ON GENERALIZED EULER-MASCHERONI CONSTANTS

G. ABE-I-KPENG, M. M. IDDRISU AND K. NANTOMAH

Abstract

In this study, we establish two new representations of the Euler-Mascheroni constant and provide an elementary proof for the classical Euler-Mascheroni constant related to the Riemann zeta function. New representations for the EulerMascheroni constant are also derived.

1. INTRODUCTION

[8] introduced a generalized gamma function $\Gamma_{k}(z)$ for $k \in \mathbb{N}_{0}$ which relates to the constant γ_{k} as $\Gamma(z)$ does to γ. The generalized Euler-Mascheroni constant is defined by

$$
\begin{equation*}
\gamma_{k}=\lim _{n \rightarrow \infty}\left(-\frac{\ln ^{k+1} n}{k+1}+\sum_{j=1}^{n} \frac{\ln ^{k} j}{j}\right), k=0,1,2, \ldots \tag{1.1}
\end{equation*}
$$

and are coefficients of the Laurent expansion of the Riemann zeta function $\zeta(s)$ about $s=1$:

$$
\zeta(s)=\frac{1}{s-1}+\sum_{k=0}^{\infty} A_{k}(s-1)^{k}, \operatorname{Re}(s) \geq 0
$$

where $A_{k}=\frac{(-1)^{k}}{k!} \gamma_{k}$.
The constant, A_{k}, was first defined by Stieltjes in 1885 and has been studied extensively by other authors. It is worth noting that $\gamma_{0}=\gamma$ is the Euler-Mascheroni constant.
[3] observed that the limit for evaluating (1.1) using Euler-Maclaurin summation is when $k=35$ and thus established an integral representation to compute the first 2000 Euler-Mascheroni constants. A seris expansion for γ_{k} was derived in [8] as follows:

$$
\begin{equation*}
\gamma_{k}=-\frac{1}{k+1} \ln ^{k+1}\left(\frac{3}{2}\right)+(-1)^{k} k!\sum_{n=1}^{\infty} \frac{1}{4^{n}(2 n+1)} \cdot \sum_{j=1}^{\infty} \frac{(-1)^{j} s(2 n+1, j)}{(k+1-j)!} \zeta^{(k+1-j)}(2 n+1), \tag{1.2}
\end{equation*}
$$

[^0]where $k \in \mathbb{N}$.
[7] studied the distribution of a family $\{\gamma(P)\}$ of generalized Euler-Mascheroni constant for finite set of primes P and established a connection between the distribution of $\gamma\left(P_{r}\right)-\exp (-\gamma)$ and the Riemann hypothesis where P_{r} is the set of the first r primes.
In [10], sharp upper and lower bounds for the generalized Euler-Mascheroni constant were established as well as improvements for previous bounds of the classical Euler-Mascheroni constant. A one parameter generalization of the Eulermascheroni constant was examined in [11] and various representations for γ derived. [13] presented a generalized Euler-Mascheroni constant function $\gamma(z)$, extented two Euler's zeta function series involving γ to polylogarithm series for $\gamma(z)$ and further generalized Somo's quadratic recurrence constant.

2. Materials and Methods

The Riemann zeta is defined by

$$
\begin{align*}
\zeta(s) & =\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \operatorname{Re}(s)>1 \tag{2.1}\\
& =\prod_{p}\left(1-p^{-s}\right)^{-1}, \operatorname{Re}(s)>1 \tag{2.2}
\end{align*}
$$

where p is a prime number.
The derivatives of the Riemann zeta function is given by

$$
\begin{equation*}
\zeta^{k}(s)=(-1)^{k} \sum_{n=1}^{\infty} \frac{\ln ^{k} n}{n^{s}} \tag{2.3}
\end{equation*}
$$

The digamma function is given by the logarithmic derivative of the gamma function:

$$
\begin{equation*}
\psi(z)=\frac{d \ln \Gamma(z)}{d z}=\frac{\Gamma "(z)}{\Gamma(z)} . \tag{2.4}
\end{equation*}
$$

The digamma function is defined by

$$
\begin{equation*}
\psi(z+1)+\gamma=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+z}\right), z \in \mathbb{C} \tag{2.5}
\end{equation*}
$$

where γ is the Euler-Mascheroni constant.
For $|z|<1$,

$$
\begin{align*}
\ln \Gamma(z+1) & =-\gamma z+\sum_{k=2}^{\infty} \frac{(-1)^{k} \zeta(k)}{k} z^{k} \tag{2.6}\\
& =-\ln (1+z)-(\gamma-1) z+\sum_{k=2}^{\infty} \frac{(-1)^{k}(\zeta(k)-1)}{k} z^{k} \tag{2.7}
\end{align*}
$$

To expand $\ln \Gamma(z+1)$ in a power series about $z=0$, stirling numbers are utilized. The stirling numbers of the first kind, $s(m, j)$, is defined by the generating function as

$$
\begin{equation*}
\ln ^{j}\left(1+\frac{z}{n}\right)=\sum_{n=j}^{\infty} \frac{j!}{m!} s(m, j)\left(\frac{z}{n}\right)^{m} \tag{2.8}
\end{equation*}
$$

where $|z|<1$.
Alternatively, stirling numbers of the first kind are also defined as

$$
\begin{equation*}
\frac{1}{j} \ln ^{j}(1+t)=\sum_{m=j}^{\infty} s(n, j) \frac{t^{n}}{n!} \tag{2.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\ln ^{j}(1-t)=\sum_{n=j}^{\infty} \frac{(-1)^{n}}{n!} s(n, j) t^{n} \tag{2.10}
\end{equation*}
$$

From the above, we see that $s(n, 1)=(-1)^{n-1}(n-1)!, s(n, n)=1$,
$s(n, 2)=(-1)^{n}(n-1)!\sum_{j=1}^{n-1} \frac{1}{j}$ and
$s(n, 3)=\frac{1}{2}(-1)^{n+1}\left(H_{n-1}^{2}-H_{n-1}^{(2)}\right)$,
where H_{n-1} is the $(n-1)$ th harmonic number and $H_{n-1}^{(2)}$ is a harmonic number of order 2.
[2] established a generalized gamma function and some identities as follows:
Definition 2.1. For $z \in \mathbb{C} \backslash \mathbb{Z}^{-} U\{0\}$ and $k \in \mathbb{N}_{0}$,

$$
\begin{equation*}
\Gamma_{k}(z)=\lim _{n \rightarrow \infty} \frac{\prod_{j=1}^{n} \exp \left(\frac{1}{k+1} \ln ^{k+1}\left(1+\frac{1}{j}\right)^{z}\right)}{\exp \left(\frac{1}{k+1} \ln ^{k+1} z\right) \prod_{j=1}^{n} \exp \left(\frac{1}{k+1} \ln ^{k+1}\left(1+\frac{z}{j}\right)\right)} \tag{2.11}
\end{equation*}
$$

and a functional equation

$$
\begin{equation*}
\Gamma_{k}(z+1)=\exp \left(\frac{1}{k+1} \ln ^{k+1} z\right) \Gamma_{k}(z) \tag{2.12}
\end{equation*}
$$

The identity was established as
$\frac{1}{\Gamma_{k}(z)}=e^{\gamma_{k} z} \exp \left(\frac{1}{k+1} \ln ^{k+1} z\right) \prod_{j=1}^{\infty} \exp \left(\frac{1}{k+1} \ln ^{k+1}\left(1+\frac{z}{j}\right)\right) \exp \left(\frac{-z}{j} \ln ^{k} j\right)$.
where γ_{k} is the generalized Euler-Mascheroni constant.
We also find the following identities:

$$
\begin{equation*}
\Gamma_{k}(z) \Gamma_{k}(1-z)=\frac{1}{t_{k}(z)} \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{k}(1+z) \Gamma_{k}(1-z)=\frac{1}{\prod_{j=1}^{\infty} \exp \left(\frac{1}{k+1} \ln ^{k+1}\left(1-\frac{z^{2}}{j^{2}}\right)\right)} \tag{2.15}
\end{equation*}
$$

where

$$
\begin{equation*}
t_{k}(z)=\exp \left(\frac{1}{k+1} \ln ^{k+1} z\right) \prod_{j=1}^{\infty} \exp \left(\frac{1}{k+1} \ln ^{k+1}\left(1-\frac{z^{2}}{j^{2}}\right)\right) \tag{2.16}
\end{equation*}
$$

and established the identity

$$
\begin{equation*}
\ln \Gamma_{k}(z+1)=-\gamma_{k} z-(-1)^{k} k!\sum_{m=2}^{\infty} \frac{z^{m}}{m!} \sum_{n=1}^{m} \frac{s(m, n)}{(k+1-n)!} \zeta^{(k+1-n)}(m) \tag{2.17}
\end{equation*}
$$

for $-1<z \leq 1$.
If f_{n} is a sequence in a measurable function space L^{+}, by the monotone convergence theorem we have (see [9])

$$
\begin{equation*}
\int \sum_{n} f_{n}=\sum_{n} f_{n} \int f_{n} \tag{2.18}
\end{equation*}
$$

By Ramanujan ([4]), we have

$$
\begin{equation*}
\gamma=1-\sum_{k=1}^{\infty} \frac{\zeta(2 k+1)}{(k+1)(2 k+1)} \tag{2.19}
\end{equation*}
$$

Also in [12] we have

$$
\begin{equation*}
\gamma=\ln 2-\sum_{k=1}^{\infty} \frac{\zeta(2 k+1)}{(2 k+1)^{2 k}} \tag{2.20}
\end{equation*}
$$

Euler discovered a formula for calculating $\zeta(2 k)$ as

$$
\begin{equation*}
\zeta(2 k)=\frac{(-1)^{k}(2 \pi)^{2 k} B_{2 k}}{2(2 k)!} \tag{2.21}
\end{equation*}
$$

where $k \in \mathbb{N}$.
[1] also established that

$$
\begin{equation*}
\zeta(2 k+1)=\frac{(-1)^{1-k}(2 \pi)^{2 k+1}}{2(2 k+1)!} \int_{0}^{1} B_{2 k+1}(t) \cot (\pi t) d t \tag{2.22}
\end{equation*}
$$

where $k \in \mathbb{N}$.
The generalized Clausen function is defined by

$$
\begin{equation*}
C l_{2 k+1}(t)=\sum_{n=1}^{\infty} \frac{\cos (n t)}{n^{2 k+1}} C l_{2 k+1}(t) \tag{2.23}
\end{equation*}
$$

or

$$
\begin{equation*}
C l_{2 k}(t)=\sum_{n=1}^{\infty} \frac{\sin (n t)}{n^{2} k} \tag{2.24}
\end{equation*}
$$

[6] established a formular for $\zeta(2 k+1)$ involving the Clausen function as

$$
\begin{equation*}
\zeta(2 k+1)=\frac{2^{4 k+1}}{1-2^{2 k}} C l_{2 k+1}\left(\frac{\pi}{2}\right) \tag{2.25}
\end{equation*}
$$

In [2], we have
$\ln ^{k+1}(j+1)-\ln ^{k+1} j=\frac{1}{j}(k+1) \ln ^{k} j+\sum_{m=2}^{\infty}\left(\frac{1}{j}\right)^{m} \frac{1}{m!} \sum_{n=1}^{m} \frac{(k+1)!}{(k+1-n)!} s(m, n) \ln ^{k+1-n} j$,
for $|z|<1$.

3. Results and Discussion

We begin this section by establishing a lemma which will be useful in proving one of the theorems.
Lemma 3.1. Let $z=\frac{1}{2}$. Then

$$
\begin{equation*}
\ln \Gamma_{k}\left(\frac{3}{2}\right)=\frac{1}{k+1} \ln ^{k+1} \frac{1}{2}-\ln t_{k}\left(\frac{1}{2}\right) . \tag{3.1}
\end{equation*}
$$

Proof. Applying logarithm on (2.12), we get

$$
\begin{equation*}
\ln \Gamma_{k}(z+1)=\frac{1}{k+1} \ln ^{k+1} z+\ln \Gamma_{k}(z) \tag{3.2}
\end{equation*}
$$

and substituting $z=\frac{1}{2}$ into it yields

$$
\begin{equation*}
\ln \Gamma_{k}\left(\frac{3}{2}\right)=\frac{1}{k+1} \ln ^{k+1} \frac{1}{2}+\ln \Gamma_{k}\left(\frac{1}{2}\right) . \tag{3.3}
\end{equation*}
$$

Also, by substituting $z=\frac{1}{2}$ into (3.17), we obtain

$$
\begin{equation*}
\ln \Gamma_{k}\left(\frac{3}{2}\right)=\frac{1}{k+1} \ln ^{k+1} \frac{1}{2}-\ln t_{k}\left(\frac{1}{2}\right)-\ln \Gamma_{k}\left(\frac{1}{2}\right) \tag{3.4}
\end{equation*}
$$

By making $\ln \Gamma_{k}\left(\frac{1}{2}\right)$ the subject from (3.3) and substituting into (3.4), we obtain

$$
\begin{equation*}
\ln \Gamma_{k}\left(\frac{3}{2}\right)=\frac{1}{k+1} \ln ^{k+1} \frac{1}{2}-\ln t_{k}\left(\frac{1}{2}\right), \tag{3.5}
\end{equation*}
$$

which completes the proof.
Theorem 3.2. Let $k=0,1,2, \ldots$ Then

$$
\begin{equation*}
\gamma_{k}=-\sum_{m=2}^{\infty} \frac{1}{m!} \sum_{n=1}^{m} \frac{k!}{(k+1-n)!} s(m, n) \zeta^{(k+1-n)}(m) . \tag{3.6}
\end{equation*}
$$

Proof. Taking logarithm on both sides of (2.13), we obtain

$$
\begin{equation*}
\gamma_{k} z=-\ln \Gamma_{k}(z)-\frac{1}{k+1} \ln ^{k+1} z-\sum_{j=1}^{\infty} \frac{1}{k+1} \ln ^{k+{ }^{‘} 1}\left(1+\frac{z}{j}\right)+\sum_{j=1}^{\infty} \frac{z}{j} \ln ^{k} j \tag{3.7}
\end{equation*}
$$

Taking again logarithm on both sides of (2.11), we obtain

$$
\begin{equation*}
\ln \Gamma_{k}(z)=\sum_{j=1}^{\infty} \frac{z}{k+1} \ln ^{k+1}\left(1+\frac{1}{j}\right)-\frac{1}{k+1} \ln ^{k+1} z-\sum_{j=1}^{\infty} \frac{1}{k+1} \ln ^{k+1}\left(1+\frac{z}{j}\right) \tag{3.8}
\end{equation*}
$$

Substituting (3.8) into (3.7) yields

$$
\begin{equation*}
\gamma_{k}=\sum_{j=1}^{\infty} \frac{1}{j} \ln ^{k} j-\sum_{j=1}^{\infty} \frac{1}{k+1} \ln ^{k+1}\left(1+\frac{1}{j}\right) . \tag{3.9}
\end{equation*}
$$

By (2.26), we get

$$
\gamma_{k}=\sum_{j=1}^{\infty} \frac{1}{j} \ln ^{k} j-\frac{1}{k+1}\left(\sum_{j=1}^{\infty} \frac{(k+1)}{j} \ln ^{k} j+\sum_{m=2}^{\infty}\left(\frac{1}{j}\right)^{m} \frac{1}{m!} \sum_{n=1}^{m} \frac{(k+1) k!}{(k+1-n)!} s(m, n) \ln ^{k+1-n}(m)\right) .
$$

Simplifying, we obtain

$$
\begin{aligned}
\gamma_{k} & =-\sum_{m=2}^{\infty}\left(\frac{1}{j}\right)^{m} \frac{1}{m!} \sum_{n=1}^{m} \frac{k!}{(k+1-n)!} s(m, n) \ln ^{k+1-n}(m) \\
& =-\sum_{m=2}^{\infty} \frac{1}{m!} \sum_{n=1}^{m} \frac{k!}{(k+1-n)!} s(m, n)(-1)^{k+1-n} \sum_{m=2}^{\infty} \frac{\ln ^{k+1-n}(m)}{j^{m}} .
\end{aligned}
$$

By (2.3), the proof is complete.
Remark 3.1. For $k=0$, (3.6) becomes

$$
\begin{align*}
\gamma & =-\sum_{m=2}^{\infty} \frac{1}{m!} \sum_{n=1}^{m} \frac{s(m, n)}{(1-n)!} \zeta^{(1-n)}(m), \\
& =-\sum_{m=2}^{\infty} \frac{(-1)^{m}(-1)}{m} \zeta(m), \\
& =\sum_{m=2}^{\infty} \frac{(-1)^{m}}{m} \zeta(m) \tag{3.10}
\end{align*}
$$

which is a known result due to Euler.
Remark 3.2. If $k=1$ in (3.6), we obtain

$$
\begin{aligned}
\gamma_{1} & =-\left(\sum_{m=2}^{\infty} \frac{1}{m!} \sum_{n=1}^{m} \frac{s(m, n)}{(2-n)!} \zeta^{(2-n)}(m)\right) \\
& =-\left(\sum_{m=2}^{\infty} \frac{1}{m!}\left(\frac{s(m, 1)}{1!} \zeta^{\prime}(m)+\frac{s(m, 2)}{0!} \zeta(m)\right)\right) .
\end{aligned}
$$

By (2.8) yields

$$
\begin{align*}
\gamma_{1} & =\sum_{m=2}^{\infty} \frac{(-1)^{m}}{m} \zeta^{\prime}(m)-\sum_{m=2}^{\infty}\left(\frac{(-1)^{m}}{m} \zeta(m)\left(\sum_{i=1}^{m-1} \frac{1}{i}\right)\right) \\
& =\sum_{m=2}^{\infty} \frac{(-1)^{m}}{m} \zeta^{\prime}(m)-\gamma \sum_{m=2}^{\infty}\left(\sum_{i=1}^{m-1} \frac{1}{i}\right) \\
& =\sum_{m=2}^{\infty} \frac{(-1)^{m}}{m} \zeta^{\prime}(m)-\gamma \sum_{m=2}^{\infty} H_{m-1} . \tag{3.11}
\end{align*}
$$

Remark 3.3. If $k=2$ in (3.6), we get

$$
\begin{equation*}
\gamma_{2}=\sum_{m=2}^{\infty} \frac{(-1)^{m}}{m} \zeta^{\prime \prime}(m)+2 \sum_{m=2}^{\infty} \frac{(-1)^{m}}{m} H_{m-1} \zeta^{\prime}(m)+\gamma \sum_{m=2}^{\infty}\left(H_{m-1}^{2}-H_{m-1}^{(2)}\right) \tag{3.12}
\end{equation*}
$$

where γ is the Euler-Mascheroni constant, H_{n-1} is the $(n-1)$ th harmonic number and H_{n-1}^{2} is a harmonic number of order 2.
Theorem 3.3. Let $k=0,1,2, \ldots$ Then
$\gamma_{k}=\frac{1}{k+1} \ln ^{k+1} 2-(-1)^{k} k!\sum_{m=2}^{\infty} \frac{1}{4^{m}(2 m+1)!} \sum_{n=1}^{m} \frac{s(2 m+1, n)}{(k+1-n)!} \zeta^{(k+1-n)}(2 m+1)$.

Proof. Replacing z with $-z$ in (2.17), we get

$$
\begin{equation*}
\ln \Gamma_{k}(1-z)=\gamma_{k} z+(-1)^{k} k!\sum_{m=2}^{\infty} \frac{z^{m}}{m!} \sum_{n=1}^{m} \frac{s(m, n)}{(k+1-n)!} \zeta^{(k+1-n)}(m) . \tag{3.14}
\end{equation*}
$$

Combining (2.14) and (2.15), we obtain

$$
\begin{equation*}
\Gamma_{k}(1+z) \Gamma_{k}(1-z)=\frac{\exp \left(\frac{1}{k+1} \ln ^{k+1} z\right)}{t_{k}(z)} . \tag{3.15}
\end{equation*}
$$

Applying logarithm to (3.15), we get

$$
\begin{equation*}
\ln \Gamma_{k}(1+z)+\ln \Gamma_{k}(1-z)=\frac{1}{k+1} \ln ^{k+1} z-\ln t_{k}(z), \tag{3.16}
\end{equation*}
$$

which further gives

$$
\begin{equation*}
\ln \Gamma_{k}(1+z)=\frac{1}{k+1} \ln ^{k+1} z-\ln t_{k}(z)-\ln \Gamma_{k}(1-z) . \tag{3.17}
\end{equation*}
$$

substituting (3.14) into (3.17) yields
$\ln \Gamma_{k}(z+1)=\frac{1}{k+1} \ln ^{k+1} z-\ln t_{k}(z)-\gamma_{k} z-(-1)^{k} k!\sum_{m=2}^{\infty} \frac{z^{m}}{m!} \sum_{n=1}^{m} \frac{s(m, n)}{(k+1-n)!} \zeta^{(k+1-n)}(m)$.

Adding (2.17) and (3.18) yields
$\ln \Gamma_{k}(z+1)=\frac{1}{2(k+1)} \ln ^{k+1} z-\frac{1}{2} \ln t_{k}(z)-\gamma_{k} z-(-1)^{k} k!\sum_{m=2}^{\infty} \frac{z^{m}}{m!} \sum_{n=1}^{m} \frac{s(m, n)}{(k+1-n)!} \zeta^{(k+1-n)}(m)$.

Thus,
$\ln \Gamma_{k}(z+1)=\frac{1}{2(k+1)} \ln ^{k+1} z-\frac{1}{2} \ln t_{k}(z)-\gamma_{k} z-(-1)^{k} k!\sum_{m=1}^{\infty} \frac{z^{2 m+1}}{(2 m+1)!} \sum_{n=1}^{m} \frac{s(2 m+1, n)}{(k+1-n)!} \zeta^{(k+1-n)}(2 m+1)$.

Substituting $z=\frac{1}{2}$ into (3.20) gives

$$
\begin{align*}
& \ln \Gamma_{k}\left(\frac{3}{2}\right)=\frac{1}{2(k+1)} \ln ^{k+1} \frac{1}{2}-\frac{1}{2} \ln t_{k} \frac{1}{2} \\
& -\frac{1}{2} \gamma_{k}-(-1)^{k} k!\sum_{m=1}^{\infty} \frac{1}{2^{2 m+1}(2 m+1)!} \sum_{n=1}^{m} \frac{s(2 m+1, n)}{(k+1-n)!}{ }^{(k+1-n)}(2 m+1) . \tag{3.21}
\end{align*}
$$

By Lemma 3.1 we have

$$
\begin{equation*}
\gamma_{k}=\frac{-2}{k+1} \ln ^{k+1} \frac{1}{2}+\frac{1}{k+1} \ln ^{k+1} \frac{1}{2}-(-1)^{k} k!2 \sum_{m=1}^{\infty} \frac{1}{2^{2 m+1}(2 m+1)!} \sum_{n=1}^{m} \frac{s(2 m+1, n)}{(k+1-n)!} \zeta^{(k+1-n)}(2 m+1) . \tag{3.22}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\gamma_{k}=\frac{1}{k+1} \ln ^{k+1} 2-(-1)^{k} k!\sum_{m=1}^{\infty} \frac{1}{4^{m}(2 m+1)!} \sum_{n=1}^{m} \frac{s(2 m+1, n)}{(k+1-n)!} \zeta^{(k+1-n)}(2 m+1), \tag{3.23}
\end{equation*}
$$

which completes the proof.
Remark 3.4.
1 For $k=0$ in (3.13), we obtain

$$
\begin{equation*}
\gamma=\ln 2-\sum_{m=1}^{\infty} \frac{1}{4^{m}(2 m+1)} \zeta(2 m+1) . \tag{3.24}
\end{equation*}
$$

2 For $k=1$ in (3.13), we get

$$
\begin{equation*}
\gamma_{1}=\frac{1}{2} \ln ^{2} 2-\sum_{m=1}^{\infty} \frac{1}{2^{2 m-1}(2 m+1)}\left(\zeta^{\prime}(2 m+1)-H_{2 m} \zeta(2 m+1)\right) . \tag{3.25}
\end{equation*}
$$

Now, we restate Euler-Mascheroni constant (3.10) and provide a proof.
Theorem 3.4. (Euler-Mascheroni)

$$
\begin{equation*}
\gamma=\sum_{m=2}^{\infty} \frac{(-1)^{m}}{m} \zeta(m), \tag{3.26}
\end{equation*}
$$

where $\zeta(m)$ is the Riemann zeta function.
Proof. By integrating (2.5) and applying (2.18), we get

$$
\begin{align*}
\ln \Gamma(z+1)+\gamma z & =\sum_{m=1}^{\infty}\left(\frac{z}{m}-\ln (m+z)+\ln (m)\right) \tag{3.27}\\
& =\sum_{m=1}^{\infty}\left(\frac{z}{m}-\ln \left(1+\frac{z}{m}\right)\right) .
\end{align*}
$$

By (2.26) and (2.8), we obtain

$$
\begin{equation*}
\ln \Gamma(z+1)+\gamma z=\sum_{m=2}^{\infty} \frac{(-1)^{m} z^{m}}{m} \zeta(m) . \tag{3.28}
\end{equation*}
$$

and letting $z=1$ completes the proof.
We further give new series representations for the Euler-Mascheroni constant involving Bernoulli numbers, Bernoulli polynomials and generalized clausen functions.

Theorem 3.5.

$$
\begin{equation*}
\gamma=\sum_{k=1}^{\infty} \frac{(-1)^{k}(2 \pi)^{2 k} B_{2 k}}{4 k(2 k)!}-\sum_{k=1}^{\infty} \frac{(-1)^{1-k}(2 \pi)^{2 k+1}}{2(2 k+1)(2 k+1)!} \int_{0}^{1} B_{2 k+1}(t) \cot (\pi t) d t, \tag{3.29}
\end{equation*}
$$

where $B_{2 k}$ and $B_{2 k+1}(t)$ are Bernoulli numbers and polynomials respectively.

Proof. For even values of m in (3.10), we

$$
\begin{equation*}
\gamma=\sum_{m=2}^{\infty} \frac{\zeta(m)}{m}-\sum_{m=2}^{\infty} \frac{\zeta(m+1)}{m+1} . \tag{3.30}
\end{equation*}
$$

If $m=2 k$ for $k \in \mathbb{N}$, we get

$$
\begin{equation*}
\gamma=\sum_{k=1}^{\infty} \frac{\zeta(2 k)}{2 k}-\sum_{k=1}^{\infty} \frac{\zeta(2 k+1)}{2 k+1} . \tag{3.31}
\end{equation*}
$$

Substituting (2.21) and (2.22) into (3.31) completes the proof.
The remark below is a deduction on the Euler-Mascheroni constant associated with the generalized Clausen function.

Remark 3.5. Substituting (2.25) into (2.19) and (2.20) yields

$$
\begin{align*}
\gamma & =1-\sum_{k=1}^{\infty} \frac{2^{k+1}}{\left(1-2^{2 k}\right)(k+1)(2 k+1)} C l_{2 k+1}\left(\frac{\pi}{2}\right), \tag{3.32}\\
& =\ln 2-\sum_{k=1}^{\infty} \frac{2^{k+1}}{\left(1-2^{2 k}\right)(2 k+1)} C l_{2 k+1}\left(\frac{\pi}{2}\right) \tag{3.33}
\end{align*}
$$

where $C l_{2 k+1}(t)$ is a generalized Clausen function.

4. Conclusions

New generalized Euler-Mascheroni constants have been established. For $k=0$ a new seies representation for the classical Euler-Mascheroni constant is established. In addition, we derived expressions for γ involving Bernoulli constants, Bernoulli polynomials and the Clausen function.

References

[1] G. Abe-I-kpeng, M. M. Iddrisu and K. Nantomah, Some identities and inequalities related to the Riemann zeta function, Moroccan Journal of Pure and Applied Analysis, 2, 179-185, 2019
[2] G. Abe-l-kpeng, M. M. Iddrisu and K. Nantomah, On a generalized gamma function and its properties, Journal of Mathematical and Computational Science, 11(5), 5916-5930, 2021
[3] O. R. Ainsworth and L. W. Howell, An integral representation of the generalized Euler-Mascheroni constant, NASA Technical Report 2456,1985.
[4] R. P. Brent, Ramanujan and Euler's constant, American Mathematical Society, 1985.
[5] J. Bonnar, The gamma function, Treasure Trove of Mathematics, 2004.
[6] D. F. Connon, Some infinite series involving the Riemann zeta function, International Journal of Mathematics and Computer Science, 7(1), 11-83, 2012.
[7] H. G. Diamond and K. Ford, Generalized Euler's constants, Cambridge Philosophical Society, 145(1), 1-14, 2008.
[8] K. Dilcher, On generalized gamma functions related to the Laurent coefficients of the Riemann zeta function, Aequationes Mathematicae, 48, 55-85, 1994.
[9] G. B. Folland, A Guide to Advanced Real Analysis, The Mathematical Association of America, 2004.
[10] T. Huang, B. Han, X. Ma, and Y. Chu, Optimal bounds for the generalized Euler-Mascheroni constant, Journal of Inequalities and Applications, 2018.
[11] S. Kaczkowski, On a generalization of Euler's constant, Surveys in Mathematics and its Applications, 10, 259-274, 2021.
[12] J. S. Lagarias, Euler's constant: work and modern developments, Bulletin of the American Mathematical Society, 50(4), 527-628, 2013.
[13] J. Sondow and P. Hadjicostas, The generalized Euler constant function $\gamma(z)$ and a generalization of Somo's quadratic recurrence constant,Journal of Mathematical Analysis and Applications, 332, 292-314, 2007.
G. Abe-I-Kpeng

Department of Industrial Mathematics, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana

E-mail address: gabeikpeng@gmail.com, gabeikpeng@cktutas.edu.gh
M. M. IDDRISU

Department of Mathematics, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana

E-mail address: middrisu@cktutas.edu.gh
K. Nantomah

Department of Mathematics, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana

E-mail address: knantomah@cktutas.edu.gh

[^0]: 2010 Mathematics Subject Classification. 11S40; 30Bxx.
 Key words and phrases. Generalized; Euler-Mascheroni constant; Clausen function.
 Submitted July. 21, 2021.

