FIRST ZAGREB INDEX AND F-INDEX OF FOUR NEW CO-NORMAL PRODUCTS OF GRAPHS AND THEIR COMPLEMENTS

B. BASAVANAGOUD AND SHRUTI POLICEPATIL

Abstract

For a molecular graph G, the first Zagreb index is equal to the sum of squares of degrees of vertices, and the F-index or forgotten topological index is defined as the sum of cubes of degrees of vertices. In this paper, we introduce \mathcal{F}-co-normal products of graphs. Further, we obtain the first Zagreb index, F-index and their coindices of \mathcal{F}-co-normal products (four new co-normal products based on transformations of a graph) of graphs and their complements.

1. Introduction

Chemical graph theory is a branch of mathematics which combines graph theory and chemistry. Graph theory is used to mathematically model molecules in order to gain insight into the physico-chemical properties of these chemical compounds. The molecular graph is a simple graph, representing the carbon-atom skeleton of a hydrocarbon. The vertices of a molecular graph represent the carbon atoms, and its edges the carbon-carbon(covalent) bonds. The topological indices are graph invariants which are numerical values associated with molecular graphs. In mathematical chemistry, these are known as molecular descriptors. Topological indices play a vital role in mathematical chemistry specially, in chemical documentation, isomer discrimination, quantitative structure-property relationships (QSPR) and quantitative structure-activity relationships (QSAR) analysis. Wiener index is the first topological index used by H. Wiener [36] in the year 1947, to calculate boiling point of paraffins. There are various degree based topological indices which are found applicable and employed in QSPR/QSAR analysis. For chemical applications of topological indices refer [6, 18, 34.

There are several papers devoted to topological indices of graph operations. The first and second Zagreb indices of graph operations are investigated by Khalifeh et al. [23], Akhtera et al., obtained F-index in [2], Basavanagoud et al., obtained hyper-Zagreb index in [3, 4], N. De et al., obtained F-coindex in [12. For some other topological indices of graph operations one can refer [5, 9, 15, 25, 28, 29, 30,

[^0]31, 37, 38. For more on product related graph operations we refer a book by Imrich and Klavažar [24].

2. Definitions and Preliminaries

Let G be a finite undirected graph without loops and multiple edges on n vertices and m edges is called (n, m) graph. We denote vertex set and edge set of graph G as $V(G)$ and $E(G)$, respectively. The neighbourhood of a vertex $u \in V(G)$ is defined as the set $N_{G}(u)$ consisting of all vertices v which are adjacent to u in G. The degree of a vertex $u \in V(G)$, denoted by $d_{G}(u)$ and is equal to $\left|N_{G}(u)\right|$. The complement of a graph G is denoted by \bar{G} and is defined as the graph whose vertex set is $V(G)$ in which two vertices are adjacent if and only if they are not adjacent in G. Obviously, \bar{G} has n vertices and $\binom{n}{2}-m$ edges. The line graph $L(G)$ of a graph G is the graph with vertex set $E(G)$ and two vertices are adjacent in $L(G)$ if and only if the corresponding edges in G are adjacent. The line graph $L(G)$ has order $n_{L}=m$ and size $m_{L}=-m+\frac{1}{2} \sum_{i=1}^{n} d_{G}\left(v_{i}\right)^{2}$. For undefined graph theoretic terminologies and notations refer [22].

For a molecular graph G, first Zagreb index was defined by Gutman and Trinajstić [20] in 1972 as

$$
M_{1}(G)=\sum_{v \in V(G)} d_{G}(v)^{2}
$$

The second Zagreb index was defined in [19] as

$$
M_{2}(G)=\sum_{u v \in E(G)} d_{G}(u) \cdot d_{G}(v)
$$

The first Zagreb index [26] can also be expressed as

$$
M_{1}(G)=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)
$$

Later, coindices were introduced to cover the contribution of the non adjacent vertices of a graph G. The first and second Zagreb coindices [1] were defined respectively as

$$
\overline{M_{1}}(G)=\sum_{u v \notin E(G)}\left(d_{G}(u)+d_{G}(v)\right), \overline{M_{2}}(G)=\sum_{u v \notin E(G)}\left(d_{G}(u) \cdot d_{G}(v)\right)
$$

For basic properties of Zagreb indices refer [17, 20] and for Zagreb indices of graph operation refer [1, 10, 23, 38. Another degree based graph invariant called forgotten topological index or F - index was put forward by Furtula and Gutman [13] is defined as

$$
F(G)=\sum_{v \in V(G)} d_{G}(v)^{3}=\sum_{u v \in E(G)}\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right) .
$$

Its coindex 12 is given by

$$
\bar{F}(G)=\sum_{u v \notin E(G)}\left(d_{G}(u)^{2}+d_{G}(v)^{2}\right)
$$

See [13] for basic properties and [2, 12] for F-index of graph operations.
The hyper Zagreb index was introduced by Shirdel et al., in 33] which is defined as

$$
H M(G)=\sum_{u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}
$$

and hyper Zagreb coindex was introduced by Veylanki et al., in 35] as

$$
\overline{H M}(G)=\sum_{u v \notin E(G)}\left(d_{G}(u)+d_{G}(v)\right)^{2}
$$

For basic properties of hyper Zagreb index and coindex refer [16 and for graph operations refer [3, 4, 33, 35].
The sum-connectivity index of a graph G was defined in [39] as

$$
\chi(G)=\sum_{x y \in E(G)}\left(d_{G}(x)+d_{G}(y)\right)^{-\frac{1}{2}}
$$

Further, it has been extended to the general sum-connectivity index which is defined in [40] as

$$
\chi_{\alpha}(G)=\sum_{x y \in E(G)}\left(d_{G}(x)+d_{G}(y)\right)^{\alpha}, \text { where } \alpha \text { is any real number. }
$$

For $\alpha=3$ we have,

$$
\chi_{3}(G)=\sum_{x y \in E(G)}\left(d_{G}(x)+d_{G}(y)\right)^{3}
$$

For a graph G with vertex set $V(G)$ and edge set $E(G)$, there are four related transformation graphs as follows (see Figure 1):

- The subdivision graph $S=S(G)$ [22]; is the graph obtained by inserting a new vertex onto each edge of G.
- Semitotal-point graph $T_{2}=T_{2}(G)$ 32]; $V\left(T_{2}\right)=V(G) \cup E(G)$ and $E\left(T_{2}\right)=$ $E(S) \cup E(G)$;
- Semitotal-line graph $T_{1}=T_{1}(G)$ 32]; $V\left(T_{1}\right)=V(G) \cup E(G)$ and $E\left(T_{1}\right)=$ $E(S) \cup E(L)$;
- Total graph $T=T(G)[7 ; V(T)=V(G) \cup E(G)$ and $E(T)=E(S) \cup E(G) \cup E(L)$. Here $L=L(G)$ is the line graph of G.

Figure 1. Graph G and its transformations $S(G), T_{2}(G), T_{1}(G)$ and $T(G)$.

3. New Co-normal products of graphs

Let $i=1,2$. For a given graph G_{i}, its vertex and edge sets will be denoted by $V\left(G_{i}\right)$ and $E\left(G_{i}\right)$, and their cardinalities by n_{1} and m_{1}, respectively.

The cartesian product [22] $G_{1} \times G_{2}$ of graphs G_{1} and G_{2} has the vertex set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{2}\right)$ is an edge of $G_{1} \times G_{2}$ if and only if $\left[u_{1}=u_{2}\right.$ and $\left.v_{1} v_{2} \in E\left(G_{2}\right)\right]$ or $\left[v_{1}=v_{2}\right.$ and $\left.u_{1} u_{2} \in E\left(G_{1}\right)\right]$. Based on the cartesian product of graphs, Eliasi and Taeri [11] introduced four new operations on graphs as follows:

Definition 1. 11 Let $F \in\left\{S, T_{2}, T_{1}, T\right\}$. The F-sums of G_{1} and G_{2}, denoted by $G_{1}+_{F} G_{2}$, is a graph with the set of vertices $V\left(G_{1}+_{F} G_{2}\right)=\left(V\left(G_{1}\right) \cup E\left(G_{1}\right)\right) \times$ $V\left(G_{2}\right)$ and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ of $G_{1}+{ }_{F} G_{2}$ are adjacent if and only if $\left[u_{1}=v_{1} \in V\left(G_{1}\right)\right.$ and $\left.u_{2} v_{2} \in E\left(G_{2}\right)\right]$ or $\left[u_{2}=v_{2} \in V\left(G_{2}\right)\right.$ and $\left.u_{1} v_{1} \in E\left(F\left(G_{1}\right)\right)\right]$.

Thus, authors in 11 obtained four new graph operations as $G_{1}+{ }_{S} G_{2}, G_{1}+{ }_{T_{2}} G_{2}$, $G_{1}+_{T_{1}} G_{2}$ and $G_{1}+_{T} G_{2}$ and studied the Wiener indices of these graphs. In [10], Deng et al. gave the expressions for first and second Zagreb indices of these new graphs.

In 1962, Ore [27] introduced a product graph, with the name Cartesian sum of graphs. Hammack et al. [21], named it co-normal product graph. The co-normal product [21] $G_{1} \star G_{2}$ of two graphs G_{1} and G_{2} of order n_{1} and n_{2}, respectively, is defined as the graph with vertex set $V_{1} \times V_{2}$ and $\left(u_{1}, v_{1}\right)$ is adjacent with $\left(u_{2}, v_{2}\right)$ if and only if $u_{1} u_{2} \in E\left(G_{1}\right)$ or $v_{1} v_{2} \in E\left(G_{2}\right)$.

Motivated from [11, we introduce four new products of graphs by extending F-sums of graphs on cartesian product to co-normal product as follows:
Definition 2. let \mathcal{F} be the one of the symbols S, T_{2}, T_{1} or T. The \mathcal{F}-co-normal product $G_{1} \star_{\mathcal{F}} G_{2}$ is a graph with the set of vertices $V\left(G_{1} \star_{\mathcal{F}} G_{2}\right)=\left(V\left(G_{1}\right) \cup\right.$ $\left.E\left(G_{1}\right)\right) \times V\left(G_{2}\right)$ and two vertices $\left(u_{1}, u_{2}\right)$ and $\left(v_{1}, v_{2}\right)$ of $G_{1} \star_{\mathcal{F}} G_{2}$ are adjacent if and only if u_{1} is adjacent to v_{1} in $E\left(\mathcal{F}\left(G_{1}\right)\right)$ or u_{2} is adjacent to v_{2} in G_{2}.

We illustrate this definition in Figure 2
In this paper, we study the first Zagreb index, F-index and their coindices of $G_{1} \star_{S} G_{2}, G_{1} \star_{T_{2}} G_{2}, G_{1} \star_{T_{1}} G_{2}$ and $G_{1} \star_{T} G_{2}$.

The following results will be needed to prove our main results:
Theorem 3.1. [1, 8] Let G be an (n, m) graph. Then
i. $M_{1}(\bar{G})=M_{1}(G)+n(n-1)^{2}-4 m(n-1)$,
ii. $\overline{M_{1}}(G)=2 m(n-1)-M_{1}(G)$,
iii. $\overline{M_{1}}(\bar{G})=2 m(n-1)-M_{1}(G)$.

Theorem 3.2. [16] Let G be a graph with n vertices and m edges. Then
(i) $F(\bar{G})=n(n-1)^{3}-4 m(n-1)^{2}+3(n-1) M_{1}(G)-F(G)$
(ii) $\bar{F}(G)=(n-1) M_{1}(G)-F(G)$
(iii) $\bar{F}(\bar{G})=2 m(n-1)^{2}-2(n-1) M_{1}(G)+F(G)$.
4. First Zagreb index and coindex of \mathcal{F}-Co-Normal products of GRAPHS AND THEIR COMPLEMENTS

In this section, we proceed to obtain the first Zagreb index and coindex of \mathcal{F}-conormal products of graphs and their complements for each $\mathcal{F} \in\left\{S, T_{2}, T_{1}, T\right\}$. We

Figure 2. Graphs G_{1}, G_{2} and $G_{1} \star_{\mathcal{F}} G_{2}$
start by stating the following proposition which will be required to prove our main results:

Proposition 4.1. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively. Then
$\left|V\left(G_{1} \star_{\mathcal{F}} G_{2}\right)\right|=n_{2}\left(n_{1}+m_{1}\right)$ and
(i) $E\left(G_{1} \star_{S} G_{2}\right)=2\left(m_{1} n_{2}^{2}+m_{1} m_{2} n_{1}-2 m_{1} m_{2}\right)+m_{2}\left(n_{1}^{2}+m_{1}^{2}\right)$,
(ii) $E\left(G_{1} \star_{T_{2}} G_{2}\right)=3 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{1} m_{2}\left(n_{1}+m_{1}-6\right)$,
(iii) $E\left(G_{1} \star_{T_{1}} G_{2}\right)=2 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{L}\left(n_{2}^{2}-2 m_{2}\right)+m_{1} m_{2}\left(n_{1}+m_{1}-4\right)$,
(iv) $E\left(G_{1} \star_{T} G_{2}\right)=3 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{L}\left(n_{2}^{2}-2 m_{2}\right)+m_{1} m_{2}\left(n_{1}+m_{1}-2\right)$.

Proposition 4.2. Let G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively. If (u, v) is a vertex of $G_{1} \star_{\mathcal{F}} G_{2}$, then

1. $d_{G_{1} \star_{S} G_{2}}(u, v)=\left\{\begin{array}{l}n_{2} d_{G_{1}}(u)+\left(n_{1}+m_{1}-d_{G_{1}}(u)\right) d_{G_{2}}(v), \quad \text { if } u \in V\left(S\left(G_{1}\right)\right) \cap V\left(G_{1}\right), v \in V\left(G_{2}\right) \\ \left.n_{2}\right)\end{array}\right.$
2. $d_{G_{1} \star_{2} G_{2}}(u, v)= \begin{cases}2 n_{2} d_{G_{1}}(u)+\left(n_{1}+m_{1}-2 d_{G_{1}}(u)\right) d_{G_{2}}(v), & \text { if } u \in V\left(T_{2}\left(G_{1}\right)\right) \cap V\left(G_{1}\right), v \in V\left(G_{2}\right) \\ 2 n_{2}+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(v), & \text { if } u \in V\left(T_{2}\left(G_{1}\right)\right) \cap E\left(G_{1}\right), v \in V\left(G_{2}\right) .\end{cases}$
3. $d_{G_{1} \star_{T_{1}} G_{2}}(u, v)= \begin{cases}n_{2} d_{G_{1}}(u)+\left(n_{1}+m_{1}-d_{G_{1}}(u)\right) d_{G_{2}}(v), & \text { if } u \in V\left(T_{1}\left(G_{1}\right)\right) \cap V\left(G_{1}\right), v \in V\left(G_{2}\right) \\ 2 n_{2}+\left(n_{2}-2 d_{G_{2}}(v)\right) d_{G_{1}}(u)+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(v), & \text { if } u \in V\left(T_{1}\left(G_{1}\right)\right) \cap E\left(G_{1}\right), v \in V\left(G_{2}\right) .\end{cases}$
4. $d_{G_{1} \star_{T_{1}}} G_{2}(u, v)= \begin{cases}2 n_{2} d_{G_{1}}(u)+\left(n_{1}+m_{1}-2 d_{G_{1}}(u)\right) d_{G_{2}}(v), & \text { if } u \in V\left(T_{2}\left(G_{1}\right)\right) \cap V\left(G_{1}\right), v \in V\left(G_{2}\right) \\ 2 n_{2}\end{cases}$

The following theorem gives the first Zagreb index and coindex of S-co-normal product of two graphs G_{1} and G_{2}.

Theorem 4.3. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
M_{1}\left(G_{1} \star_{S} G_{2}\right)= & M_{1}\left(G_{1}\right)\left(n_{2}^{3}+M_{1}\left(G_{1}\right)-4 n_{2} m_{2}\right)+M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}\right)\left(n_{1}\left(n_{1}+m_{1}\right)\right. \\
& \left.-4 m_{1}\right)+16 m_{1} m_{2} n_{2}\left(n_{1}+m_{1}-1\right)+4 m_{1} n_{2}^{3}
\end{aligned}
$$

Proof. Using the definition of the first Zagreb index and Proposition 4.2(1), we have

$$
\begin{aligned}
M_{1}\left(G_{1} \star_{S} G_{2}\right)= & \sum_{(u, v) \in V\left(G_{1} \star_{S} G_{2}\right)} d_{G_{1} \star S G_{2}}^{2}(u, v) \\
= & \sum_{u \in V\left(S\left(G_{1}\right)\right) \cap V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(n_{2} d_{G_{1}}(u)+\left(n_{1}+m_{1}-d_{G_{1}}(u)\right) d_{G_{2}}(v)\right)^{2} \\
& +\sum_{z \in V\left(G_{2}\right)} \sum_{e \in V\left(S\left(G_{1}\right)\right) \cap E\left(G_{1}\right)}\left(2 n_{2}+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(z)\right)^{2} . \\
= & M_{1}\left(G_{1}\right)\left(n_{2}^{3}+M_{1}\left(G_{1}\right)-4 n_{2} m_{2}\right)+M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}\right)\left(n_{1}\left(n_{1}+m_{1}\right)\right. \\
& \left.-4 m_{1}\right)+16 m_{1} m_{2} n_{2}\left(n_{1}+m_{1}-1\right)+4 m_{1} n_{2}^{3} .
\end{aligned}
$$

Following corollaries give the first Zagreb index of $\overline{G_{1} \star_{S} G_{2}}$, first Zagreb coindex of graph $G_{1} \star_{S} G_{2}$ and its complement $\overline{M_{1}}\left(\overline{G_{1} \star_{S} G_{2}}\right)$, respectively.

Corollary 4.4. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
M_{1}\left(\overline{G_{1} \star_{S} G_{2}}\right)= & M_{1}\left(G_{1}\right)\left(n_{2}^{3}+M_{1}\left(G_{1}\right)-4 n_{2} m_{2}\right)+M_{1}\left(G_{2}\right)\left(n_{1}\left(n_{1}+m_{1}\right)^{2}\right. \\
& \left.-4 m_{1}\left(n_{1}+m_{1}\right)\right)+16 m_{1} m_{2} n_{2}\left(n_{1}+m_{1}-1\right)+4 m_{1} n_{2}^{3} \\
& +\left(n_{2}\left(n_{1}+m_{1}\right)-1\right)\left(n_{2}\left(n_{1}+m_{1}\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right)\right. \\
& \left.-4\left(2\left(m_{1} n_{2}^{2}+m_{1} m_{2} n_{1}-2 m_{1} m_{2}\right)+m_{2}\left(n_{1}^{2}+m_{1}^{2}\right)\right)\right)
\end{aligned}
$$

Proof. Using Proposition 4.1 (i) and Theorem 4.3 in Theorem 3.1 (i) we get the desired result.

Corollary 4.5. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
\overline{M_{1}}\left(G_{1} \star_{S} G_{2}\right)= & 2\left(2\left(m_{1} n_{2}^{2}+m_{1} m_{2} n_{1}-2 m_{1} m_{2}\right)+m_{2}\left(n_{1}^{2}+m_{1}^{2}\right)\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right) \\
& -\left(n_{2} M_{1}\left(G_{1}\right)+\left(n_{1}+m_{1}\right)^{3} M_{1}\left(G_{2}\right)+16 m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 m_{1} n_{2}\right)
\end{aligned}
$$

Proof. Using Proposition 4.1 (i) and Theorem 4.3 in Theorem 3.1 (ii) we get the desired result.

Corollary 4.6. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
\overline{M_{1}}\left(\overline{G_{1} \star_{S} G_{2}}\right)= & 2\left(2\left(m_{1} n_{2}^{2}+m_{1} m_{2} n_{1}-2 m_{1} m_{2}\right)+m_{2}\left(n_{1}^{2}+m_{1}^{2}\right)\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right) \\
& -\left(n_{2} M_{1}\left(G_{1}\right)+\left(n_{1}+m_{1}\right)^{3} M_{1}\left(G_{2}\right)+16 m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 m_{1} n_{2}\right)
\end{aligned}
$$

Proof. Using Proposition 4.1 (i) and Theorem 4.3 in Theorem 3.1 (iii) we get the desired result.

The following theorem gives the first Zagreb index of T_{2}-co-normal product of two graphs G_{1} and G_{2}.

Theorem 4.7. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
M_{1}\left(G_{1} \star_{T_{2}} G_{2}\right)= & 4 n_{2} M_{1}\left(G_{1}\right)\left(n_{2}^{2}-4 m_{2}\right)+M_{1}\left(G_{2}\right)\left(n_{1}\left(n_{1}+m_{1}\right)^{2}+4 M_{1}\left(G_{1}\right)\right. \\
& \left.-8 m_{1}\left(n_{1}+m_{1}\right)+m_{1}\left(n_{1}+m_{1}-2\right)^{2}\right)+8 n_{2} m_{1} m_{2}\left(3\left(n_{1}+m_{1}\right)-2\right) \\
& +4 n_{2}^{3} m_{1}
\end{aligned}
$$

Proof. Using the definition of the first Zagreb index and Proposition 4.2(2), we have

$$
\begin{aligned}
M_{1}\left(G_{1} \star_{T_{2}} G_{2}\right)= & \sum_{(u, v) \in V\left(G_{1} \star_{T_{2}} G_{2}\right)} d_{G_{1} \star_{T_{2}} G_{2}}^{2}(u, v) \\
= & \sum_{u \in V\left(T_{2}\left(G_{1}\right)\right) \cap V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(2 n_{2} d_{G_{1}}(u)+\left(n_{1}+m_{1}-2 d_{G_{1}}(u)\right) d_{G_{2}}(v)\right)^{2} \\
& +\sum_{z \in V\left(G_{2}\right)} \sum_{e \in V\left(T_{2}\left(G_{1}\right)\right) \cap E\left(G_{1}\right)}\left(2 n_{2}+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(z)\right)^{2} . \\
= & 4 n_{2} M_{1}\left(G_{1}\right)\left(n_{2}^{2}-4 m_{2}\right)+M_{1}\left(G_{2}\right)\left(n_{1}\left(n_{1}+m_{1}\right)^{2}+4 M_{1}\left(G_{1}\right)\right. \\
& \left.-8 m_{1}\left(n_{1}+m_{1}\right)+m_{1}\left(n_{1}+m_{1}-2\right)^{2}\right)+8 n_{2} m_{1} m_{2}\left(3\left(n_{1}+m_{1}\right)-2\right) \\
& +4 n_{2}^{3} m_{1} .
\end{aligned}
$$

Using Proposition 4.1 (ii) and Theorem 4.7 in Theorem 3.1, we get the desired result. we get the following results for the first Zagreb index of $\overline{G_{1} \star_{T_{2}} G_{2}}$, first Zagreb coindex of graph $G_{1} \star_{T_{2}} G_{2}$ and its complement $\overline{M_{1}}\left(\overline{G_{1} \star_{T_{2}} G_{2}}\right)$, respectively.

Corollary 4.8. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
M_{1}\left(\overline{G_{1} \star_{T_{2}} G_{2}}\right)= & 4 n_{2} M_{1}\left(G_{1}\right)\left(n_{2}^{2}-4 m_{2}\right)+M_{1}\left(G_{2}\right)\left(n_{1}\left(n_{1}+m_{1}\right)^{2}+4 M_{1}\left(G_{1}\right)\right. \\
& \left.-8 m_{1}\left(n_{1}+m_{1}\right)+m_{1}\left(n_{1}+m_{1}-2\right)^{2}\right)+8 n_{2} m_{1} m_{2}\left(3\left(n_{1}+m_{1}\right)-2\right) \\
& +4 n_{2}^{3} m_{1}+\left(n_{2}\left(n_{1}+m_{1}\right)-1\right)\left(n_{2}\left(n_{1}+m_{1}\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right)\right. \\
& \left.-4\left(3 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{1} m_{2}\left(n_{1}+m_{1}-6\right)\right)\right) .
\end{aligned}
$$

Corollary 4.9. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
\overline{M_{1}}\left(G_{1} \star_{T_{2}} G_{2}\right)= & 2\left(3 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{1} m_{2}\left(n_{1}+m_{1}-6\right)\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right) \\
& -\left(4 n_{2} M_{1}\left(G_{1}\right)\left(n_{2}^{2}-4 m_{2}\right)+M_{1}\left(G_{2}\right)\left(n_{1}\left(n_{1}+m_{1}\right)^{2}+4 M_{1}\left(G_{1}\right)\right.\right. \\
& \left.-8 m_{1}\left(n_{1}+m_{1}\right)+m_{1}\left(n_{1}+m_{1}-2\right)^{2}\right)+8 n_{2} m_{1} m_{2}\left(3\left(n_{1}+m_{1}\right)-2\right) \\
& \left.+4 n_{2}^{3} m_{1}\right)
\end{aligned}
$$

Corollary 4.10. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
\overline{M_{1}}\left(\overline{G_{1}{ }_{T_{2}} G_{2}}\right)= & 2\left(3 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{1} m_{2}\left(n_{1}+m_{1}-6\right)\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right) \\
& -\left(4 n_{2} M_{1}\left(G_{1}\right)\left(n_{2}^{2}-4 m_{2}\right)+M_{1}\left(G_{2}\right)\left(n_{1}\left(n_{1}+m_{1}\right)^{2}+4 M_{1}\left(G_{1}\right)\right.\right. \\
& \left.-8 m_{1}\left(n_{1}+m_{1}\right)+m_{1}\left(n_{1}+m_{1}-2\right)^{2}\right)+8 n_{2} m_{1} m_{2}\left(3\left(n_{1}+m_{1}\right)-2\right) \\
& \left.+4 n_{2}^{3} m_{1}\right)
\end{aligned}
$$

The following theorem gives the first Zagreb index of T_{1}-co-normal product of two graphs G_{1} and G_{2}.

Theorem 4.11. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
M_{1}\left(G_{1} \star_{T_{1}} G_{2}\right)= & M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-4 m_{1}\right] \\
& +M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+8 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 m_{1} n_{2}^{3} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& +8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{1}-2\right)\left(m_{1}+m_{L}\right)
\end{aligned}
$$

Proof. Using the definition of the first Zagreb index and Proposition 4.2(3) we have,

$$
\begin{aligned}
M_{1}\left(G_{1} \star_{T_{1}} G_{2}\right)= & \sum_{(u, v) \in V\left(G_{1} \star_{T_{1}} G_{2}\right)} d_{G_{1} \star_{T_{1}} G_{2}}^{2}(u, v) \\
= & \sum_{u \in V\left(T_{1}\left(G_{1}\right)\right) \cap V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(n_{2} d_{G_{1}}(u)+\left(n_{1}+m_{1}-d_{G_{1}}(u)\right) d_{G_{2}}(v)\right)^{2} \\
& +\sum_{z \in V\left(G_{2}\right)} \sum_{e \in V\left(T_{1}\left(G_{1}\right)\right) \cap E\left(G_{1}\right)}\left(2 n_{2}+\left(n_{2}-d_{G_{2}}(z)\right) d_{G_{1}}(e)+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(z)\right)^{2} \\
= & M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-4 m_{1}\right] \\
& +M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+8 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 m_{1} n_{2}^{3} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& +8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{1}-2\right)\left(m_{1}+m_{L}\right)
\end{aligned}
$$

Using Proposition 4.1 (iii) and Theorem 4.11 in Theorem 3.1, we get the following results for the first Zagreb index of $\overline{G_{1} \star_{1} G_{2}}$, the first Zagreb index coindex of graph $G_{1} \star_{T_{1}} G_{2}$ and its complement $\overline{M_{1}}\left(\overline{G_{1} \star_{T_{1}} G_{2}}\right)$, respectively.

Corollary 4.12. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
M_{1}\left(\overline{G_{1} \star_{T_{1}} G_{2}}\right)= & M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-4 m_{1}\right] \\
& +M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+8 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 m_{1} n_{2}^{3} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& +8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{1}-2\right)\left(m_{1}+m_{L}\right) \\
& +\left(n_{2}\left(n_{1}+m_{1}\right)\right)\left(n_{2}\left(n_{1}+m_{1}\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right)\right. \\
& \left.-4\left(2 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{L}\left(n_{2}^{2}-2 m_{2}\right)+m_{1} m_{2}\left(n_{1}+m_{1}-4\right)\right)\right) .
\end{aligned}
$$

Corollary 4.13. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
\overline{M_{1}}\left(G_{1} \star_{T_{1}} G_{2}\right)= & 2\left(2 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{L}\left(n_{2}^{2}-2 m_{2}\right)\right. \\
& \left.+m_{1} m_{2}\left(n_{1}+m_{1}-4\right)\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right) \\
& -\left(M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-4 m_{1}\right]\right. \\
& +M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+8 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 m_{1} n_{2}^{3} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& \left.+8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{1}-2\right)\left(m_{1}+m_{L}\right)\right) .
\end{aligned}
$$

Corollary 4.14. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
\overline{M_{1}}\left(\overline{G_{1} \star_{T_{1}} G_{2}}\right)= & 2\left(2 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{L}\left(n_{2}^{2}-2 m_{2}\right)\right. \\
& \left.+m_{1} m_{2}\left(n_{1}+m_{1}-4\right)\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right) \\
& -\left(M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-4 m_{1}\right]\right. \\
& +M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+8 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 m_{1} n_{2}^{3} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& \left.+8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{1}-2\right)\left(m_{1}+m_{L}\right)\right) .
\end{aligned}
$$

The following theorem gives the first Zagreb index of T-co-normal product of two graphs G_{1} and G_{2}.

Theorem 4.15. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
M_{1}\left(G_{1} \star_{T} G_{2}\right)= & 4 M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+\left(n_{1}+m_{1}\right) M_{1}\left(G_{2}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-8 m_{1}\right] \\
& 16 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 n_{2}^{3} m_{1} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& +8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{+}-2\right)\left(m_{1}+m_{L}\right) .
\end{aligned}
$$

Proof. Using the definition of the first Zagreb index and Proposition 4.2(4) we have,

$$
\begin{aligned}
M_{1}\left(G_{1} \star_{T} G_{2}\right)= & \sum_{(u, v) \in V\left(G_{1} \star_{T} G_{2}\right)} d_{G_{1} \star_{T} G_{2}}^{2}(u, v) \\
= & \sum_{u \in V\left(T\left(G_{1}\right)\right) \cap V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(2 n_{2} d_{G_{1}}(u)+\left(n_{1}+m_{1}-2 d_{G_{1}}(u)\right) d_{G_{2}}(v)\right)^{2} \\
& +\sum_{z \in V\left(G_{2}\right)} \sum_{e \in V\left(T\left(G_{1}\right)\right) \cap E\left(G_{1}\right)}\left(2 n_{2}+\left(n_{2}-d_{G_{2}}(z)\right) d_{G_{1}}(e)+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(z)\right)^{2} . \\
= & 4 M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+\left(n_{1}+m_{1}\right) M_{1}\left(G_{2}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-8 m_{1}\right] \\
& 16 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 n_{2}^{3} m_{1} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& +8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{+}-2\right)\left(m_{1}+m_{L}\right) .
\end{aligned}
$$

Using Proposition 4.1 (iv) and Theorem 4.15 in Theorem 3.1 , we get the following results for the first Zagreb index of $\overline{G_{1} \star_{T} G_{2}}$, first Zagreb coindex of graph $G_{1} \star_{T} G_{2}$ and its complement $\overline{M_{1}}\left(\overline{G_{1}{ }_{T} G_{2}}\right)$, respectively.

Corollary 4.16. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
M_{1}\left(\overline{G_{1} \star_{T} G_{2}}\right)= & 4 M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+\left(n_{1}+m_{1}\right) M_{1}\left(G_{2}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-8 m_{1}\right] \\
& 16 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 n_{2}^{3} m_{1} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& +8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{+}-2\right)\left(m_{1}+m_{L}\right) \\
& +\left(n_{2}\left(n_{1}+m_{1}\right)-1\right)\left(n_{2}\left(n_{1}+m_{1}\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right)\right. \\
& \left.-4\left(3 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{L}\left(n_{2}^{2}-2 m_{2}\right)+m_{1} m_{2}\left(n_{1}+m_{1}-2\right)\right)\right) .
\end{aligned}
$$

Corollary 4.17. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
\overline{M_{1}}\left(G_{1} \star_{T} G_{2}\right)= & 2\left(3 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{L}\left(n_{2}^{2}-2 m_{2}\right)\right. \\
& \left.+m_{1} m_{2}\left(n_{1}+m_{1}-2\right)\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right) \\
& -\left(4 M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+\left(n_{1}+m_{1}\right) M_{1}\left(G_{2}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-8 m_{1}\right]\right. \\
& 16 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 n_{2}^{3} m_{1} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& \left.+8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{+}-2\right)\left(m_{1}+m_{L}\right)\right) .
\end{aligned}
$$

Corollary 4.18. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
\overline{M_{1}}\left(\overline{G_{1} \star_{T} G_{2}}\right)= & 2\left(3 m_{1} n_{2}^{2}+n_{1} m_{2}\left(n_{1}+m_{1}\right)+m_{L}\left(n_{2}^{2}-2 m_{2}\right)\right. \\
& \left.+m_{1} m_{2}\left(n_{1}+m_{1}-2\right)\right)\left(n_{2}\left(n_{1}+m_{1}\right)-1\right) \\
& -\left(4 M_{1}\left(G_{1}\right)\left[n_{2}^{3}-4 n_{2} m_{2}\right]+\left(n_{1}+m_{1}\right) M_{1}\left(G_{2}\right)\left[n_{1}\left(n_{1}+m_{1}\right)-8 m_{1}\right]\right. \\
& 16 n_{2} m_{1} m_{2}\left(n_{1}+m_{1}\right)+4 M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right)+4 n_{2}^{3} m_{1} \\
& +E M_{1}\left(G_{1}\right)\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right] \\
& +M_{1}\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}\left(n_{1}+m_{1}-2\right)-4 m_{L}\right] \\
& \left.+8 n_{2} m_{L}\left[n_{2}^{2}-2 m_{2}\right]+8 n_{2} m_{2}\left(n_{1}+m_{+}-2\right)\left(m_{1}+m_{L}\right)\right) .
\end{aligned}
$$

5. F-Index and coindex of \mathcal{F}-Co-normal products of graphs and THEIR COMPLEMENTS

In this section, we obtain F-index and coindex of \mathcal{F}-co-normal products of graphs and their complements. From Theorem 3.2, it is clear that $M_{1}\left(G_{1} \star_{\mathcal{F}} G_{2}\right)$ and $F\left(G_{1} \star_{\mathcal{F}} G_{2}\right)$ are known then $F\left(\overline{G_{1} \star_{\mathcal{F}} G_{2}}\right), \bar{F}\left(G_{1} \star_{\mathcal{F}} G_{2}\right)$ and $\bar{F}\left(\overline{G_{1} \star_{\mathcal{F}} G_{2}}\right)$ are known, what really needs to be calculated are expressions for $F\left(G_{1} \star_{\mathcal{F}} G_{2}\right)$.

Theorem 5.1. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
F\left(G_{1} \star_{S} G_{2}\right)= & F\left(G_{1}\right)\left[n_{2}^{4}-6 n_{2}^{2} m_{2}+3 n_{2} M_{1}\left(G_{2}\right)\right] \\
& +F\left(G_{2}\right)\left[\left(n_{1}+m_{1}\right)^{3} n_{1}-F\left(G_{1}\right)-6 m_{1}\left(n_{1}+m_{1}\right)^{2}\right. \\
& \left.+3\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)+m_{1}\left(n_{1}+m_{1}-2\right)^{3}\right]+6 n_{2}^{2} m_{2}\left(n_{1}+m_{1}\right) \\
& +M_{1}\left(G_{2}\right)\left[6 n_{2} m_{1}\left(n_{1}+m_{1}\right)^{2}-6 n_{2}\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\right. \\
& \left.+6 n_{2} m_{1}\left(n_{1}+m_{1}-2\right)^{2}\right]+8 n_{2}^{4} m_{1}+24 n_{2}^{2} m_{1} m_{2}\left(n_{1}+m_{1}-2\right)
\end{aligned}
$$

Proof. By the definition of F - index and Proposition 4.2(1), we have

$$
\begin{aligned}
F\left(G_{1} \star_{S} G_{2}\right)= & \sum_{(u, v) \in V\left(G_{1} \star_{S} G_{2}\right)} d_{G_{1} \star_{S} G_{2}}^{3}(u, v) \\
= & \sum_{u \in V\left(S\left(G_{1}\right)\right) \cap V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(n_{2} d_{G_{1}}(u)+\left[n_{1}+m_{1}-d_{G_{1}}(u)\right] d_{G_{2}}(v)\right)^{3} \\
& +\sum_{z \in V\left(G_{2}\right)} \sum_{e \in V\left(S\left(G_{1}\right)\right) \cap E\left(G_{1}\right)}\left(2 n_{2}+\left[n_{1}+m_{1}-2\right] d_{G_{2}}(z)\right)^{3} \\
= & J_{1}+J_{2}
\end{aligned}
$$

Where J_{1}, J_{2} are the sums of the above terms, in order

$$
\begin{aligned}
J_{1}= & \sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(n_{2} d_{G_{1}}(u)+\left[n_{1}+m_{1}-d_{G_{1}}(u)\right] d_{G_{2}}(v)\right)^{3} \\
= & F\left(G_{1}\right)\left[n_{2}^{4}-6 n_{2}^{2} m_{2}+3 n_{2} M_{1}\left(G_{2}\right)\right] \\
& +F\left(G_{2}\right)\left[\left(n_{1}+m_{1}\right)^{3} n_{1}-F\left(G_{1}\right)-6 m_{1}\left(n_{1}+m_{1}\right)^{2}\right. \\
& \left.+3\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\right]+6 n_{2}^{2} m_{2}\left(n_{1}+m_{1}\right) \\
& +M_{1}\left(G_{2}\right)\left[6 n_{2} m_{1}\left(n_{1}+m_{1}\right)^{2}-6 n_{2}\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\right] \\
J_{2}= & \sum_{z \in V\left(G_{2}\right)} \sum_{e \in E\left(G_{1}\right)}\left(2 n_{2}+\left[n_{1}+m_{1}-2\right] d_{G_{2}}(z)\right)^{3} \\
= & 8 n_{2}^{4} m_{1}+m_{1}\left(n_{1}+m_{1}-2\right)^{3} F\left(G_{2}\right)+24 n_{2}^{2} m_{1} m_{2}\left(n_{1}+m_{1}-2\right) \\
& +6 n_{2} m_{1}\left(n_{1}+m_{1}-2\right)^{2} M_{1}\left(G_{2}\right) .
\end{aligned}
$$

Adding J_{1}, J_{2}, we get the desired result.

The following theorem gives the F - index of T_{2} - co-normal product of two graphs G_{1} and G_{2}.

Theorem 5.2. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
F\left(G_{1} \star_{T_{2}} G_{2}\right)= & F\left(G_{1}\right)\left[8 n_{2}^{4}-24 n_{2}^{3}+24 n_{2}^{2}-F\left(G_{2}\right)\right]+F\left(G_{2}\right)\left[n_{1}\left(n_{1}+m_{1}\right)^{3}\right. \\
& \left.-12\left(n_{1}+m_{1}\right)^{2} m_{1}+m_{1}\left(n_{1}+m_{1}-2\right)^{3}\right]+6 n_{2}^{2} m_{2}\left(n_{1}+m_{1}\right) \\
& +12\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\left[n_{2}^{3}-2 n_{2}^{2}+F\left(G_{2}\right)\right]+12 m_{1} n_{2}^{2}\left(n_{1}+m_{1}\right)^{2} \\
& +6 n_{2} m_{1}\left(n_{1}+m_{1}-2\right)^{2} M_{1}\left(G_{2}\right)+8 n_{2}^{4} m_{1}+24 n_{2}^{2} m_{1} m_{2}\left(n_{1}+m_{1}-2\right)
\end{aligned}
$$

Proof. By the definition of F - index and Proposition 4.2(2), we have

$$
\begin{aligned}
F\left(G_{1} \star_{T_{2}} G_{2}\right)= & \sum_{(u, v) \in V\left(G_{1} \star_{2} G_{2}\right)} d_{G_{1} \star_{T_{2}} G_{2}}^{3}(u, v) \\
= & \sum_{u \in V\left(T_{2}\left(G_{1}\right)\right) \cap V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(2 n_{2} d_{G_{1}}(u)+\left[n_{1}+m_{1}-2 d_{G_{1}}(u)\right] d_{G_{2}}(v)\right)^{3} \\
& +\sum_{z \in V\left(G_{2}\right)} \sum_{e \in V\left(T_{2}\left(G_{1}\right)\right) \cap E\left(G_{1}\right)}\left(2 n_{2}+\left[n_{1}+m_{1}-2\right] d_{G_{2}}(z)\right)^{3} \\
= & K_{1}+K_{2}
\end{aligned}
$$

Where K_{1}, K_{2} are the sums of the above terms, in order

$$
\begin{aligned}
K_{1}= & \sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(2 n_{2} d_{G_{1}}(u)+\left[n_{1}+m_{1}-2 d_{G_{1}}(u)\right] d_{G_{2}}(v)\right)^{3} \\
= & F\left(G_{1}\right)\left[8 n_{2}^{4}-24 n_{2}^{3}+24 n_{2}^{2}-F\left(G_{2}\right)\right] \\
& +F\left(G_{2}\right)\left[n_{1}\left(n_{1}+m_{1}\right)^{3}-12\left(n_{1}+m_{1}\right)^{2} m_{1}\right]+6 n_{2}^{2} m_{2}\left(n_{1}+m_{1}\right) \\
& +12\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\left[n_{2}^{3}-2 n_{2}^{2}+F\left(G_{2}\right)\right]+12 m_{1} n_{2}^{2}\left(n_{1}+m_{1}\right)^{2} . \\
K_{2}= & \sum_{z \in V\left(G_{2}\right)} \sum_{e \in E\left(G_{1}\right)}\left(2 n_{2}+\left[n_{1}+m_{1}-2\right] d_{G_{2}}(z)\right)^{3} \\
= & 8 n_{2}^{4} m_{1}+m_{1}\left(n_{1}+m_{1}-2\right)^{3} F\left(G_{2}\right)+24 n_{2}^{2} m_{1} m_{2}\left(n_{1}+m_{1}-2\right) \\
& +6 n_{2} m_{1}\left(n_{1}+m_{1}-2\right)^{2} M_{1}\left(G_{2}\right)
\end{aligned}
$$

Adding K_{1}, K_{2}, we obtain the required result.

The following theorem gives the F - index of T_{1} - co-normal product of two graphs G_{1} and G_{2}.

Theorem 5.3. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
F\left(G_{1} \star_{T_{1}} G_{2}\right)= & F\left(G_{1}\right)\left[n_{2}^{4}-6 n_{2}^{2} m_{2}+3 n_{2} M_{1}\left(G_{2}\right)\right]+F\left(G_{2}\right)\left[\left(n_{1}+m_{1}\right)^{3} n_{1}\right. \\
& -F\left(G_{1}\right)-6 m_{1}\left(n_{1}+m_{1}\right)^{2}+3\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right) \\
& \left.+\left(n_{1}+m_{1}-2\right)\left(m_{1}-6 m_{L}\left(n_{1}+m_{1}-2\right)+3 E M_{1}\left(G_{1}\right)\right)\right] \\
& +6 n_{2}^{2} m_{2}\left(n_{1}+m_{1}\right)+M_{1}\left(G_{2}\right)\left[6 n_{2} m_{1}\left(n_{1}+m_{1}\right)^{2}-6 n_{2}\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\right. \\
& \left.+6 n_{2}\left(n_{1}+m_{1}-2\right)^{2}\left(m_{1}+m_{L}\right)\right]+6 n_{2}\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}\right. \\
& \left.+n_{2} m_{2}\left(n_{1}+m_{1}-2\right)-2 m_{2}\left(n_{1}+m_{1}-2\right)\right] \\
& +E F\left(G_{1}\right)\left[n_{2}^{4}-F\left(G_{2}\right)-6 n_{2}^{2} m_{2}+3 n_{2} M_{1}\left(G_{2}\right)\right]+8 n_{2}^{4} m_{1}
\end{aligned}
$$

Proof. By the definition of F - index and Proposition 4.2(3) we have,

$$
\begin{aligned}
F\left(G_{1} \star_{T_{1}} G_{2}\right)= & \sum_{(u, v) \in V\left(G_{1} \star_{T_{1}} G_{2}\right)} d_{G_{1} \star_{T_{1} G_{2}}^{3}}(u, v) \\
= & \sum_{u \in V\left(T_{1}\left(G_{1}\right)\right) \cap V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(n_{2} d_{G_{1}}(u)+\left[n_{1}+m_{1}-d_{G_{1}}(u)\right] d_{G_{2}}(v)\right)^{3} \\
& +\sum_{z \in V\left(G_{2}\right)} \sum_{e \in V\left(T_{1}\left(G_{1}\right)\right) \cap E\left(G_{1}\right)}\left(2 n_{2}+\left[n_{2}-d_{G_{2}}(z)\right] d_{G_{1}}(e)+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(z)^{3}\right. \\
= & L_{1}+L_{2}
\end{aligned}
$$

Where L_{1}, L_{2} are the sums of the above terms, in order

$$
\begin{aligned}
& L_{1}= \sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(n_{2} d_{G_{1}}(u)+\left[n_{1}+m_{1}-d_{G_{1}}(u)\right] d_{G_{2}}(v)\right)^{3} \\
&= F\left(G_{1}\right)\left[n_{2}^{4}-6 n_{2}^{2} m_{2}+3 n_{2} M_{1}\left(G_{2}\right)\right] \\
&+F\left(G_{2}\right)\left[\left(n_{1}+m_{1}\right)^{3} n_{1}-F\left(G_{1}\right)-6 m_{1}\left(n_{1}+m_{1}\right)^{2}\right. \\
&\left.+3\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\right]+6 n_{2}^{2} m_{2}\left(n_{1}+m_{1}\right) \\
&+M_{1}\left(G_{2}\right)\left[6 n_{2} m_{1}\left(n_{1}+m_{1}\right)^{2}-6 n_{2}\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\right] . \\
& L_{2}=\sum_{z \in V\left(G_{2}\right)} \sum_{e \in E\left(G_{1}\right)}\left(2 n_{2}+\left[n_{2}-d_{G_{2}}(z)\right] d_{G_{1}}(e)+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(z)\right)^{3} \\
&=\quad 8 n_{2}^{4} m_{1}+F\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}-6 m_{L}\left(n_{1}+m_{1}-2\right)\right. \\
&+\left.3 E M_{1}\left(G_{1}\right)\right]+6 n_{2}\left(n_{1}+m_{1}-2\right)^{2} M_{1}\left(G_{2}\right)\left[m_{1}+m_{L}\right] \\
&+6 n_{2}\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}+n_{2} m_{2}\left(n_{1}+m_{1}-2\right)-2 m_{2}\left(n_{1}+m_{1}-2\right)\right] \\
&+ E F\left(G_{1}\right)\left[n_{2}^{4}-F\left(G_{2}\right)-6 n_{2}^{2} m_{2}+3 n_{2} M_{1}\left(G_{2}\right)\right] .
\end{aligned}
$$

Combining L_{1}, L_{2}, we obtain the desired result.
The following theorem gives the F - index of T - co-normal product of two graphs G_{1} and G_{2}.
Theorem 5.4. If G_{1} and G_{2} are $\left(n_{1}, m_{1}\right)$ and $\left(n_{2}, m_{2}\right)$ graphs, respectively, then

$$
\begin{aligned}
F\left(G_{1} \star_{T} G_{2}\right)= & F\left(G_{1}\right)\left[8 n_{2}^{4}-24 n_{2}^{3}+24 n_{2}^{2}-F\left(G_{2}\right)\right]+F\left(G_{2}\right)\left[n_{1}\left(n_{1}+m_{1}\right)^{3}\right. \\
& -12\left(n_{1}+m_{1}\right)^{2} m_{1}+\left(n_{1}+m_{1}-2\right)\left(m_{1}-6 m_{L}\left(n_{1}+m_{1}-2\right)\right. \\
& \left.\left.+3 E M_{1}\left(G_{1}\right)\right)\right]+6 n_{2}^{2} m_{2}\left(n_{1}+m_{1}\right)+12\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\left[n_{2}^{3}-2 n_{2}^{2}+F\left(G_{2}\right)\right] \\
& +12 m_{1} n_{2}^{2}\left(n_{1}+m_{1}\right)^{2}+8 n_{2}^{4} m_{1}+6 n_{2}\left(n_{1}+m_{1}-2\right)^{2} M_{1}\left(G_{2}\right)\left[m_{1}+m_{L}\right] \\
& +6 n_{2}\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}+n_{2} m_{2}\left(n_{1}+m_{1}-2\right)-2 m_{2}\left(n_{1}+m_{1}-2\right)\right] \\
& +E F\left(G_{1}\right)\left[n_{2}^{4}-F\left(G_{2}\right)-6 n_{2}^{2} m_{2}+3 n_{2} M_{1}\left(G_{2}\right)\right]
\end{aligned}
$$

Proof. By the definition of F - index and Proposition 4.2(4) we have,

$$
\begin{aligned}
F\left(G_{1} \star_{T} G_{2}\right)= & \sum_{(u, v) \in V\left(G_{1} \star_{T} G_{2}\right)} d_{G_{1} \star_{T} G_{2}}^{3}(u, v) \\
= & \sum_{u \in V\left(T_{2}\left(G_{1}\right)\right) \cap V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(2 n_{2} d_{G_{1}}(u)+\left[n_{1}+m_{1}-2 d_{G_{1}}(u)\right] d_{G_{2}}(v)\right)^{3} \\
& +\sum_{z \in V\left(G_{2}\right)} \sum_{e \in V\left(T_{2}\left(G_{1}\right)\right) \cap E\left(G_{1}\right)}\left(2 n_{2}+\left[n_{2}-d_{G_{2}}(z)\right] d_{G_{1}}(e)+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(z)\right)^{3} \\
= & M_{1}+M_{2}
\end{aligned}
$$

Where M_{1}, M_{2} are the sums of the above terms, in order

$$
\begin{aligned}
M_{1}= & \sum_{u \in V\left(G_{1}\right)} \sum_{v \in V\left(G_{2}\right)}\left(2 n_{2} d_{G_{1}}(u)+\left[n_{1}+m_{1}-2 d_{G_{1}}(u)\right] d_{G_{2}}(v)\right)^{3} \\
= & F\left(G_{1}\right)\left[8 n_{2}^{4}-24 n_{2}^{3}+24 n_{2}^{2}-F\left(G_{2}\right)\right] \\
& +F\left(G_{2}\right)\left[n_{1}\left(n_{1}+m_{1}\right)^{3}-12\left(n_{1}+m_{1}\right)^{2} m_{1}\right]+6 n_{2}^{2} m_{2}\left(n_{1}+m_{1}\right) \\
& +12\left(n_{1}+m_{1}\right) M_{1}\left(G_{1}\right)\left[n_{2}^{3}-2 n_{2}^{2}+F\left(G_{2}\right)\right]+12 m_{1} n_{2}^{2}\left(n_{1}+m_{1}\right)^{2} . \\
M_{2}= & \sum_{z \in V\left(G_{2}\right)} \sum_{e \in E\left(G_{1}\right)}\left(2 n_{2}+\left[n_{2}-d_{G_{2}}(z)\right] d_{G_{1}}(e)+\left(n_{1}+m_{1}-2\right) d_{G_{2}}(z)\right)^{3} \\
= & 8 n_{2}^{4} m_{1}+F\left(G_{2}\right)\left(n_{1}+m_{1}-2\right)\left[m_{1}-6 m_{L}\left(n_{1}+m_{1}-2\right)\right. \\
+ & \left.3 E M_{1}\left(G_{1}\right)\right]+6 n_{2}\left(n_{1}+m_{1}-2\right)^{2} M_{1}\left(G_{2}\right)\left[m_{1}+m_{L}\right] \\
+ & 6 n_{2}\left[n_{2}^{3}+M_{1}\left(G_{2}\right)-4 n_{2} m_{2}+n_{2} m_{2}\left(n_{1}+m_{1}-2\right)-2 m_{2}\left(n_{1}+m_{1}-2\right)\right] \\
+ & E F\left(G_{1}\right)\left[n_{2}^{4}-F\left(G_{2}\right)-6 n_{2}^{2} m_{2}+3 n_{2} M_{1}\left(G_{2}\right)\right] .
\end{aligned}
$$

Combining M_{1}, M_{2}, we get the required result.

6. Conclusion

In this paper, we have obtained the first Zagreb index and F - index of \mathcal{F} -co-normal products of graphs and their complements. The first Zagreb index and F - index are calculated explicitly for each case $\mathcal{F} \in\left\{S, T_{2}, T_{1}, T\right\}$.

Acknowledgement B. Basavanagoud is supported by the University Grants Commission (UGC), Government of India, New Delhi, through UGC-SAP-DRS-III for 2016-2021: F.510/3/DRS-III/2016(SAP-I). Shruti Policepatil is supported by Karnatak University, Dharwad, Karnataka, India, through University Research Studentship (URS), No.KU/Sch/URS/2020/1107, dated 21.12.2020.

References

[1] A. R. Ashrafi, T. Došlić, A. Hamzeh, The Zagreb coindices of graph operations, Discrete Appl. Math., 158(15) (2010) 1571-1578.
[2] S. Akhtera, M. Imran, Computing the forgotten topological index of four operations on graphs, AKCE Int. J. Graphs Comb., 14(1) (2017) 70-79.
[3] B. Basavanagoud, S. Patil, A Note on Hyper-Zagreb Index of Graph Operations, Iranian J. Math. Chem., 7(1) (2016) 89-92.
[4] B. Basavanagoud, S. Patil, A Note on hyper-Zagreb coindex of Graph Operations, J. Appl. Math. Comput., 53(1) (2017) 647 - 655.
[5] B. Basavanagoud, Praveen Jakkannavar, Kulli-Basava indices of graphs, Int. J. Appl. Eng. Res., 14(1) (2019) 325-342.
[6] B. Basavanagoud, S. Policepatil, Chemical applicability of Gourava and hyper-Gourava indices, Nanosystems: Physics, Chemistry, Mathematics, $12(2)$ (2021) 142-150.
[7] M. Behzad, A criterion for the planarity of a total graph, Pro. Cambridge Philos. Soc., 63 (3) (1967) 697-681.
[8] K. C. Das, I. Gutman, Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 52 (2004) 103-112.
[9] K. C. Das, A. Yurttas, M. Togan, A. S. Cevik, I. N. Cangul, The multiplicative Zagreb indices of graph operations, J. Inequal. Appl., 90 (2013) 1-14.
[10] H. Deng, D. Sarala, S. K. Ayyaswamy, S. Balachandran, The Zagreb indices of four operations on graphs, Appl. Math. Comput., 275 (2016) 422-431,
[11] M. Eliasi, B. Taeri, Four new sums of graphs and their Wiener indices, Discrete Appl. Math., 157(4) (2009) 794-803.
[12] N. De, S. M. A. Nayeem, A. Pal, The F-coindex of some graph operations, Springer Plus, (2016) 5 (1):221. DOI: 10.1186/s40064-016-1864-7.
[13] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem., 53(4) (2015) 11841190.
[14] J. A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 15 (2008).
[15] A. Gravoć, T. Pisanski, On Weiner index of a graph, J. Math. Chem., 8(1) (1991) 53-62.
[16] I. Gutman, On hyper Zagreb index and coindex, Bulletin T. CL de l'Académie serbe des sciences et des arts, 42 (2017) 1-8.
[17] I. Gutman, K. C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 (2004) 83-92.
[18] I. Gutman, O. E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin (1986).
[19] I. Gutman, B. Ruščić, N. Trinajstić, C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 (1975) 3399-3405.
[20] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17(4) (1972) 535-538.
[21] R. Hammack, W. Imrich and S. Klavžar, Handbook of product graphs (second edition), Taylor 8 Francis group, (2011).
[22] F. Harary, Graph Theory, Addison-Wesely, Reading, (1969).
[23] M. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, The first and second Zagreb indices of some graph operations, Discrete Appl. Math., 157(4) (2009) 804-811.
[24] W. Imrich, S. Klavžar, Product graphs, structure and recognition, John Wiley and Sons, New York, USA, (2000).
[25] M. J. Nadjafi-Arani, H. Khodashenas, Distance-based topological indices of tensor product of graphs, Iranian J. Math. Chem., 3(1) (2012) 45-53.
[26] S. Nikolić, G. Kovačević, A. Milićević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta., 76(2) (2003) 113-124.
[27] O. Ore, Theory of Graphs, Amer. Math. Soc., (1962).
[28] K. Pattabiraman, P. Paulraja, On some topological indices of the tensor products of graphs, Discret. Appl. Math., 160(3) (2012) 267-279.
[29] K. Pattabiraman and P. Kandan, Weighted PI index of corona product of graphs, Discrete Math. Algorithms Appl., 6(4) (2014) 1450055(9 pages).
[30] K. Pattabiraman and P. Kandan, Generalization of the degree distance of the tensor product of graphs, Australas. J. Combin., 62(3) (2015) 211-227.
[31] P. Paulraja, V. S. Agnes, Degree distance of product graphs, Discrete Math. Algorithm. Appl., 6(1) 1450003(19 pages) (2014) DOI: 10.1142/S1793830914500037.
[32] E. Sampathkumar, S. B. Chikkodimath, Semitotal graphs of a graph-I, J. Karnatak Univ. Sci., 18 (1973) 274-280.
[33] G. H. Shirdel, H. Rezapour, A. M. Sayadi, The hyper-Zagreb index of graph operations, Iranian J. Math. Chem., 4(2) (2013) 213-220.
[34] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL (1992).
[35] M. Veylaki, M. J. Nikmehr, H. A. Tavallaee, The third and hyper-Zagreb coindices of graph operations, J. Appl. Math. Comput., 50(1-2) (2015) 315-325.
[36] H. Wiener, Strucural determination of paraffin boiling points, J. Amer. Chem. Soc., 69(1) (1947) 17-20.
[37] Z. Yarahmadi, Computing Some topological Indices of Tensor product of graphs, Iranian J. Math. Chem., 2(1) (2011) 109-118.
[38] Z. Yarahmadi, A. R. Ashrafi, The Szeged, vertex PI, first and second Zagreb indices of corona product of graphs, Filomat, 26(3) (2012) 467-472.
[39] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46(4) (2009) 12521270.
[40] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47(1) (2010) 210-218.
B. Basavanagoud

Department of Mathematics, Karnatak University, Dharwad - 580 003, Karnataka, InDIA.

E-mail address: b.basavanagoud@gmail.com
Shruti Policepatil
Department of Mathematics, Karnatak University, Dharwad - 580 003, Karnataka, InDIA.

E-mail address: shrutipatil300@gmail.com

[^0]: 2010 Mathematics Subject Classification. 05C07, 05C76, 92E10.
 Key words and phrases. Co-normal product, first Zagreb index, F-index, graph transformation. Submitted Feb. 11, 2021. Revised July 26, 2021.

