# GEODETIC EVEN DECOMPOSITION OF GRAPHS 

E. EBIN RAJA MERLY AND T. IWIN JOEL


#### Abstract

Let $G=(V(G), E(G))$ be the graph. For a non empty set $S$ of $V(G)$ we define $I[S]=\cup I[x, y]$, for some $x, y \in S$, where $I[x, y]$ is the closed interval consists of $x, y$ and all vertices lying on some $x-y$ geodesic of $G$. If $G$ is a connected graph, then a set $S$ of vertices is a geodetic set if $I[S]=V(G)$. The cardinality of a geodetic set is called the geodetic number and is denoted as $g(G)$. The decomposition of a graph $G$ is a collection of edgedisjoint subgraphs $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ of $G$ such that every edge of $G$ belongs to exactly one $G_{i}$. A decomposition $\left(G_{2}, G_{4}, \ldots, G_{2 n}\right)$ of graph $G$ admits Geodetic even decomposition if $g\left(G_{2 i}\right)=2 i+1, i=1,2, \ldots, n$ where $g(G)$ is the geodetic number of a graph $G$.


## 1. Introduction

A graph $G$ consist of a pair $(V(G), E(G))$ where $V(G)$ is a non-empty finite set whose elements are called vertices and $E(G)$ is a set of unordered pair of distinct elements of $V(G)$. The elements of $E(G)$ are called the edges of the graph $G$. In graph theory the concept of geodetic set was introduced by Gary Chartrand, Frank Harary and Ping Zhang [3]. If $G$ is a connected graph then the distance $d(x, y)$ is the length of a shortest $x-y$ path in $G$, where $x$ and $y$ are any two vertices in $G$. An $x-y$ path of length $d(x, y)$ is called an $x-y$ geodesic. For non empty set $S$ of $V(G)$ we define $I[S]=\cup I[x, y]$, for some $x, y \in S$, where $I[x, y]$ is the closed interval consists of $x, y$ and all vertices lying on some $x-y$ geodesic of $G$. If $G$ is a connected graph, then a set $S$ of vertices is a geodetic set if $I[S]=V(G)$. The cardinality of a geodetic set is called the geodetic number and is denoted as $g(G)$. In [4] we introduced "Geodetic Decomposition of Graphs". In this paper we develop a new concept "Geodetic Even Decomposition of Graphs".
Definition 1.1 [2] The decomposition of a graph $G$ is a collection of edge-disjoint subgraphs $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ of $G$ such that every edge of $G$ belongs to exactly one $G_{i}$.

Definition 1.2 [2] Caterpillar is a tree in which the removal of pendant vertices results in a path. Lobster is a tree in which the removal of pendant vertices results in a caterpillar.

[^0]Definition 1.3 [2] In a lobster $L$, the vertex with degree atleast 3 is called a junction of $L$.
Definition 1.4 [2] An edge $e=u v$ in $L$ such that $u$ is adjacent to a junction and $v$ is adjacent to another junction is said to be a junction-neighbor.

Definition 1.5 4 Let $G$ be a any connected graph and $\left(G_{1}, G_{2}, G_{3}, \ldots, G_{n}\right)$ be the decomposition of $G$. The graph $G$ admits Geodetic Decomposition, if the following conditions are satisfied.
(i) Each $G_{i}$ is connected
(ii) Each edge of $G$ is in exactly one $G_{i}$
(iii) $g\left(G_{i}\right)=i+1(i \geq 1)$, where $g(G)$ is the geodetic number of a graph $G$.

## 2. Geodetic Even Decomposition

Definition 2.1 A decomposition $\left(G_{2}, G_{4}, \ldots, G_{2 n}\right)$ of a graph $G$ is said to be geodetic even decomposition if
(i) Each $G_{2 i}$ is connected
(ii) Each edge of $G$ is in exactly one $G_{2 i}$
(iii) $g\left(G_{2 i}\right)=2 i+1, i=1,2, \ldots, n$.

Example 2.2 The following figure illustrates geodetic even decomposition of $G$.


Figure 1. Geodetic Even Decomposition $\left(G_{2}, G_{4}\right)$ of graph $G$
Here $g\left(G_{2}\right)=3$ and $g\left(G_{4}\right)=5$. Then $G$ admits Geodetic Even Decomposition $\left(G_{2}, G_{4}\right)$.

Remark 2.3 Every path does not admits geodetic even decomposition, since the geodetic number of each path is 2 .

Theorem 2.4 A Lobster $L$ admits Geodetic Even Decomposition
$\left(G_{2}, G_{4}, \ldots, G_{2 n-2}\right)$ if and only if $q=n^{2}-1(n \geq 2)$.
Proof. Let $L$ be a Lobster with $n^{2}-1$ edges. To Prove $L$ admits Geodetic Even Decomposition $\left(G_{2}, G_{4}, \ldots, G_{2 n-2}\right)$. We prove this by induction on $n$.
Let $n=2$. Then $L$ has 3 edges and $L=S_{3}$. Let it be $G_{2}$. Clearly $g\left(G_{2}\right)=3$.

Hence the result is true, when $n=2$.
Assume the result is true, when $n=k-1$. Then $L$ has $(k-1)^{2}-1$ edges and $L$ admits geodetic even decomposition $\left(G_{2}, G_{4}, \ldots, G_{2 k-6}, G_{2 k-4}\right)$ where $G_{2 i}=S_{2 i+1}$, $i=1,2, \ldots, k-3, k-2$.
Prove the result, when $n=k$. Let $L$ has $k^{2}-1$ edges. Then $L=G_{2} \cup G_{4} \cup \ldots \cup$
$G_{2 k-4} \cup G_{2 k-2}$.
By induction hypothesis $G_{2 i}=S_{2 i+1}, i=1,2, \ldots, k-3, k-2$ and satisfies $g\left(G_{2 i}\right)=$ $2 i+1, i=1,2, \ldots, k-3, k-2$. Then clearly $G_{2 k-2}=S_{2 k-1}$ and $g\left(G_{2 k-2}\right)=2 k-1$. Thus the induction is proved and hence the theorem.
Conversely, assume that $L$ admits Geodetic Even Decomposition $\left(G_{2}, G_{4}, \ldots, G_{2 n-2}\right)$. Then $G_{i}=S_{i+1}, i=2,4,6, \ldots, 2 n-2$. Therefore $q=n^{2}-1$.
Result 2.5 If $L$ admits Geodetic Even Decomposition $\left(G_{2}, G_{4}, G_{6}, \ldots, G_{2 n-2}\right)$, then $\operatorname{diam}(L)=2 n-2$.
Theorem 2.6 Let $L$ be a Lobster with $\operatorname{diam}(L)=2 n-2$. Then $L$ admits Geodetic Even Decomposition $\left(G_{2}, G_{4}, G_{6}, \ldots, G_{2 n-2}\right)$ if and only if
(i) $L$ is a caterpillar
(ii) There are $(n-1)$ non-adjacent junction supports in $L$ whose degrees are $3,5,7, \ldots, 2 n-1$ respectively and
(iii) There is no junction-neighbor in $L$

Proof. Given that $L$ is a Lobster with $\operatorname{diam}(L)=2 n-2$. Assume that $L$
admits Geodetic Even Decomposition $\left(G_{2}, G_{4}, G_{6}, \ldots, G_{2 n-2}\right)$ where $G_{i}=S_{i+1}, i=$ $2,4,6, \ldots, 2 n-2$. Since $\operatorname{diam}(L)=2 n-2$, the centre of each $G_{i}{ }^{\prime} s$ are lie in the longest path $P$ of $L$. Then $L$ is caterpillar.
Let $u_{3}, u_{5}, u_{7}, \ldots, u_{2 n-1}$ be the centres of $G_{2}, G_{4}, G_{6}, \ldots, G_{2 n-2}$ respectively. Then clearly they are junctions. Also since $\operatorname{diam}(L)=2 n-2$, all the centres are distinct and are supports. Hence there are $(n-1)$ non-adjacent junction supports whose degrees are $3,5,7, \ldots, 2 n-1$ respectively.
Now to prove (iii). Suppose there is one junction-neighbor $e_{1}=a_{1} b_{1}$.


Figure 2. Geodetic Even Decomposition of Lobster
From figure 2, their exits junction supports $u_{i}, u_{j}$ such that $d\left(u_{i}, u_{j}\right)=3$.
Thus $E(L)-E\left(G_{2} \cup G_{4} \cup G_{6} \cup \ldots \cup G_{2 n-2}\right)=1$, which is a contradiction to $q=n^{2}-1$.
Hence there is no junction-neighbor in $L$.
Conversely, assume (i),(ii),(iii).
Clearly $L$ admits Geodetic Even Decomposition $\left(G_{2}, G_{4}, G_{6}, \ldots, G_{2 n-2}\right)$.
Theorem 2.7 Let $L$ be a Lobster with $\operatorname{diam}(L)=2 n-4$ and $n-2$ distinct supports with no junction neighbor in the longest path $P$ of $L$ and $N_{2} \neq \emptyset$. Then $L$ admits

Geodetic Even Decomposition $\left(G_{2}, G_{4}, \ldots, G_{2 n-2}\right)$ with distinct centres if and only if
(i) No vertex of exactly one $G_{2 n-2}(n \geq 3)$ is in the longest path $P$
(ii) All the vertices of $N_{2}$ are adjacent to exactly one vertex of $N_{1}$

Proof. Assume that $L$ admits Geodetic Even Decomposition $\left(G_{2}, G_{4}, \ldots, G_{2 n-2}\right)$ where $G_{i}=S_{i+1}, i=2,4,6, \ldots, 2 n-2$.
To prove (i). Suppose not, atleast one vertex of each $G_{2 n-2}(n \geq 3)$ is in $P$. Then there exist $(n-1)$ junction supports in $L$ not all them are distinct, which is a contradiction. Hence no vertex of exactly one $G_{2 n-2}(n \geq 3)$ is in the longest path $P$.
Suppose $\left|N_{2}\right|=3$. Therefore no vertex of $G_{2}$ is in $P$. It is enough to prove all the vertices of $N_{2}$ are adjacent to exactly one vertex of $N_{1}$.
Suppose the vertices of $N_{2}$ are adjacent to two distinct vertices $v_{i}$ and $v_{i+1}$ of $N_{1}$.


Figure 3. Geodetic Even Decomposition of Lobster
From figure 3 , there exist $G_{i}$ and $G_{i+1}(i=3,4,5, \ldots, 2 n-2)$ such that $v_{i}$ and $v_{i+1}$ are the centres of $G_{i}$ and $G_{i+1}$ respectively. Since $L$ admits Geodetic Even Decomposition $\left(G_{2}, G_{4}, \ldots, G_{2 n-2}\right)$, the existence of $G_{i}$ and $G_{i+1}$ are not possible. Hence our assumption is wrong.
Therefore all the vertices of $N_{2}$ are adjacent to exactly one vertex of $N_{1}$.
Continuing in this way, no vertex of $G_{2 n-2}$ is in $P$ and vertices of $N_{2}$ are adjacent to exactly one vertex of $N_{1}$, if $\left|N_{2}\right|=2 n-2$.
Hence $\left|N_{2}\right| \geq 2 n-2,(n \geq 3)$ and all the vertices of $N_{2}$ are adjacent to exactly one vertex of $N_{1}$.
Conversely assume (i) and (ii).
To prove $L$ admits Geodetic Even Decomposition. Since $\operatorname{diam}(L)=2 n-4$ and $N_{2}=\emptyset$, then there exists atleast one $G_{2 n-2}$ (say) such that the centre of $G_{2 n-2}$ is not in $P$. Since there are $n-2$ distinct junction supports with no junction neighbor in $P, n-3$ subgraphs exist in $L$. Since $q=n^{2}-1$ and all the vertices of $N_{2}$ are adjacent to exactly one vertex of $N_{1}$, then $n-2$ subgraphs exists and satisfies the condition $g\left(G_{i}\right)=i+1(i=2,4, \ldots, 2 n-2)$. Hence the proof.

## References

[1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier science publishing Co.North Holland, 1982.
[2] E.E.R Merly and N. Gnanadhas, Linear Star Decomposition of Lobster, International Journal of Contemporary Mathematical Sciences, Vol.7, No.6, 251-261, 2012.
[3] G. Chartrand, F. Harary and P. Zhang, Geodetic sets in graph, Discussions Mathematicae Graph Theory, Vol.20, 129-138, 2000.
[4] T. I. Joel and E. E. R. Merly, Geodetic Decomposition of Graphs, Journal of Computer and Mathematical Sciences, Vol.9, No.7, 2018.
[5] T. I. Joel and E. E. R. Merly, Double Geodetic Decomposition of Graphs, International Journal of Scientific Research and Review, Vol.7, No.8, 19-22, 2018.
[6] T. I. Joel and E. E. R. Merly, Connected Geodetic Decomposition of Graphs, Journal of Applied Science and Computations, Vol.VI, No.III, 2833-2837, 2019.
[7] T. I. Joel and E. E. R. Merly, Connected Double Geodetic Decomposition of Graphs, International Journal of Scientific Research and Review, Vol.8, No.4, 13-17, 2019.
E. Ebin Raja Merly

Associate Professor, Department of Mathematics, Nesamony Memorial Christian
College, Marthandam-629165, Tamil Nadu, India
Email address: ebinmerly@gmail.com
T. Iwin Joel

Assistant Professor, Department of Mathematics, Nanjil Catholic College of Arts \& Science, Kaliyakkavilai-629153, Tamil Nadu, India

Email address: iwinjoel@gmail.com


[^0]:    2010 Mathematics Subject Classification. 05C70.
    Key words and phrases. decomposition, geodetic number, Geodetic even decomposition. Submitted Feb. 24, 2021.

