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CONVERGENCE OF ANALYTICAL SOLUTION OF THE

INITIAL-BOUNDARY VALUE MOVING MASS PROBLEM OF

BEAMS RESTING ON WINKLER FOUNDATION

O. K. OGUNBAMIKE AND A.O. OWOLANKE

Abstract. In this paper [1], a versatile analytical technique was developed

to solve the moving load problem of beams resting on elastic foundation. The
technique involves the use of generalized finite integral transform, the expan-
sion of heaviside function in series form and a modification of Struble’s asymp-

totic technique. In this paper, the convergence of the series solution obtained
is established. Thereby bring into focus the elegant feature integrating both
theory and applications of this robust technique.

1. Introduction

This paper is sequel to an earlier paper [1], where an analytical solution was ob-
tained for the problem of a uniform cantilever beam Bernoulli-Euler beam resting
on a winkler elastic foundation and transversed by distributed masses. The govern-
ing equation is the fourth order partial differential equation [2,3,4,5,6] with variable
and singular coefficients. The solution technique which is analytical involves using
the method of generalized finite integral transform which is used to remove the
singularity in the governing partial differential equation. The expression of Heav-
iside function as a Fourier series and the use of the modified struble’s asymptotic
technique [7] to solve the problem of the flexural vibrations of a Bernoulli-Euler
beam under fixed and free end conditions. The purpose of the paper is to establish
the convergence of the series solution of the initial-value problem. In particular, it
is established that the solution so obtained is not only a formal solution, but it is
the actual solution of the problem [8].

2. Methodology

The equation of motion of the beam in [1] is symbolically written in the form

L[ψ(x, t)−Q(x, t)] = 0, (1)
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where L is the differential operator with variable coefficients, ψ(x, t) is the beam
response displacement, Q(x, t) is the load acting on the beam, and x and t are
spatial and time coordinates respectively.

The equation (1) is solved firstly using generalized finite integral transform de-
fined by

ψ(m, t) =

∫ L

0

ψm(x, t)U(x)dx, (2)

The inverse

ψm(m, t) =
∞∑

m=1

µ

σm
ψm(x, t)U(x), (3)

where
U(x) is the general kernel chosen so that the clamped free end boundary conditions
are satisfied and σm is defined as

σm =

∫
µU2(x)dx, (4)

In addition, the property of the heaviside unit step function is expressed in series
representation as

H[x− ut] =
1

4
+

1

π

∞∑
n=0

sin(2n+ 1)π(x− ut)

2n+ 1
; 0 < x < L (5)

where u is the velocity of the moving load. In order to simplify and solve the
resulting ordinary differential equations, the modified struble’s technique is resorted
to. The technique requires that the asymptotic solution of the homogeneous part
of (1) be of the form

ψ(x, t) = g(m, t)cos[ωmf − β(m, t)] + ηψ1 + 0(η2) (6)

where g(m, t) and β(m, t) are slowly varying functions or equivalently

dg(m, t)

dt
→ 0(η)

d2g

dt2
(m, t) → 0(η2)

dβ(m, t)

dt
→ 0(η)

d2β

dt2
(m, t) → 0(η2)

(7)

where → implies ”is of ”. Expression for ψ(x, t) is obtained through the method of
integral transformation in conjuction with the initial condition as:

ψ̄(x, t) =

∞∑
m=1

µpg

ybj(αu4i − y4bj)
{(αu2i + y2bj){ybj(cosαuit− cosybjt)+

Am(ybjsinαuit− αuisinybjt)}+Bm{ybj(sinhαuit− sinybjt)}−
cmybj(coshαuit− cosybt)

(8)

where,

α =
Am

L
(9)

and p, g and Am are the load, acceleration due to gravity and mode frequency
respectively. Equation (8) represents the transverse-displacement response to a
moving mass of the beam on a constant winkler’s foundation for all variants of
boundary conditions.

THEOREM: The series in equation (8) is convergent.
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PROOF: It is noted that equation (8) can be written in the form

ψ̄(x, t) =
n∑

m=1

µpgC2
m

ybj(αu4i − y4bj)
{ybjψ̈(ut)− y3bjψ(ut)+

2αu2i (Cmαuisinybjt− ybjcosybj)}ψ(x)
(10)

where

ψ(x) = sin
λmx

L
+Amcos

λmx

L
+Bmsinh

λmx

L
+ Cmcosh

λmx

L
(11)

and

ψ(ut) = sin
λmut

L
+Amcos

λmut

L
+Bmsinh

λmut

L
+ Cmcosh

λmut

L

≤
n∑

m=1

| µpgC2
m

ybj(αu4i − y4bj)
{ybjψ̈(ut)− y3bjψ(ut) + 2αu2i (Cm

αuisinybjt)− ybj(cosybj)}ψ(x)|

(12)

where, Am, Bm and Cm are constants to be determined using the boundary condi-
tions.
Since ψ(x) are the normal functions for transversed vibration of the uniform beam,
they are bounded [9], that is

|ψ(x)| ≤ δ0 <∞ (13)

also,
|ψ′(x)| ≤ δa0 <∞ (14)

|ψ′′(x)| ≤ δb0 <∞ (15)

|ψ′′′(x)| ≤ δc0 <∞ (16)

Similarly, [9], ψ(ut), ψ̇(ut), ψ̈(ut),
...
ψ(ut) are bounded and we have

|ψ(ut)| ≤ δ1 <∞ (17)

|ψ̇(ut)| ≤ δ2 <∞ (18)

|ψ̈(ut)| ≤ δ3 <∞ (19)

Consequently, equation (9) can be written as

|ψ̄(ut)| = |
∞∑

m=1

µpgC2
m

ybj(αu4i − y4bj)
{ybjψ̈(ut)− y3bjψ(ut) + 2αu2i (Cm

αuisinybjt− ybjcosybj)}ψ(x)|
(20)

|ψ̄(ut)| ≤ |
∞∑

m=1

µpgC2
m

ybj(αu4i − y4bj)
{ybjψ̈(ut)− y3bjψ(ut) + 2αu2i (Cm

αuisinybjt− ybjcosybj)}ψ(x)|
(21)

|ψ̄(ut)| ≤ |
∞∑

m=1

µpgC2
m

ybj(αu4i − y4bj)
{ybjδ3 − y3bjδ1 + 2Cmα

3
k − 2ybjαu

2
i }|δ0 (22)

Considering the first series on the righthand side of the above inequality, that is

λ0 =
n∑

m=1

δ1
y4bj − αu4i

(23)
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To investigate the above series, we recall the following definitions

αui =
λiut
L

(24)

ηmm =
2N2

aj − λ(F1HA(r, k,m))N2
aj − Γ1HB(r, k,m)

2N2
aj

(25)

ηmm = σm[1− λ

2
(F1HA(r, k,m)− Γ1HB(r, k,m)

N2
aj

)] (26)

where

HA(r, k,m) =
u

2
RE(k,m) +

2u

π

∞∑
n=0

cos(2n+ 1)πut

2n+ 1
(RF (r, k,m)−

RG(r, k,m))

(27)

HB(r, k,m) =
u2

2
RA(k,m) +

u2

π

∞∑
n=0

cos(2n+ 1)πut

2n+ 1
(RH(r, k,m)−

RI(r, k,m))

(28)

But

σm = ωmSmm (29)

Smm =
1√

EINajL2u2i
(EIHA(t)−NHB(t) +HC(t) +H0(t) +HE(t)) (30)

At this juncture, we recall that

ω2
m =

η4mEI

L4
m̄

(31)

Where ωm is the natural circular frequency of the free vibration of the beam and;

HA(t) =

∫ L

0

ψ(x, t)ψiv
m(x)dx (32)

HB(t) =

∫ L

0

ψiv
m(x, t)ψ(x)dx (33)

HC(t) =

∫ L

0

H[x− ut]ψ̈(x, t)ψm(x)dx (34)

HD(t) = 2Mu2
∫ L

0

H[x− ut]ψ̇′(x, t)ψm(x)dx (35)

HE(t) =Mu2
∫ L

0

H[x− ut]ψ̇′′(x, t)ψm(x)dx (36)

From equation (22), it is straightforward to show that

ηmm = ωmSmm{1− λ

2
(F1HA(r, k,m)− Γ1HB(r, k,m)

ω2
mS

2
mmN

2
aj

)} (37)

Similarly, from (23) and (30), one obtains

α4
k = ω2

kS2k (38)

S2k =
Mu4

EIL4
(39)
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Using (36) and (37), one obtains

λa =
n∑

m=1

δ3
Smpω4

mS2kω2
k

(40)

where,

Smp = SA
rp{1−

λ

2
(F1HA(r, k,m)− HB(r, k,m)

ω2
mS

2
rpN

2
aj

)} (41)

|HA(t)| ≤
∫ L

0

|ψ(x, t)||ψiv
m(x)|dx ≤ δ0δ1L <∞ (42)

|HB(t)| ≤
∫ L

0

|ψiv(x, t)||ψm(x)|dx ≤ δ0δ1L <∞ (43)

|HC(t)| ≤
∫ L

0

|H[x− ut]ψ̈(x, t)||ψm(x)|dx < δ3δ0L
2 <∞ (44)

|HD(t)| ≤
∫ L

0

|2MUH[x− ut]ψ̇′(x, t)||ψm(x)|dx < δ4δ0L
3 <∞ (45)

|HE(t)| ≤
∫ L

0

|MU2H[x− ut]ψ′′(x, t)||ψm(x)|dx < δ5δ0L
4 <∞ (46)

In view of the above

|Smp| ≤
u2√

EI(δ0L3αu2i )
(EIδ2δ1L−Nδ2δ0L+ δ3δ0L

2 + δ4δ0L
3+

δ20L)
1
2 <∞

(47)

Consequently,

Smp ≤ δ451{1−
λ

2
(F1δ0δ1 +

Γ1δ2δ0
ω2
mδ

4
51δ

2
0L

)} ≤ δ5 <∞. (48)

Thus

|λa| ≤
∞∑

m=1

| δ3
Smpω4

m − S2kω2
k

| ≤
n∑

m=1

| δ3
δ5ω4

m

| (49)

=
δ3
δ5

n∑
m=1

| 1

ω4
m

| (50)

It is noted that the natural circular frequency ωm, the eigen frequencies of the free
vibration of beam, one known to be real and hence form a countable set except
possibly for a finite number of |ωm|, generally

|ωm+1| > |ωm|. (51)

Thus

| 1

ωm
| > |ωm+1| (52)

Firstly, the convergence of the series
∑

m | 1
ωm

| is sought. Using the ratio test,

lim
m→ ∞ {

1
ωm+1

1
ωm

} = C < 1. (53)

Hence,
∑∞

m=1 |
1

ωm
| is convergent. Similarly,

∑∞
m=1

1
ωm

converges absolutely. In

view of this,
∑

( 1
ω )

r, r > 1 is also absolutely convergent since the sum, difference



134 O. K. OGUNBAMIKE AND A.O. OWOLANKE EJMAA-2022/10(1)

and product of two absolutely convergent series is absolutely convergent [10].
For convenience, we set

r∑
m=1

1

ωm
= η1 <∞. (54)

It follows that

|λa| ≤
δ3
δ6
η41 (55)

showing that λa is uniformly convergent.
The same argument can be applied to other series in equation (19) to obtain

λb =
n∑

m=1

η23δ1
y4bj − αu4i

(56)

=

n∑
m=1

√
Smpδ1

Smpω2
m − S2m

. (57)

Consequently

|λb| ≤
n∑

m=1

|
√
Smpδ1

Smpω2
m − S2m

|

≤
n∑

m=1

| δ6δ1
δ5ω2

m − S2m
|; where δ6 =

√
δ5

≤
n∑

m=1

| δ6δ1
δ5ω2

m − S2m
|

δ6δ1
δ5

n∑
m=1

| 1

ω2
m

| ≤ |δ6δ1
δ5

n21. (58)

Similarly

λc =
n∑

m=1

CmS3

(Smp)
1
4ω

1
2
m

(59)

where

S3 =
U3

L3
(
m̄

EI
)

3
4

Since the values of the constant Cm in the beam functions are bounded, we set

|Cm| ≤ δ7 <∞ (60)

|λc| ≤
n∑

m=1

| CmS3

(Smp)
1
4ω

1
2
m(S1mω2

m − S2m)
|

≤
n∑

m=1

| δ7S3

δ
1
4
5 ω

1
2
m(δ5ω2

m − S2m)
|

≤
n∑

m=1

| δ7S3

δ
5
4
5 ω

3
2
m

|

=
δ7S3

δ
5
4
5

n∑
m=1

1

w
3
2
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≤ δ7S3η
3
2
1

δ
5
4
5

(61)

Finally, considering the last term, that is

λd =
n∑

m=1

1

y4bj − αu4i
=

n∑
m=1

1

S1mω4
m − S2mω2

m

(62)

It follows from the previous arguments that

|λd| ≤
n∑

m=1

| 1

S1mω4
m − S2mω2

m

|

≤
n∑

m=1

| 1

δ5ω4
m

=
1

δ5

n∑
m=1

| 1
ω4

|

≤ η41
δ5

(63)

Employing the inequalities (54), (56), (60) and (62), the uniform convergence of the
series in (8) is easily established. Accordingly, (8) is not only a formal solution but
is the actual solution to the moving mass.

3.0 CONCLUSION

The present paper focusses on the application of the use of generalized finite integral
transform method. This investigation has yielded several interesting findings con-
cerning the employed solution method as well as the response of uniform cantilever
beams resting on elastic foundation. Convergence of the closed form solution ob-
tained for the initial-boundary value moving problem in [1] has been proved. This
clearly brings into focus the elegance of the versatile technique for the class of
problems in the paper. Unlike other conventional methods, an important advan-
tage of the employed solution technique is that it is capable of solving moving beam
problem [11] for various forms of classical boundary conditions.
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