = {Wn(3− i, 3i, 2; 0, 1, 1)}
Gaussian Padovan-Perrin {GSn} = {Wn(i, 0, 1; 0, 1, 1)}
Gaussian Pell-Padovan {GRn} = {Wn(1− i, 1 + i, 1 + i; 0, 2, 1)}
Gaussian Pell-Perrin {GCn} = {Wn(3− 4i, 3i, 2; 0, 2, 1)}

Gaussian Jacobsthal-Padovan {GQn} = {Wn(1, 1 + i, 1 + i; 0, 1, 2)}
Gaussian Jacobsthal-Perrin {GDn} = {Wn(3− 1

2 i, 3i, 2; 0, 1, 2)}
Gaussian Narayana {GNn} = {Wn(0, 1, 1 + i; 1, 0, 1)}

Gaussian third order Jacobsthal {GJ (3)n } = {Wn(0, 1, 1 + i; 1, 1, 2)}
Gaussian third order Jacobsthal-Lucas {Gj(3)n } = {Wn(2 + i, 1 + 2i, 5 + i; 1, 1, 2)}
In 1963, Horadam [9] introduced the concept of complex Fibonacci number called

as the Gaussian Fibonacci number. Pethe [13] defined the complex Tribonacci
numbers at Gaussian integers, see also [5].
There are other several studies dedicated to these sequences of Gaussian num-

bers. We present some works on Gaussian Generalized Fibonacci Numbers in the
following Table 2.

Table 2. A few special study of Gaussian Generalized Fibonacci Numbers.
Name of sequence Papers which deal with Gaussian Numbers

Gaussian Generalized Fibonacci [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14, 20]
Gaussian Generalized Tribonacci [15, 19]
Gaussian Generalized Tetranacci [16, 18]
Gaussian Generalized Pentanacci [17]

2. Main Result

Let

G∆ =
(
s+ rt− t2 + 1

)
(r + s+ t− 1) (r − s+ t+ 1) .

Theorem 1. If G∆ 6= 0 then

(a):
n∑
k=1

GW 2
k =

G∆1

G∆

(b):
n∑
i=k

GWk+1GWk =
G∆2

G∆

(c):
n∑
k=1

GWk+2GWk =
G∆3

G∆
,
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where

G∆1 = −(t2 + rt+ s− 1)GW 2
n+3

−(r3t+ r2t2 + r2s+ r2 + t2 + 2rst+ rt+ s− 1)GW 2
n+2

−(r3t+ r2t2 + s2t2 − rs2t− s3 + r2s+ 4rst

+r2 + s2 + t2 + rt+ s− 1)GW 2
n+1

+2 (r + t) (s+ rt)GWn+3GWn+2

+2t (r + st)GWn+3GWn+1

−2t (s− 1) (s+ rt)GWn+2GWn+1

+(2rst+ 2r2 + t2 + rt+ s− 1)GW 2
3

+(r3t+ r2t2 + r2s+ 2rst+ r2 + t2 + rt+ s− 1)GW 2
2

+(r3t+ r2t2 + s2t2 − rs2t− s3 + r2s+ 4rst+ r2

+s2 + t2 + rt+ s− 1)GW 2
1

−2 (r + st)GW4GW3 − 2t(r2 − s2 + rt+ s)GW3GW2

+2t (s− 1) (s+ rt)GW2GW1

and

G∆2 = (r + st)GW 2
n+3 + (s+ rt) (t+ rs)GW 2

n+2

+t2 (r + st)GW 2
n+1

−(2rst+ r2 + s2 + t2 − 1)GWn+3GWn+2

+t(r2 − s2 − t2 + 1)GWn+3GWn+1

−(r3t− rt3 − rs2t+ r2s− s3 − st2 + 2rst+ r2

+s2 + t2 + rt+ s− 1)GWn+2GWn+1

+(r3 − rs2 − rt2 − st)GW 2
3 − (t+ rs) (s+ rt)GW 2

2

−t2 (r + st)GW 2
1 − (r2 − s2 − t2 + 1)GW4GW3

+(r2s− st2 − s3 + 2rst+ r2 + s2 + t2 + s− 1)GW3GW2

+(−rt3 + r3t− rs2t+ r2s− st2 − s3 + r2

+s2 + t2 + 2rst+ rt+ s− 1)GW2GW1
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and

G∆3 = (r2 − s2 + rt+ s)GW 2
n+3

−(rs2t− rt3 − r2t2 + r2s+ s2 − s)GW 2
n+2

+t2(r2 − s2 + rt+ s)GW 2
n+1

− (r + t)
(
r2 − s2 + t2 − 1

)
GWn+3GWn+2

−(r2s− st2 − s3 + 2rst+ r2 + s2 + t2 + s− 1)GWn+3GWn+1

+t (s− 1) (r2 − s2 + t2 − 1)GWn+2GWn+1

+(rs2t+ r4 − r2s2 − r2t2 + 2r2s− rt3 + r3t+ s2 − s)GW 2
3

+(rs2t− rt3 − r2t2 + r2s+ s2 − s)GW 2
2

−t2(r2 − s2 + rt+ s)GW 2
1

−(r3 − t3 − rs2 − rt2 + r2t+ s2t+ 2rs+ r + t)GW4GW3

+(r3s− st3 + s3t− rst2 − rs3 + r2st+ rs2 + rt2 + r2t

−s2t+ r3 + t3 + rs+ st− r − t)GW3GW2

+(s+ rt− t2 + 1) (r − s+ t+ 1) (r + s+ t− 1)GW3GW1

−t (s− 1) (r2 − s2 + t2 − 1)GW2GW1

Proof. First, we obtain
∑n

k=1GW
2
k . Using the recurrence relation

GWn = rGWn−1 + sGWn−2 + tGWn−3

i.e.

GWn+3 = rGWn+2 + sGWn+1 + tGWn

or

tGWn = GWn+3 − rGWn+2 − sGWn+1

we obtain

t2GW 2
n = GW 2

n+3 + r2GW 2
n+2 + s2GW 2

n+1 − 2rGWn+3GWn+2

−2sGWn+3GWn+1 + 2rsGWn+2GWn+1

t2GW 2
n−1 = GW 2

n+2 + r2GW 2
n+1 + s2GW 2

n − 2rGWn+2GWn+1

−2sGWn+2GWn + 2rsGWn+1GWn

...

t2GW 2
2 = GW 2

5 + r2GW 2
4 + s2GW 2

3 − 2rGW5GW4

−2sGW5GW3 + 2rsGW4GW3

t2GW 2
1 = GW 2

4 + r2GW 2
3 + s2GW 2

2 − 2rGW4GW3

−2sGW4GW2 + 2rsGW3GW2.
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If we add the equations by side by, we get

t2
n∑
k=1

GW 2
k =

n+3∑
k=4

GW 2
k + r2

n+2∑
k=3

GW 2
k + s2

n+1∑
k=2

GW 2
k (4)

−2r

n+2∑
k=3

GWk+1GWk − 2s

n+1∑
k=2

GWk+2GWk

+2rs

n+1∑
k=2

GWk+1GWk.

Note that if we replace the followings into (4),

n+3∑
k=4

GW 2
k = −GW 2

1 −GW 2
2 −GW 2

3 +GW 2
n+1 +GW 2

n+2 +GW 2
n+3

+

n∑
k=1

GW 2
k ,

n+2∑
k=3

GW 2
k = −GW 2

1 −GW 2
2 +GW 2

n+1 +GW 2
n+2 +

n∑
k=1

GW 2
k ,

n+1∑
k=2

GW 2
k = −GW 2

1 +GW 2
n+1 +

n∑
k=1

GW 2
k ,

n+2∑
k=3

GWk+1GWk = −GW2GW1 −GW3GW2 +GWn+2GWn+1

+GWn+3GWn+2 +

n∑
k=1

GWk+1GWk,

n+1∑
k=2

GWk+1GWk = −GW2GW1 +GWn+2GWn+1 +

n∑
k=1

GWk+1GWk,

n+1∑
k=2

GWk+2GWk = −GW3GW1 +GWn+3GWn+1 +

n∑
k=1

GWk+2GWk.
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we get

t2
n∑
k=1

GW 2
k = (−r2GW 2

1 − r2GW 2
2 + r2GW 2

n+1 + r2GW 2
n+2 (5)

−s2GW 2
1 + s2GW 2

n+1 −GW 2
1 −GW 2

2 −GW 2
3 +GW 2

n+1

+GW 2
n+2 +GW 2

n+3 + (1 + r2 + s2)

n∑
k=1

GW 2
k )

+(2rGW1GW2 − 2rGWn+1GWn+2 − 2rGWn+2GWn+3

+2rGW2GW3 + 2rsGWn+1GWn+2 − 2rsGW1GW2

+(−2r + 2rs)

n∑
k=1

GWkGWk+1)

−2s(−GW3GW1 +GWn+3GWn+1 +

n∑
k=1

GWk+2GWk).

Next we obtain
∑n

k=1GWk+1GWk. Multiplying the both side of the recurrence
relation

tGWn = GWn+3 − rGWn+2 − sGWn+1

by GWn+1 we get

tGWn+1GWn = GWn+3GWn+1 − rGWn+2GWn+1 − sGW 2
n+1.

Then using last recurrence relation, we obtain

tGWn+1GWn = GWn+3GWn+1 − rGWn+2GWn+1 − sGW 2
n+1

tGWnGWn−1 = GWn+2GWn − rGWn+1GWn − sGW 2
n

...

tGW3GW2 = GW5GW3 − rGW4GW3 − sGW 2
3

tGW2GW1 = GW4GW2 − rGW3GW2 − sGW 2
2 .

If we add the equations by side by, we get

t

n∑
k=1

GWk+1GWk =

n+1∑
k=2

GWk+2GWk − r
n+1∑
k=2

GWk+1GWk − s
n+1∑
k=2

GW 2
k .

Now it follows that

t

n∑
k=1

GWk+1GWk (6)

= (−GW3GW1 +GWn+3GWn+1 +

n∑
k=1

GWk+2GWk)

−r(−GW2GW1 +GWn+2GWn+1 +

n∑
k=1

GWk+1GWk)

−s(−GW 2
1 +GW 2

n+1 +

n∑
k=1

GW 2
k ).
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Now, we obtain
∑n

k=2GWk+2GWk. Multiplying the both side of the recurrence
relation

tGWn = GWn+3 − rGWn+2 − sGWn+1

by GWn+2 we get

tGWn+2GWn = GWn+3GWn+2 − rGWn+2GWn+2 − sGWn+2GWn+1.

Then using last recurrence relation, we obtain

tGWn+2GWn = GWn+3GWn+2 − rGW 2
n+2 − sGWn+2GWn+1

tGWn+1GWn−1 = GWn+2GWn+1 − rGW 2
n+1 − sGWn+1GWn

...

tGW5GW3 = GW6GW5 − rGW 2
5 − sGW5GW4

tGW4GW2 = GW5GW4 − rGW 2
4 − sGW4GW3.

If we add the equations by side by, we get

t

n∑
k=2

GWk+2GWk =

n+2∑
k=4

GWk+1GWk − r
n+2∑
k=4

GW 2
k − s

n+1∑
k=3

GWk+1GWk.

Now it follows that

t(−GW3GW1 +

n∑
k=1

GWk+2GWk) (7)

= (−GW4GW3 −GW3GW2 −GW2GW1 +GWn+3GWn+2 +GWn+2GWn+1

+

n∑
k=1

GWk+1GWk)− r(−GW 2
1 −GW 2

2 −GW 2
3 +GW 2

n+1 +GW 2
n+2

+

n∑
k=1

GW 2
k )− s(−GW3GW2 −GW2GW1 +GWn+2GWn+1

+

n∑
k=1

GWk+1GWk).

Solving the system (5)-(6)-(7), the results in (a), (b) and (c) follow.

3. Specific Cases

In this section, we present the closed form solutions (identities) of the sums∑n
k=1GW

2
i ,
∑n

k=1GWi+1GWi and
∑n

k=1GWi+2GWi for the specific case of se-
quence {GWn}.
Taking r = s = t = 1 in Theorem 1, we obtain the following Proposition.

Proposition 2. If r = s = t = 1 then for n ≥ 1 we have the following formulas:∑n
k=1GW

2
k = 1

4 (−GW 2
n+3 − 4GW 2

n+2 − 5GW 2
n+1 + 4GWn+2GWn+3

+2GWn+1GWn+3 + 3GW 2
3 + 4GW 2

2 + 5GW 2
1 − 2GW4GW3 − 2GW2GW3),∑n

k=1GWk+1GWk = 1
4 (GW 2

n+3 + 2GW 2
n+2 +GW 2

n+1 − 2GWn+2GWn+3

−2GWn+1GWn+2 −GW 2
3 − 2GW 2

2 −GW 2
1 + 2GW2GW3 + 2GW1GW2),∑n

k=1GWk+2GWk = 1
4 (GW 2

n+3 + GW 2
n+1 − 2GWn+1GWn+3 + GW 2

3 − GW 2
1 −

2GW3GW4 + 2GW2GW3 + 4GW1GW3).
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From the above Proposition, we have the following Corollary which gives sum
formulas of Gaussian Tribonacci numbers (take GWn = GTn with GT0 = 0, GT1 =
1, GT2 = 1 + i).

Corollary 3. For n ≥ 1, Gaussian Tribonacci numbers have the following proper-
ties:∑n

k=1GT
2
k = 1

4 (−GT 2n+3−4GT 2n+2−5GT 2n+1+4GTn+2GTn+3+2GTn+1GTn+3−
2i),∑n

k=1GTk+1GTk = 1
4 (GT 2n+3+2GT 2n+2+GT

2
n+1−2GTn+2GTn+3−2GTn+1GTn+2),∑n

k=1GTk+2GTk = 1
4 (GT 2n+3 +GT 2n+1 − 2GTn+1GTn+3 − 2i).

Taking GWn = GKn with GK0 = 3 − i, GK1 = 1 + 3i, GK2 = 3 + i in the
above Proposition, we have the following Corollary which presents sum formulas of
Gaussian Tribonacci-Lucas numbers.

Corollary 4. For n ≥ 1, Gaussian Tribonacci-Lucas numbers have the following
properties:∑n

k=1GK
2
k = 1

4 (−GK2
n+3 − 4GK2

n+2 − 5GK2
n+1 + 4GKn+2GKn+3

+2GKn+1GKn+3 − 36− 16i),∑n
k=1GKk+1GKk = 1

4 (GK2
n+3 + 2GK2

n+2 +GK2
n+1 − 2GKn+2GKn+3

−2GKn+1GKn+2 − 12− 8i),∑n
k=1GKk+2GKk = 1

4 (GK2
n+3 +GK2

n+1 − 2GKn+1GKn+3 − 36).

Taking r = 2, s = 1, t = 1 in Theorem1, we obtain the following Proposition.

Proposition 5. If r = 2, s = 1, t = 1 then for n ≥ 1 we have the following
formulas:∑n

k=1GW
2
k = 1

9 (−GW 2
n+3 − 9GW 2

n+2 − 10GW 2
n+1 + 6GWn+2GWn+3

+2GWn+1GWn+3 + 5GW 2
3 + 9GW 2

2 + 10GW 2
1 − 2GW4GW3 − 4GW2GW3),∑n

k=1GWk+1GWk = 1
9 (GW 2

n+3 + 3GW 2
n+2 +GW 2

n+1 − 3GWn+2GWn+3

+GWn+1GWn+3 − 6GWn+1GWn+2 +GW 2
3 − 3GW 2

2 −GW 2
1 −GW4GW3

+4GW2GW3 + 6GW1GW2),∑n
k=1GWk+2GWk = 1

9 (2GW 2
n+3+2GW 2

n+1−3GWn+2GWn+3−4GWn+1GWn+3

+8GW 2
3 − 2GW 2

1 − 5GW3GW4 + 8GW2GW3 + 9GW1GW3).

From the last Proposition, we have the following Corollary which gives sum
formulas of Gaussian third-order Pell numbers (take GWn = GP

(3)
n with GP (3)0 =

0, GP
(3)
1 = 1, GP

(3)
2 = 2 + i).

Corollary 6. For n ≥ 1, Gaussian third-order Pell numbers have the following
properties:∑n

k=1GP
(3)2
k = 1

9 (−GP (3)2n+3−9GP
(3)2
n+2−10GP

(3)2
n+1+6GP

(3)
n+2GP

(3)
n+3+2GP

(3)
n+1GP

(3)
n+3−

2i),∑n
k=1GP

(3)
k+1GP

(3)
k = 1

9 (GP
(3)2
n+3+3GP

(3)2
n+2+GP

(3)2
n+1−3GP

(3)
n+2GP

(3)
n+3+GP

(3)
n+1GP

(3)
n+3−

6GP
(3)
n+1GP

(3)
n+2 − i),∑n

k=1GP
(3)
k+2GP

(3)
k = 1

9 (2GP
(3)2
n+3 + 2GP

(3)2
n+1 −3GP

(3)
n+2GP

(3)
n+3−4GP

(3)
n+1GP

(3)
n+3+

(170 + 135i)).

Taking GWn = GQ
(3)
n with GQ(3)0 = 3− i, GQ(3)1 = 2 + 3i, GQ

(3)
2 = 6 + 2i in the

last Proposition, we have the following Corollary which presents sum formulas of
Gaussian third-order Pell-Lucas numbers.
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Corollary 7. For n ≥ 1, Gaussian third-order Pell-Lucas numbers have the fol-
lowing properties:∑n

k=1GQ
(3)2
k = 1

9 (−GQ(3)2n+3−9GQ
(3)2
n+2−10GQ

(3)2
n+1+6GQ

(3)
n+2GQ

(3)
n+3+2GQ

(3)
n+1GQ

(3)
n+3−

(81 + 6i)),∑n
k=1GQ

(3)
k+1GQ

(3)
k = 1

9 (GQ
(3)2
n+3+3GQ

(3)2
n+2+GQ

(3)2
n+1−3GQ

(3)
n+2GQ

(3)
n+3+GQ

(3)
n+1GQ

(3)
n+3−

6GQ
(3)
n+1GQ

(3)
n+2 − (54 + 9i)),∑n

k=1GQ
(3)
k+2GQ

(3)
k = 1

9 (2GQ
(3)2
n+3+2GQ

(3)2
n+1−3GQ

(3)
n+2GQ

(3)
n+3−4GQ

(3)
n+1GQ

(3)
n+3+

(−162 + 30i)).

From the last Proposition, we have the following Corollary which gives sum
formulas of Gaussian third-order modified Pell numbers (take GWn = GE

(3)
n with

GE
(3)
0 = −i, GE(3)1 = 1, GE

(3)
2 = 1 + i).

Corollary 8. For n ≥ 1, Gaussian modified third-order modified Pell numbers have
the following properties:∑n

k=1GE
(3)2
k = 1

9 (−GE(3)2n+3−9GE
(3)2
n+2−10GE

(3)2
n+1+6GE

(3)
n+2GE

(3)
n+3+2GE

(3)
n+1GE

(3)
n+3−

2i),∑n
k=1GE

(3)
k+1GE

(3)
k = 1

9 (GE
(3)2
n+3+3GE

(3)2
n+2+GE

(3)2
n+1−3GE

(3)
n+2GE

(3)
n+3+GE

(3)
n+1GE

(3)
n+3−

6GE
(3)
n+1GE

(3)
n+2 + 5i),∑n

k=1GE
(3)
k+2GE

(3)
k = 1

9 (2GE
(3)2
n+3+2GE

(3)2
n+1−3GE

(3)
n+2GE

(3)
n+3−4GE

(3)
n+1GE

(3)
n+3+

4i).

Taking r = 0, s = 1, t = 1 in Theorem1, we obtain the following Proposition.

Proposition 9. If r = 0, s = 1, t = 1 then for n ≥ 1 we have the following
formulas:∑n

k=1GW
2
k = −2GW 2

n+1−GW 2
n+3−GW 2

n+2+2GWn+2GWn+3+2GWn+1GWn+3+
GW 2

3 +GW 2
2 + 2GW 2

1 − 2GW4GW3,∑n
k=1GWk+1GWk = GW 2

n+3+GW
2
n+2+GW

2
n+1−GWn+2GWn+3−GWn+1GWn+3−

GW 2
3 −GW 2

2 −GW 2
1 +GW4GW3,∑n

k=1GWk+2GWk = GWn+2GWn+3 −GW3GW4 +GW1GW3.

From the last Proposition, we have the following Corollary which gives sum
formulas of Gaussian Padovan numbers (take GWn = GPn with GP0 = 1, GP1 =
1 + i, GP2 = 1 + i).

Corollary 10. For n ≥ 1, Gaussian Padovan numbers have the following proper-
ties:∑n

k=1GP
2
k = −GP 2n+3 −GP 2n+2 − 2GP 2n+1 + 2GPn+2GPn+3 + 2GPn+1GPn+3 −

(1 + 2i),∑n
k=1GPk+1GPk = GP 2n+3+GP 2n+2+GP 2n+1−GPn+2GPn+3−GPn+1GPn+3−

(1 + 2i),∑n
k=1GPk+2GPk = GPn+2GPn+3 − (1 + 3i).

Taking GWn = GEn with GE0 = 3 − i, GE1 = 3i, GE2 = 2 in the last Propo-
sition, we have the following Corollary which presents sum formulas of Gaussian
Perrin numbers.
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Corollary 11. For n ≥ 1, Gaussian Perrin numbers have the following properties:
n∑
k=1

GE2k = −GE2n+3 −GE2n+2 − 2GE2n+1 + 2GEn+2GEn+3

+2GEn+1GEn+3 − (9 + 14i),
n∑
k=1

GEk+1GEk = GE2n+3 +GE2n+2 +GE2n+1 −GEn+2GEn+3

−GEn+1GEn+3 + i,
n∑
k=1

GEk+2GEk = GEn+2GEn+3 − (6 + 4i).

From the last Proposition, we have the following Corollary which gives sum
formulas of Gaussian Padovan-Perrin numbers (take GWn = GSn with GS0 =
i, GS1 = 0, GS2 = 1).

Corollary 12. For n ≥ 1, Gaussian Padovan-Perrin numbers have the following
properties:

n∑
k=1

GS2k = −GS2n+3 −GS2n+2 − 2GS2n+1 + 2GSn+2GSn+3

+2GSn+1GSn+3 − 2i,
n∑
k=1

GSk+1GSk = GS2n+3 +GS2n+2 +GS2n+1 −GSn+2GSn+3

−GSn+1GSn+3 + i,
n∑
k=1

GSk+2GSk = GSn+2GSn+3 − i.

Taking r = 0, s = 1, t = 2 in Theorem 1, we obtain the following Proposition.

Proposition 13. If r = 0, s = 1, t = 2 then for n ≥ 1 we have the following
formulas:∑n

k=1GW
2
k = 1

2 (GW 2
n+3+GW

2
n+2+2GW 2

n+1−GWn+2GWn+3−2GWn+1GWn+3−
GW 2

3 −GW 2
2 − 2GW 2

1 +GW4GW3),∑n
k=1GWk+1GWk = 1

4 (−GW 2
n+3 − GW 2

n+2 − 4GW 2
n+1 + 2GWn+2GWn+3 +

4GWn+1GWn+3 +GW 2
3 +GW 2

2 + 4GW 2
1 − 2GW4GW3),∑n

k=1GWk+2GWk = 1
2 (GWn+2GWn+3 + 2GW1GW3 −GW3GW4).

From the last Proposition, we have the following Corollary which gives sum
formulas of Gaussian Jacobsthal-Padovan numbers (take GWn = GQn with GQ0 =
1, GQ1 = 1 + i, GQ2 = 1 + i).

Corollary 14. For n ≥ 1, Gaussian Jacobsthal-Padovan numbers have the follow-
ing properties:∑n

k=1GQ
2
k = 1

2 (GQ2n+3+GQ2n+2+2GQ2n+1−GQn+2GQn+3−2GQn+1GQn+3−
2),∑n

k=1GQk+1GQk = 1
4 (−GQ2n+3−GQ2n+2−4GQ2n+1+2GQn+2GQn+3+4GQn+1GQn+3−

(4 + 8i)),∑n
k=1GQk+2GQk = 1

2 (GQn+2GQn+3 − (2 + 4i)).
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Taking GWn = GDn with GD0 = 3− 1
2 i, GD1 = 3i, GD2 = 2 in the last Propo-

sition, we have the following Corollary which presents sum formulas of Gaussian
Jacobsthal-Perrin numbers.

Corollary 15. For n ≥ 1, Gaussian Jacobsthal-Perrin numbers have the following
properties:∑n

k=1QD
2
k = 1

2 (QD2
n+3+QD2

n+2+2QD2
n+1−QDn+2QDn+3−2QDn+1QDn+3+

(−18 + 16i)),∑n
k=1QDk+1QDk = 1

4 (−QD2
n+3−QD2

n+2−4QD2
n+1+2QDn+2QDn+3+4QDn+1QDn+3−

56i),∑n
k=1QDk+2QDk = 1

2 (QDn+2QDn+3 − (12 + 4i)).

Taking r = 1, s = 0, t = 1 in Theorem 1, we obtain the following Proposition.

Proposition 16. If r = 1, s = 0, t = 1 then for n ≥ 1 we have the following
formulas:∑n

k=1GW
2
k = 1

3 (−GW 2
n+3−4GW 2

n+2−4GW 2
n+1+4GWn+2GWn+3+2GWn+1GWn+3+

2GWn+1GWn+2+3GW 2
3 +4GW 2

2 +4GW 2
1 −2GW4GW3−4GW2GW3−2GW1GW2),∑n

k=1GWk+1GWk = 1
3 (GW 2

n+3+GW
2
n+2+GW

2
n+1−GWn+2GWn+3+GWn+1GWn+3−

2GWn+1GWn+2 −GW 2
2 −GW 2

1 −GW3GW4 +GW3GW2 + 2GW1GW2),∑n
k=1GWk+2GWk = 1

3 (2GW 2
n+3 + 2GW 2

n+2 + 2GW 2
n+1 − 2GWn+2GWn+3 −

GWn+1GWn+2 − GWn+1GWn+3 − 2GW 2
2 − 2GW 2

1 − 2GW3GW4 + 2GW3GW2 +
3GW3GW1 +GW1GW2).

From the last Proposition, we have the following Corollary which gives sum
formulas of Gaussian Narayana numbers (take GWn = GNn with GN0 = 0, GN1 =
1, GN2 = 1 + i).

Corollary 17. For n ≥ 1, Gaussian Narayana numbers have the following proper-
ties:∑n

k=1GN
2
k = 1

3 (−GN2
n+3−4GN2

n+2−4GN2
n+1+4GNn+2GNn+3+2GNn+1GNn+3+

2GNn+1GNn+2 − 2i),∑n
k=1GNk+1GNk = 1

3 (GN2
n+3+GN

2
n+2+GN

2
n+1−GNn+2GNn+3+GNn+1GNn+3−

2GNn+1GNn+2 − i),∑n
k=1GNk+2GNk = 1

3 (2GN2
n+3+2GN2

n+2+2GN2
n+1−2GNn+2GNn+3−GNn+1GNn+2−

GNn+1GNn+3 − 2i).
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