Journal of Soil Sciences and Agricultural Engineering

Journal homepage & Available online at: <u>www.jssae.journals.ekb.eg</u>

Effect of Different Sources of Organic Fertilizers and Foliar Application of some Amino Acids on Wheat Productivity and some Soil Properties

Marwa A. Kany^{*}

Soil, Water and Environment Research Institute, Agriculture Research Center, El-Gama St., Giza, Egypt.

Cross Mark

ABSTRACT

Egypt relies heavily on wheat as one of the major agricultural crops, accounting for the largest share of the country's agricultural output. As a result, it is crucial to enhance wheat productivity in Egypt to support the economy and society. Therefore, this study aimed to evaluate the impact of applying different organic fertilizers, including plant residue compost, cow waste compost, and a combination of both at the dosage of 10 ton ha⁻¹, besides the foliar application of amino acids (arginine, glycine, and tryptophan) at a rate of 100 mg L⁻¹ on wheat growth and productivity, as well as some soil properties. The study compares the treatments to a control group with no organic fertilizers addition and no foliar application. The compost from a combination of plant residue and cow waste was found to be the most effective treatment for promoting growth performance and productivity. The second most effective treatment was using the compost of plant residue alone, followed by the compost of cow waste alone. In contrast, the control treatment gave the lowest growth performance and productivity. In terms of amino acids, arginine, glycine, and tryptophan were all found to significantly enhance growth performance and productivity compared to the control treatment. Arginine was found to be the most effective, followed by glycine and then tryptophan. Therefore, the use of the mixed compost of plant residue and cow waste and amino acids (especially arginine) is recommended for wheat cultivation in Egypt to enhance productivity and support the economy and society.

Keywords: Compost, arginine, glycine, tryptophan

INTRODUCTION

Wheat is regarded as a strategic crop owing to its importance in ensuring food security and economic stability in various countries, including Egypt. Besides its strategic importance, wheat also possesses considerable nutritional value, being a rich source of complex carbohydrates, dietary fiber, essential nutrients, vitamins, proteins and minerals (El-Mantawy et al. 2022). Attaining self-sufficiency in wheat is a crucial strategic objective for Egypt, and it demands consistent and unified endeavors from all individuals working in the domain of scientific research, agriculture, and the food industry. Sustainable development must be achieved in this field, by enhancing soil quality, amplifying productivity, and improving wheat quality, through robust fertilization programs (El-Shamy et al. 2022).

Incorporating organic fertilization from diverse sources and foliar spraying of amino acids is crucial in crop fertilization programs for improving soil and plant properties and enhancing crop productivity. Organic substances such as animal manure and plant residues are important for enriching the soil with organic matter and essential nutrients, improving soil quality, and increasing crop yields. Additionally, organic fertilization enhances soil properties, such as nutrient-holding capacity, moisture, and air, resulting in better crop yields (El-Sherpiny et al. 2023).

Amino acids serve as the fundamental building blocks. In proteins, there are commonly 20 different amino acids, each possessing distinct chemical structures and properties. Among these amino acids are alanine, glycine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, histidine, leucine, lysine, methionine, phenylalanine, isoleucine, proline, serine, threonine, tryptophan, tyrosine, and valine (Kumar et al. 2017). Foliar application of amino acids is a contemporary plant fertilization technique that involves spraying amino acids directly on plant leaves. Amino acids contribute to the growth, development, and productivity of plants as they serve as sources of amino nitrogen for protein and nucleic acid formation. Amino acids also stimulate metabolic processes and promote root growth, leading to improved crop yields and quality (Ibrahim et al. 2023).

Therefore, the primary objective of this study was to assess the effect of various compost sources and foliar application of different amino acids on wheat growth performance and productivity, along with certain soil properties.

MATERIALS AND METHODS

To improve the growth performance and productivity of wheat plants (Cv. Sakha 95), a field trial was conducted aiming to evaluate the impact of applying different organic fertilizers, including plant residue compost, cow waste compost, and a combination of both (1:1 by weight) at the dosage of 10 ton ha¹, beside the foliar application of amino acids (arginine, glycine, and tryptophan) at a rate of 100 mg L⁻¹ on wheat growth and productivity, as well as some soil properties, over two consecutive seasons (2021/2022 and 2022/2023) in the Tag El-Ezz Experimental Farm (31°31' 47.64" N latitude and 30°56' 12.88" E longitude). Table 1 presents the characteristics of the soil prior to any treatment (initial soil), while Table 2 displays the properties of the composts examined in this study.

Marwa A	4. Kany
---------	---------

Table 1. Properties of initial	soil
Property	Values
Clay,%	48.50
Sand,%	22.50
Silt,%	29.00
Textural	Clayey
pH (suspension 1:2.5)	8.10
Organic matter,%	1.25
N, mgKg ⁻¹	40.04 (available)
$P, mg kg^{-1}$	8.07 (available)
K, mg kg ⁻¹	202.31 (available)
EC, dSm ⁻¹	7.30

 Table 2. Properties of the studied compost

Property	Α	В				
EC, dSm ⁻¹	3.60	3.73				
pH (suspension 1:10)	6.33	6.40				
P, mg kg ⁻¹	0.75	0.69				
K, mg kg ⁻¹	0.82	0.66				
Organic matter,%	32.2	33.1				
Total C, %	18.7	19.20				
Total N, %	1.46	1.29				
C:N ratio	12.80	14.8				
A · Plant residue compost B·Cow waste compost						

A: Plant residue compost, B:Cow waste compost

Seeds were planted on November 19th with rate of 140 kg ha⁻¹. The sub-plot area for the experiment was measured at 9.0 m² (3.0 m \times 3.0 m). One month prior to planting, the designated compost treatments were applied to the plots. Calcium superphosphate (15% P2O5) was incorporated before plowing at a rate of 36 kg P₂O₅ ha⁻¹, and potassium sulphate (48% K₂O) was also added at a rate of 60 kg K₂O ha⁻¹ after 50 days from sowing. Urea (46% N) was applied in two equal portions during cultivation (30 and 50 days after planting) at a rate of 180 kg N ha⁻¹. All the designated amino acids were sprayed three times throughout the experimental period (after 30, 45, and 60 days from sowing) at a volume of 600 L ha⁻¹, according to the respective treatments. Standard agricultural practices were followed, including irrigation with six flood system applications. Harvesting was conducted on May 10th during both seasons.

At 70 days after sowing, plant height (cm), fresh and dry weights (g plant⁻¹), and leaf area (cm² plant⁻¹) were manually and visually measured. Additionally, the chlorophyll content was determined using SPAD (Castelli et al. 1996), and the carotene content (mg g⁻¹) was spectrophotometrically measured (Hornero-Méndez and Mínguez-Mosquera 2001).

Furthermore, the nitrogen (N), phosphorus (P), and potassium (K) contents in the wheat plant samples were evaluated using Kjeldahl, spectrophotometric, and flame photometer methods, respectively (Ashworth et al. 1997). These measurements were taken at the same time as the assessment of the photosynthetic pigments.

At the harvest stage, spike length (cm), spike weight (g), the weight of 1000 grains (g), the number of grains per spike, straw and biological yield (Mg ha-1) were visually and manually measured. Harvest index (HI, %) was calculated using the formula HI = (Economic yield/Biological yield) × 100. Moreover, the total carbohydrate and protein content (%) were determined according to AOAC (2000) guidelines, with protein (%) calculated as (N) × 5.75.

The aforementioned measurements offer significant insights into the growth, development, and nutritional composition of wheat plants. Such insights can inform and guide future agricultural interventions and practices aimed at enhancing crop yield and quality.

The soil nutrient availability, specifically nitrogen (N), phosphorus (P), and potassium (K), were evaluated after

the harvest of wheat plants, with data averaged across both studied seasons. Kjeldahl, spectrophotometric, and flame photometer methods were used to measure the N, P, and K contents, respectively as described by Jackson (1967). Statistical analysis of the data was conducted following the guidelines outlined by Gomez and Gomez (1984) and analyzed using CoStat version 6.303 copyright (1998-2004).

RESULTS AND DISCUSSION

- Growth traits and productivity

Data in Table 3 present the observations of various growth parameters of wheat plants, such as plant height (cm), fresh and dry weights (g plant⁻¹), and leaf area (cm² plant⁻¹), to evaluate the impact of composts and amino acids at 70 days from sowing during the seasons of 2021/22 and 2022/23. While the effects of the studied treatments on photosynthetic pigments (chlorophyll, SPAD and carotene, mg g⁻¹) and chemical constituents (N, P, K, %) in plant, at 70 days from sowing, are listed in Table 4.

Also, data in Tables 5 to 7 illustrate the influence of the studied composts and amino acids on the yield measurements, including spike length (cm), spike weight (g), the weight of 1000 (g), No. grain spike⁻¹ (Table 5) as well as grain, straw and biological yield (Mg ha⁻¹), harvest index (%) (Table 6), and grain quality, such as carbohydrates and protein (%) (Table 7) at the harvest stage during the seasons of 2021/22 and 2022/23.

The findings show that the compost from a combination of plant residue and cow waste was found to be the most effective treatment for promoting growth performance (including plant height, fresh and dry weights, leaf area, chlorophyll, carotene, N,P,K, at period of 70 days from sowing) and yield and its components (spike length, spike weight, the weight of 1000, No. grain spike⁻¹, grain, straw and biological yield and harvest index as well as grain content of carbohydrates and protein, at harvest stage). The second most effective treatment was using the compost of plant residue alone, followed by the compost of cow waste alone. In contrast, the control treatment, which did not receive any organic fertilization, showed the lowest growth performance and productivity.

This study compared the effectiveness of three different composts on the growth performance and yield of wheat plants. The results showed that the compost made from a combination of plant residue and cow waste was the most effective treatment, followed by the compost made from plant residue alone, and then the compost made from cow waste alone. This can be attributed to the higher availability of nutrients, such as nitrogen, phosphorus, and potassium, in the compost from a combination of plant residue and cow waste. Moreover, the compost from the combination of plant residue and cow waste also led to higher yield and yield components. This treatment also resulted in a higher harvest index, indicating that more resources were directed towards grain production, which is the desired outcome in wheat farming. Furthermore, the compost from the combination of plant residue and cow waste resulted in a higher grain content of carbohydrates and protein compared to the other treatments. This is an important finding as it indicates that the use of this compost can result in higher-quality grain. The compost made from a combination of plant residue and cow waste was found to be the most effective treatment for promoting growth performance and yield in wheat plants. This superiority can be attributed to several reasons:

The sector sector		Plant height,cm		Fresh weight, g plant ⁻¹		Dry weig	ht, g plant ⁻¹	Leaf area,cm ² plant ⁻¹	
1 reatments		1 st	2 nd	1 st	2 nd	1 st	2^{nd}	1 st	2^{nd}
				Organic fertiliz	ation treatmer	nts			
T_1		88.35d	91.23d	33.24d	33.60d	9.27d	9.37d	93.79d	94.88 d
T ₂		108.37a	112.10a	39.68a	40.11a	13.12a	13.28a	116.97a	118.38a
T ₃		104.39b	107.65b	38.43b	38.90b	12.58b	12.75b	111.40b	113.22b
T ₄		97.58c	101.19c	37.49c	37.83c	11.81c	11.95c	107.39c	108.77c
LSD at 5%		0.35	178	0.34	0.74	0.15	0.09	0.14	0.86
				Amino acid	ls treatments				
F ₁		93.40d	96.29d	35.27d	35.68d	10.60d	10.73d	98.17d	99.32c
F ₂		103.13a	106.55a	38.91a	39.19a	12.42a	12.57a	111.92a	113.43a
F ₃		102.05b	105.70b	37.57b	38.05b	11.97b	12.11b	110.64b	112.23a
F ₄		100.11c	103.62c	37.09c	37.53c	11.79c	11.94c	108.82c	110.27b
LSD at 5%		0.30	1.03	0.40	0.40	0.12	0.08	0.41	1.32
				Intera	action				
	F_1	86.32n	89.02i	31.07k	31.45j	8.54k	8.641	92.81k	93.95g
т.	F_2	90.07k	92.87h	35.69i	36.05h	10.31h	10.39i	95.03i	96.37efg
11	F ₃	88.831	91.93h	33.13j	33.45i	9.31i	9.41j	94.00j	94.94fg
	F_4	88.15m	91.09hfg	33.07j	33.47i	8.93j	9.03k	93.32jk	94.27fg
	F_1	99.09i	102.21a	36.91gh	37.27fg	11.81e	11.93f	106.83g	108.10d
т.	F_2	113.20a	117.18a	42.29a	42.64a	13.88a	14.08a	121.78a	123.10a
12	F ₃	112.07b	116.11b	40.18b	40.78b	13.51b	13.65b	119.74b	121.18ab
	F_4	109.13c	112.91g	39.32c	39.76c	13.30b	13.44c	119.54b	121.15ab
	F_1	98.11j	100.91bc	36.88gh	37.23fg	11.23f	11.40g	97.51h	98.62e
т.	F_2	108.18d	111.24c	39.16cd	39.69c	13.31b	13.51bc	117.50c	119.33b
13	F ₃	107.19e	110.69d	39.10cd	39.68c	12.93c	13.07d	117.12c	119.45b
	F_4	104.06f	107.76d	38.58cde	39.01cd	12.83c	13.02d	113.45d	115.47c
	F_1	90.09k	93.03h	36.22hi	36.76gh	10.83g	10.94h	95.55i	96.61ef
т.	F_2	101.07g	104.93e	38.48de	38.37de	12.19d	12.31e	113.36d	114.91c
14	F ₃	100.09h	104.07ef	37.87ef	38.30de	12.12d	12.30e	111.67e	113.35c
	F_4	99.07i	102.73fg	37.37fg	37.90ef	12.11d	12.27e	108.96f	110.19d
LSD at 5%		0.60	2.05	0.80	0.80	0.24	0.15	0.82	2.65

Table 3. Effect of composts and amine) acids on the wheat growt	h traits at 70 days from	sowing during the seasons of
2021/22 and 2022/23			

Means within a row followed by a different letter (s) are statistically different at a 0.05 level T1:Control (without organic fertilizer), T2: Plant residue and cow waste (compost from a combination of both), T3: Plant residue compost, T4:Cow waste compost, F1: Control , F2: Arginine, F3: Glycine, and F4: Tryptophan

Table 4. Effect of composts and	d amino acids on the	e photosynthetic	e pigments and	chemical	constituents in	the straw of
wheat plants at 70 day	ys from sowing duri	ng the seasons o	f 2021/22 and 2	2022/23		

Treatments		Chlorophyll	, SPAD reading	Carote	ne, mg g ⁻¹	N	,%	6 P, %			K, %	
I reau	ments	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2^{nd}	1 st	2 nd	
	Organic fertilization treatments											
T_1		35.23d	35.91d	0.347d	0.354d	2.67d	2.72d	0.321d	0.327d	2.53d	2.56d	
T_2		39.37a	40.13a	0.448a	0.456a	3.24a	3.31a	0.386a	0.391a	3.17a	3.22a	
T ₃		38.41b	39.21b	0.406b	0.412b	3.11b	3.17b	0.370b	0.377b	3.01b	3.05b	
T_4		37.60c	38.31c	0.391c	0.399c	2.95c	3.00c	0.355c	0.361c	2.89c	2.92c	
LSD a	t 5%	0.12	0.14	0.005	0.003	0.02	0.03	0.005	0.003	0.03	0.04	
					Amino ac	ids treatmer	nts					
F_1		36.21d	36.90d	0.367d	0.374d	2.79d	2.84c	0.336c	0.341d	2.68d	2.71c	
F_2		38.46a	39.26a	0.429a	0.436a	3.12a	3.19a	0.372a	0.375a	3.04a	3.08a	
F ₃		38.13b	38.89b	0.401b	0.410b	3.06b	3.12ab	0.363b	0.369b	2.96b	2.99b	
F_4		37.81c	38.51c	0.395c	0.403c	3.00c	3.05b	0.361b	0.370c	2.92c	2.96b	
LSD a	t 5%	0.14	0.11	0.004	0.004	0.03	0.07	0.004	0.002	0.03	0.07	
					Inte	raction						
	F_1	34.39k	35.04j	0.3351	0.342k	2.62j	2.67i	0.315h	0.3211	2.39k	2.42j	
т	F_2	35.99h	36.63g	0.359j	0.367i	2.76i	2.81gh	0.330g	0.334j	2.65i	2.68hi	
11	F3	35.61i	36.32h	0.351k	0.357j	2.65j	2.70hi	0.322h	0.326k	2.56j	2.59i	
	F_4	34.90j	35.64i	0.345k	0.352j	2.64j	2.68hi	0.319h	0.326k	2.53j	2.56i	
	F_1	37.61f	38.48e	0.386h	0.394g	2.89fg	2.96ef	0.350ef	0.357h	2.82fg	2.86fg	
Т	F_2	40.27a	41.07a	0.531a	0.540a	3.44a	3.50a	0.404a	0.410a	3.36a	3.41a	
12	F3	39.87b	40.54b	0.441b	0.449b	3.33b	3.39ab	0.396b	0.402b	3.27b	3.31ab	
	F_4	39.74b	40.43b	0.434b	0.443b	3.32b	3.38ab	0.394b	0.396c	3.25b	3.29ab	
	F_1	36.80g	37.35f	0.378i	0.382h	2.85gh	2.90efg	0.344f	0.349i	2.79g	2.83fg	
Т	F_2	39.15c	40.13c	0.423c	0.427c	3.24c	3.32b	0.383c	0.389d	3.17c	3.20bc	
13	F3	39.05c	40.00c	0.415d	0.423cd	3.21c	3.29bc	0.379cd	0.388de	3.05d	3.08cd	
	F_4	38.65d	39.37d	0.410de	0.418de	3.13d	3.19cd	0.376cd	0.384ef	3.03d	3.07cd	
	F_1	36.06h	36.73g	0.370i	0.377h	2.79hi	2.83fg	0.334g	0.339j	2.72h	2.75gh	
т	F_2	38.42d	39.21d	0.404ef	0.412ef	3.05e	3.11đ	0.373d	0.382f	3.00de	3.03de	
14	F ₃	37.99e	38.70e	0.397fg	0.409f	3.05e	3.10d	0.357e	0.362g	2.96e	3.00de	
	F_4	37.94e	38.58e	0.392gh	0.400g	2.92f	2.97e	0.356e	0.360gh	2.86f	2.90ef	
LSD a	t 5%	0.27	0.23	0.008	0.007	0.07	0.13	0.007	0.005	0.05	0.13	

Means within a row followed by a different letter (s) are statistically different at a 0.05 level T1:Control (without organic fertilizer), T2: Plant residue and cow waste (compost from a combination of both), T3: Plant residue compost, T4:Cow waste compost, F1: Control , F2: Arginine, F3: Glycine, and F4: Tryptophan

T		Spike lei	ngth, cm	Spike w	Spike weight, g		1000 grain, g	No. grain spike ⁻¹	
Treatments		1 st	2 nd	1 st	2 nd	1 st	2^{nd}	1 st	2 nd
				Organic ferti	lization treatr	nents			
T1		15.01d	15.17d	3.26d	3.33d	45.77d	46.65d	24.92c	25.75d
T_2		19.24a	19.47a	4.20a	4.28a	49.20a	50.27a	35.50a	36.17a
T3		18.45b	18.71b	3.98b	4.07b	48.03b	48.90b	33.83a	33.58b
T 4		17.64c	17.87c	3.78c	3.85c	47.48c	48.35c	31.42b	30.83c
LSD at 5%		0.14	0.15	0.05	0.04	0.09	0.09	2.25	1.13
				Amino a	cids treatmen	ts			
F ₁		16.53c	16.72c	3.54c	3.61c	46.49c	47.45c	27.42c	27.92c
F ₂		18.30a	18.54a	3.99a	4.07a	48.31a	49.19a	33.75a	33.67a
F ₃		17.83b	18.05b	3.87b	3.95b	47.89bb	48.84b	32.67ab	33.00a
F ₄		17.67b	17.90b	3.81b	3.88b	47.79b	48.68b	31.83b	31.75b
LSD at 5%		0.21	0.22	0.08	0.08	0.18	0.18	1.42	1.16
				Int	teraction				
	F_1	14.58i	14.74k	3.14i	3.20j	45.56i	46.47k	21.67k	24.00i
T ₁	F_2	15.63h	15.79j	3.42h	3.48h	46.03gh	46.86ij	27.33hij	27.67gh
11	F3	14.95i	15.11k	3.30hi	3.37hi	45.77hi	46.68jk	26.00ij	26.00hi
	F_4	14.87i	15.03k	3.18i	3.26ij	45.72hi	46.59jk	24.67j	25.33i
	F_1	17.41efg	17.57ghi	3.73efg	3.83efg	47.23f	48.36g	30.00gh	30.33ef
Т	F_2	20.08a	20.38a	4.44a	4.53a	50.71a	51.56a	38.00a	39.00a
12	F3	19.78a	20.02ab	4.32ab	4.40ab	49.47b	50.71b	37.33ab	38.33a
	F_4	19.70a	19.90bc	4.30ab	4.37ab	49.40b	50.44b	36.67abc	37.00ab
	F_1	17.11fg	17.37hi	3.69fg	3.75fg	47.00f	47.89h	30.00gh	29.33fg
Та	F_2	19.18b	19.47cd	4.22b	4.32b	48.48c	49.45c	36.00a-d	36.00b
13	F3	18.91bc	19.12de	4.04c	4.14c	48.33cd	49.19cd	35.00b-е	35.33bc
	F_4	18.58cd	18.86ef	3.99cd	4.06cd	48.31cd	49.07de	34.33c-f	33.67cd
	F_1	17.02g	17.21i	3.61g	3.68g	46.17g	47.09i	28.00hi	28.00gh
Т	F_2	18.30d	18.49f	3.89cde	3.97de	48.03de	48.89def	33.67def	32.00de
14	F_3	17.70e	17.97g	3.83def	3.90def	48.01de	48.78ef	32.33efg	32.33de
	F_4	17.53ef	17.79gh	3.77efg	3.83efg	47.72e	48.63fg	31.67fg	31.00ef
LSD at 5%		0.43	0.43	0.16	0.17	0.36	0.36	2.85	2.32

Table 5. Effect of composts and amino acids on	the physical measurement	nts of wheat plants at harve	st stage during the
seasons of 2021/22 and 2022/23			

Means within a row followed by a different letter (s) are statistically different at a 0.05 level T1:Control (without organic fertilizer), T2: Plant residue and cow waste (compost from a combination of both), T3: Plant residue compost, T4:Cow waste compost, F1: Control , F2: Arginine, F3: Glycine, and F4: Tryptophan

Table 6. Effect of composts and amino acids on the yield of wheat plants at harvest stage during the seasons of 2021/22 and 2022/23

Transformed		Grain yield	d, ton ha ⁻¹	Straw yiel	d, ton ha ⁻¹	Biological y	vield, ton ha ⁻¹	Harvest	index, %
Treatments	-	1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd
				Organic fertili	ization treatm	nents			
T_1		4.89d	5.00d	8.21d	8.39d	13.10d	13.39d	37.31b	37.30c
T_2		6.27a	6.38a	9.99a	10.18a	16.26a	16.57a	38.52a	38.51a
T3		5.90b	5.99b	9.70b	9.86b	15.59b	15.85b	37.79b	37.76b
T ₄		5.63c	5.75c	9.28c	9.49c	14.91c	15.24c	37.76b	37.75b
LSD at 5%		0.12	0.05	0.16	0.11	0.22	0.13	0.55	0.30
				Amino ac	ids treatment	s			
F ₁		5.23d	5.34d	8.80d	8.98c	14.03d	14.32d	37.24c	37.28c
F ₂		5.96a	6.08a	9.61a	9.81a	15.57a	15.88a	38.25a	38.23a
F ₃		5.81b	5.92b	9.44b	9.61b	15.25b	15.53b	38.07ab	38.08ab
F ₄		5.68c	5.78c	9.33c	9.53b	15.01c	15.32c	37.82b	37.73b
LSD at 5%		0.05	0.06	0.10	0.09	0.11	0.10	0.36	0.38
				Inte	eraction				
	F_1	4.59j	4.69k	7.98j	8.17j	12.581	12.86n	36.52f	36.48g
т.	F_2	5.20g	5.32h	8.46h	8.68h	13.66i	13.99k	38.04bc	37.99be
11	F_3	4.95h	5.06i	8.27hi	8.44i	13.22j	13.501	37.47cde	37.def46
	F_4	4.81i	4.92j	8.12ij	8.28ij	12.94k	13.20m	37.21def	37.2ef6
	F_1	5.65e	5.77f	9.28f	9.47ef	14.93f	15.24h	37.83bcd	37.86be
Т	F_2	6.61a	6.73a	10.36a	10.55a	16.97a	17.28a	38.96a	38.96a
12	F_3	6.51a	6.63a	10.23ab	10.40ab	16.74b	17.03b	38.90a	38.93a
	F_4	6.29b	6.40b	10.09bc	10.31b	16.38b	16.72c	38.40ab	38.31abc
	F_1	5.37f	5.48g	9.23f	9.37f	14.60g	14.85i	36.78ef	36.88fg
Т	F_2	6.20b	6.30b	9.96cd	10.11c	16.16c	16.41d	38.37ab	38.39ab
13	F_3	6.05c	6.14c	9.84de	10.00cd	15.89d	16.14e	38.09bc	38.03bcd
	F_4	5.96c	6.04cd	9.76de	9.96cd	15.72d	16.00ef	37.93bcd	37.75be
	F_1	5.31f	5.43gh	8.72g	8.89g	14.03h	14.32j	37.82bcd	37.90be
т	F_2	5.83d	5.95de	9.66e	9.88đ	15.49e	15.84f	37.64cd	37.59cf
14	F_3	5.72e	5.86ef	9.40f	9.60e	15.13f	15.46g	37.84bcd	37.92be
	F_4	5.66e	5.77f	9.34f	9.57e	15.00f	15.34gh	37.74bcd	37.59cf
LSD at 5%		0.10	0.12	0.20	0.18	0.22	0.19	0.72	0.75

Means within a row followed by a different letter (s) are statistically different at a 0.05 level T1:Control (without organic fertilizer), T2: Plant residue and cow waste (compost from a combination of both), T3: Plant residue compost, T4:Cow waste compost, F1: Control , F2: Arginine, F3: Glycine, and F4: Tryptophan

Marwa A. Kany

<u>_</u>		Carbohy	drates. %	Prote	in. %
Treatments		1 st	2 nd	1 st	2 nd
		Organic fertiliza	tion treatments		
T_1		65.29c	65.58d	9.01d	9.18d
T_2		69.02a	69.39a	10.06a	10.26a
$\overline{T_3}$		68.06ab	68.41b	9.89b	10.07b
T_4		67.22b	67.50c	9.60c	9.77c
LSD at 5%		1.14	0.53	0.17	0.17
		Amino acids	s treatments		
F_1		65.85c	66.13c	9.29c	9.49c
F_2		68.35a	68.68a	9.88a	10.06a
F ₃		68.03ab	68.30ab	9.71b	9.90b
F_4		67.37b	67.78b	9.67b	9.84b
LSD at 5%		0.67	0.82	0.11	0.10
		Intera	ction		
	F_1	64.03i	64.26g	8.87g	9.04h
т	F_2	66.14gh	66.38ef	9.28f	9.45g
11	F_3	65.96gh	66.16ef	8.94g	9.12h
	F_4	65.04hi	65.51fg	8.93g	9.09h
	F_1	66.73efg	67.15de	9.55e	9.78f
т	F_2	70.18a	70.58a	10.29a	10.47a
12	F_3	70.15a	70.31a	10.24ab	10.44ab
	F_4	69.03ab	69.53ab	10.16abc	10.37abc
	F_1	66.34fgh	66.53ef	9.45ef	9.64fg
т	F_2	69.02ab	69.43ab	10.08a-d	10.27bcd
13	$\overline{F_3}$	68.52bc	69.04abc	10.06bcd	10.24cd
	$\overline{F_4}$	68.36bcd	68.64bcd	9.97cd	10.13de
	\mathbf{F}_{1}	66.30fgh	66.57ef	9.30f	9.50g
т	$\dot{F_2}$	68.05be	68.31bcd	9.87d	10.03e
14	$\overline{F_3}$	67.49cf	67.70cde	9.60e	9.79f
	F_4	67.05dg	67.42cde	9.60e	9.76f
LSD at 5%	•	1 35	1 64	0.21	0.19

 Table 7. Effect of composts and amino acids on the quality traits of wheat grain of wheat plants at harvest stage during the seasons of 2021/22 and 2022/23

Means within a row followed by a different letter (s) are statistically different at a 0.05 level T1:Control (without organic fertilizer), T2: Plant residue and cow waste (compost from a combination of both), T3: Plant residue compost, T4:Cow waste compost, F1: Control , F2: Arginine, F3: Glycine, and F4: Tryptophan

Nutrient availability: The compost made from a combination of plant residue and cow waste provides a balanced combination of nutrients that are essential for plant growth and development, such as nitrogen, phosphorus, and potassium. Plant residues provide carbon and other essential nutrients, while cow waste is a rich source of nitrogen and other minerals. This balanced nutrient composition may have contributed to the better growth and yield of wheat plants. Soil quality improvement: The compost made from a combination of plant residue and cow waste improves soil quality by increasing soil organic matter content and improving soil structure. This enhances the soil's ability to retain water and nutrients, leading to improved plant growth and yield. Microbial activity: The compost made from a combination of plant residue and cow waste may have a higher microbial activity, which can contribute to nutrient cycling and availability for plants. Microorganisms in the compost can break down organic matter and release nutrients that are essential for plant growth.In summary, the superiority of the compost made from a combination of plant residue and cow waste can be attributed to its balanced nutrient composition, soil quality improvement and microbial activity. The obtained results are in in tune and compatible with those of Goyal et al. (2005); Paredes et al. (2012); Mikanova and Eichlerova (2015); Shabbir et al. (2016).

In terms of amino acids, arginine, glycine, and tryptophan were all found to significantly enhance growth performance and productivity compared to the control treatment. Arginine was found to be the most effective, followed by glycine and then tryptophan.

Arginine was found to be the most effective amino acid in promoting the growth performance and productivity

of plants. This can be attributed to the fact that arginine is a precursor for the synthesis of polyamines, which are essential for cell division and growth (Kaur and Gupta 2021). In addition, arginine is involved in the synthesis of nitric oxide, which is important for plant growth and development. These factors may have contributed to the better growth and productivity of plants treated with arginine (Cao et al. 2019). Glycine was the second most effective amino acid in promoting the growth performance and productivity of plants (Hasanuzzaman and Fujita 2013). Glycine is involved in the synthesis of several important compounds, including chlorophyll, nucleic acids, and proteins. These compounds are essential for plant growth and development, and their increased synthesis may have contributed to the better growth and productivity of plants treated with glycine (Nouri et al. 2020). Tryptophan was the least effective amino acid in promoting the growth performance and productivity of plants. Tryptophan is involved in the synthesis of auxins, which are plant hormones that promote cell division and growth. However, the low effectiveness of tryptophan may be due to its limited availability or low uptake by plants (Scherer 2018).

Regarding the interaction effect, the same Tables illustrated that the use of the compost of plant residue and cow waste and arginine amino acid led to the maximum values of plant growth performance and productivity.

-Soil analysis at harvest time.

Data of Table 8 present the impact of composts and amino acids on the soil's available nitrogen (N), phosphorus (P), and potassium (K) values at the harvest stage, based on combined data over two seasons. While the effect of amino acids on the soil nutrient content was not clearly determined.

Marwa A. Kany

The results showed that all of the compost treatments increased the values of soil available N, P, and K compared to the corresponding soil without compost (control). Specifically, at the harvest stage, the soil treated with the compost of plant residue and cow waste had the highest values of N, P, and K (mg kg-1), followed by the soil treated with compost of plant residue alone, and then the soil treated with compost of cow waste alone. In contrast, the corresponding soil without compost (control) possessed the lowest values of these nutrients.

This trend was observed under all of the studied amino acids. The results suggest that composts can significantly improve the soil nutrient content and that the compost of plant residue and cow waste may be particularly effective in increasing the availability of N, P, and K in the soil. These findings are consistent with previous studies that have shown the positive impact of composts on soil fertility and plant growth.

Table 8. Effect of composts and amino	acids on the soil available N,	P and K values at harvest	t stage (combined data
over both seasons)			

Treatments		N, mg kg ⁻¹	P, mg kg ⁻¹	K, mg kg ⁻¹
	Initial soil	40.04	8.07	202.31
Tı	\mathbf{F}_1	41.74	9.32	209.22
	F_2	40.93	9.03	206.23
	F3	41.06	9.14	207.62
	F_4	41.27	9.22	208.48
Mean		41.3	9.2	207.9
T ₂	\mathbf{F}_1	46.86	10.50	228.69
	F_2	45.51	10.18	221.63
	F_3	45.86	10.29	223.55
	\mathbf{F}_4	46.48	10.41	225.37
Mean		46.2	10.3	224.8
T ₃	\mathbf{F}_1	45.12	10.09	220.39
	F_2	44.22	9.80	216.20
	F_3	44.54	9.89	217.73
	F_4	44.79	9.97	219.14
Mean		44.7	9.9	218.4
T4	\mathbf{F}_1	43.86	9.72	214.74
	F_2	42.90	9.39	210.05
	F3	43.19	9.50	211.35
	\mathbf{F}_4	43.55	9.59	213.12
Mean		43.4	9.56	212.3

T1:Control (without organic fertilizer), T2: Plant residue and cow waste (compost from a combination of both), T3: Plant residue compost, T4:Cow waste compost, F1: Control , F2: Arginine, F3: Glycine, and F4: Tryptophan

CONCLUSION

In conclusion, the present study has shown that the application of organic fertilizers and foliar application of amino acids can significantly improve wheat growth and productivity in Egypt. The compost from a combination of plant residue and cow waste was found to be the most effective treatment, followed by plant residue compost and cow waste compost. Amino acids, particularly arginine, glycine, and tryptophan, were also found to be effective in promoting growth performance and productivity. Therefore, the use of organic fertilizers and amino acids is recommended for wheat cultivation in Egypt to enhance productivity and support the economy and society.

It is important to note that further research is needed to optimize the application rates of organic fertilizers and amino acids and to determine their long-term effects on soil health and fertility. Moreover, the environmental impacts of using organic fertilizers and their potential contribution to reducing greenhouse gas emissions and mitigating climate change should also be considered. Finally, farmers should be encouraged to adopt sustainable agricultural practices that include the use of organic fertilizers and other eco-friendly techniques to promote long-term agricultural sustainability and resilience.

REFERENCES

Ashworth, D. J., Alloway, B. J., & Shaw, B. P. (1997). Soilplant analysis: a laboratory manual. Routledge.

- Association of Official Analytical Chemists (AOAC) International. (2000). Official methods of analysis of AOAC International (17th ed.). AOAC International.
- Cao, W., Ma, Y., & Zhao, J. (2019). Effects of arginine on the growth and development of plants: A review. Journal of Plant Growth Regulation, 38(3): 812-823.
- Castelli, F., Berzaghi, P., Fusaro, L., Galli, F., & Fornaciari, M. (1996). Non-destructive measurements of chlorophyll content in leaves of maize and wheat: Assessing the accuracy of fluorescence readings. Journal of Agricultural Science, 126(1): 63-69.
- CoStat, Version 6.303, Copyright (1998-2004), CoHort Software, Monterey, CA, USA.
- El-Mantawy, R. F., Mokhtar, N. A. Y., & El-Sherpiny, M. A. (2022). Identifying tolerance of some wheat genotypes to water stress conditions. Journal of Global Agriculture and Ecology, 13-24.
- El-Shamy, M. A., El-Naqma, K. A., & El-Sherpiny, M. A. (2022). Possibility of using clover residues, green manures as a partial substitute of mineral nitrogen fertilizer to wheat plants grown on normal and saline soils. Journal of Global Agriculture and Ecology, 51-63.
- El-Sherpiny, M. A., Baddour, A., & Kany, M. (2023). Effect of organic and bio fertilization and magnesium foliar application on soybean production. Egyptian Journal of Soil Science, 63(1): 127-141.
- Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). John Wiley & Sons.

J. of Soil Sciences and Agricultural Engineering, Mansoura Univ., Vol. 14 (8), August, 2023

- Goyal, S., Dhull, S. K., & Kapoor, K. K. (2005). Chemical and biological changes during composting of different organic wastes and assessment of compost maturity. Bioresource Technology, 96(14): 1584-1591. doi: 10.1016/j.biortech.2005.01.011
- Hasanuzzaman, M., & Fujita, M. (2013). Exogenous glycine and proline application enhances growth and nutrient uptake in mung bean (*Vigna radiata* L.) seedlings under salt stress. Soil Science and Plant Nutrition, 59(4): 540-548.
- Hornero-Méndez, D. and Mínguez-Mosquera, M.I., (2001). Rapid quantification of fat-soluble vitamins and carotenoids in vegetables and fruits by highperformance liquid chromatography. Journal of Agricultural and Food Chemistry, 49(94): pp.3472-3476.
- Ibrahim, F. R., El-Sherpiny, M. A., & Ghazi, D. A. (2023). Response of feverfew plant to different plant residues compost and amino acids. Journal of Plant Production, 141-147.
- Jackson, M. L. (1967). Soil chemical analysis: Advanced course. University of Wisconsin-Madison.
- Kaur, N., & Gupta, A. K. (2021). Role of amino acids in plant growth and development. In Nitrogen Fixation and Metabolism in Plants (pp. 57-77). Springer.

- Kumar, V., Sharma, A., Kaur, R., Thukral, A. K., Bhardwaj, R., & Ahmad, P. (2017). Differential distribution of amino acids in plants. Amino acids, 49, 821-869.
- Mikanova, O., & Eichlerova, I. (2015). Influence of compost application on soil properties and crop yields in organic farming. Journal of Central European Agriculture, 16(1), 63-78. doi: 10.5513 /jcea01/16.1.1495
- Nouri, L., Akrami, M., & Nasibi, F. (2020). Glycine alleviates the toxicity of cadmium in hydroponically grown lettuce (*Lactuca sativa* L.). Journal of Plant Nutrition, 43(14): 2177-2185.
- Paredes, C., Roig, A., & Sánchez-Monedero, M. A. (2012). Aromatic plants as a source of bioactive compounds for composting. Bioresource Technology, 125, 275-280. doi: 10.1016/j.biortech.2012.08.041
- Scherer, G. F. (2018). Tryptophan-dependent biosynthesis of auxin in plants. Phytochemistry Reviews, 17(2): 171-188.
- Shabbir, R., Khan, S., & Abbasi, M. K. (2016). Effect of organic and inorganic soil amendments on soil quality and growth and yield of maize. Archives of Agronomy and Soil Science, 62(1): 67-81.

تأثير مصادر مختلفة من الأسمدة العضوية مع الرش ببعض الأحماض الأمينية على إنتاجية القمح وبعض خصائص الترية

مروة أحمد محمد محمود كانى

معهد بحوث الأراضي والمياه والبيئة، مركز البحوث الزراعية، الجيزة، مصر

الملخص

مصر تعتمد بشدة على القمح كمحصول زراعى رئيسى، ويشكل القمح أكبر حصة من إنتاج البلاد الزراعى. وعلى إثر ذلك، فمن الضروري تعزيز إنتاجية القمح فى مصر لدعم الاقتصاد والمجتمع, ولذلك، تهدف الدراسة الحالية إلى تقييم تأثير إضافة اسمده عضوية مختلفة، مثل مكمورة بقايا النباتات ومكمورة مخلفات الأبقار وكذلك مكمورة المزيج بين هذان المصدران، بجرعة 10 طن/فدان، والرش الورقي للأحماض الأمينية (الأرجينين والجلسين والتربتوفان) بمعل 100 مجه/لتر على نمو الفتح ولي العناقة المزبع بين هذان التربية. تمت مقار نة المعاملات بمجموعة الكنترول إبدون اضافه سماد عضوي للتربية والجلسين والتربتوفان) بمعل 100 مجه/لتر على نمو القمح وإنتاجيته، بالإضافة إلى بعض خصائص التربية. تمت مقار نة المعاملات بمجموعة الكنترول إبدون اضافه سماد عضوي للتربه) ومجموعة الكنترول للرش الورقي. وتبين أن مكمورة المزيج بين بقايا النباتات ومخلفات الأبقار هو المعاملة الأكثر فعالية لتعزيز أداء النمو والإنتاجية. وكان اضافه سماد عضوي للتربه) ومجموعة الكنترول للرش الورقي. وتبين أن مكمورة المزيج بين بقايا النباتات ومخلفات الأبقار هو المعاملة الأكثر فعالية لتعزيز أداء النمو والإنتناجية. وكن ثلتي أكثر معاملة فعالة استخدام مكمورة سماد بقار وقي وتبين أن مكمورة المزيج بين بقايا النباتات ومخلفات الأبقار ه الكنترول إلى أدنى أداء النمو والإنتاجية. وكان ثلتي أكثر معاملة فعالة استخدام مكمورة سماد بقاي النباتات بمغرده، تليها سماد مخلوفات الأبقار هو الكنترول إلى أدنى أداء النمو والإنتاجية. إمان الأمينية، تبين أن الأرجينين والتربتوفان جميعها تعزز بشكل كبير أداء النمو والإنتاجية المعارفة الكنترول إلى أدنى أداء النمو والإنتاجية. وكان ثلتي أكثر معاملة فعالة استخدام مكمورة سماد بقار ومعيع التربتوفان جميعها تعزز بشكل كبير أداء النمو والإنتاجية بالمقارنة مع المكنترول إلى أدام الذمي والإنتاجية. إلى اللمنونية، تبين أن الأرجينين والتربتوفان جميعها تعزز بشكل كبير أداء النمو والإنتاجية المقارنة مع المعاملة الكنترول. وكان الأرجينين الأكثر فعالية، بليه الجلسين ومن ألما بلكان إلى والتربتوفان جمعها تورز بقبال معاو الأمينية (خاصنة الأرجينين) في زراعة القمح في مصر لتعزيز الإسابي الأحماض الأمينية، تبين أن الأرجينين والتربتوفان جمعها تمرز بعلوات الأبقار م

الكلمات المفتاحية : المكمورة، ارجنين، جليسين، ترييتوفان.