

Egyptian Journal of Medical Research

Print ISSN: 2682-4396 / Online ISSN: 2682-440X

Original article

The role of testicular sperm extraction in repeated intracytoplasmic sperm injection failures using ejaculate sperm

Ahmed M. Abdelbary ^a, Akram A Elmarakbi ^a, Mohamed Emadeldin Mohamed ^b, Ahmed M. Ragheb ^a

^a Urology, Faculty of Medicine, Beni-Suef University, Egypt
 ^b Urology, Resident at ministry of health.

Article Info

Abstract

Article history:

Received 24 April 2022 Accepted 22 May 2022 *Corresponding Author:* Mohamed Emadeldin mohammademad2525@gmail. com

Keywords:

male infertility

semen quality

sperm

ejaculated sperm

testicular sperm

ICSI failure

Objective: To assess the role of testicular sperm in improving the success rates among patients who have repeated failed intracytoplasmic sperm injection cycles using ejaculated sperm. Design: A retrospective review of records. Materials and Methods: The study included 110 partners with repeated failed ICSI using ejaculate sperm were allocated into two groups retrospectively, one of them underwent testicular ICSI and the other underwent ejaculate ICSI. The two groups were well matched regarding their age of wife, age of husband, duration of marriage, history of previous marriage and previous children. **Results**: Showed that there was no statistically significant difference between patients with second ejaculate ICSI and patients with second testicular ICSI regarding the number of embryos and pregnancy rate (P- value>0.05). Patients underwent second testicular ICSI had a fertilization rate insignificantly higher than patients underwent second ejaculate ICSI.

Conclusions: ICSI using testicular extracted sperm may be considered an alternative to usingsecond ejaculated sperm in the treatment plan of infertile couples especially if increased SDF. We infer that increased SDF may be the main cause of repeated failures of ICSI using ejaculated sperm which remains to be proved by various studies. Higher pregnancy and live birth rates are associated more with higher testicular biopsy motility per drop, testicular biopsy concentration, Number of embryosand the fertilization rate. This study recommends that men with repeated failed ejaculate ICSI with high DNA fragmentation can gain benefit from testicular ICSI in the form of increased fertilization rate, number of embryos and live birth rate.

1. Introduction:

Infertility is defined as the inability to conceive after 1yr of well-timed unprotected intercourse with a prevalence of about 13-14% of reproductive-aged couples [1]. Since the establishment of *in vitro* fertilization, especially ICSI which allowed the consistent ability of a viable spermatozoon to penetrate an oocyte, about half of the couples still fail to achieve successful fertilization, a condition referred to as unexplained infertility [2].

Palermo et al accomplished the first successful attempt of ICSI using sperm from oligoteratoasthenospermic males in 1992 [3].

By the mid-nineties, the fertilizing capability of human testicular sperm had been understood [4,5]. From that point forward, the use of testicular spermatozoon became the standard approach to circumvent infertility in patients with obstructive azoospermia. Later this strategy also was used to yield sperms in nonobstructive azoospermic patients [6]. Despite the fact that sperm retrieval and the outcome of ICSI are highly successful in OA patients, it remains a struggle in NOA patients, both clinically and in the laboratory [2].

Various surgical methods are used, each with a distinct success rate and a different outcome. The use of TESE or TESA (FNA) almost always results in sperm recovery in approximately 100 percent of OA patients, according to most studies. TSE or micro-TESE [7] are the therapies of choice for NOA patients, with sperm recovery rates reaching up to 40% to 50% in some cases, and micro-TESE being 1.5 times more successful at retrieval of sperm than TESE [8].

In the current state of knowledge, there is no conclusive evidence that testicular or

ejaculated sperm yields superior results in successful ICSI, as measured by fertilisation rate, quality of the embryo, rate of implantation, and pregnancy rate stay [9]. Recently, the use of testicular sperm rather than ejaculated sperm for in vitro fertilisation (ICSI) has attracted increased attention as evidence of improved pregnancy outcomes has emerged in cases of male factor infertility utilising the traditional method. As established in a recent metaanalysis that included 5 trials and 143 patients who served as their own controls, testicular sperm have reduced DNA fragmentation rates when compared to ejaculated sperm in males with significant sperm DNA fragmentation in the ejaculate. Testicular sperm taken from the same men was compared to ejaculated sperm to determine the SDF [10].

SDF is assumed to occur in the epididymis. Hence in certain cases, testicular sperm is relied on rather than ejaculated sperm to yield sperm with lower SDF levels before transiting through the epididymis [11]. Additionally, it's been demonstrated that ICSI using extracted testicular sperm provides higher live birth rates in comparison with laboratory methods like Physiological intracytoplasmic sperm injection and IMSI in couples with high SDF in semen [11].

SDF levels in sperm are higher than in testis for a variety of reasons, one of which is the sperm's vulnerability to oxidative damage, particularly during the epididymis transit period [12]. When sperm transit through the male reproductive canal is hampered by oxidative stress, apoptosis can occur. This event has been documented in both animal and human research, and it may be responsible for the high SDF in ejaculated sperm in infertile men [13]. Age, obesity, smoking, and environmental exposure to toxicants are all potential sources of oxidative stress, as are specific clinical conditions such as varicocele and subclinical genital infection, as well as general factors such as smoking and obesity. Providing that the epididymis is bypassed in chosen ICSI candidates, this oxidative-induced damage to sperm chromatin may be avoided in such individuals [14].

Bradley et al. conducted a study in which they evaluated 448 cycles in which sperm injections were performed using ejaculate and testicular sperm. To choose sperm with greater DNA integrity for ICSI, PICSI and IMSI had been used in the previous procedure. According to their findings, LBRs with Testi-ICSI (49.8 percent) were significantly greater than with IMSI (28.7) percent) and PICSI (28.7 percent) (38.3 percent). It was possible to attain the lowest LBR (24.2 percent) when no procedure was used to select sperm for ICSI.[11]. According to a recent survey research including infertility experts from 19 countries, the practise of testicular sperm extraction for ICSI in couples with unexplained infertility is gaining popularity. Approximately 67 percent of those who responded admitted that an abnormal SDF test result would influence their decision to use testicular sperm rather than ejaculated sperm for ICSI in the future [15].

2. Aim Of The Work:

This study aims to assess the role of testicular sperm in improving success rates among patients who have a history of failed ICSI cycles utilizing ejaculated sperm.

3. Materials And Methods:

Study Design: A retrospective descriptive study was conducted to assess the role of using testicular sperm in improving the fertility potential in patients who had failed ICSI using ejaculated sperm.

Study Site: The study was carried out in Cairo and Beni-Suef by using metadata (secondary data analysis) collected at Bedaya Fertility and IVF Hospitals (Cairo/Beni-Suef) as well as El-Nada Fertility Center.

Study Time Frame: The study was carried out over six months divided into the following stages:

Preparatory phase (2 months): during which the following activities were done: Designing the study. Reviewing the latest literature on ICSI and methods to enhance related fertilization rates. Preparing the study tools. Submission for research ethical committee approval; faculty of Medicine, Beni-Suef University. Data collection phase (1 month). Data management phase (1 month). Discussion phase: (1 month). Thesis editing phase (1 month).

Sample size: A sample of 110 couples with a history of repeated failed ICSI performed

with ejaculated sperm. These were patients attending Bedaya and El-Nada fertility centers combined throughout 2018. A sample size of 110 patients gave power of study equal 95% at an alpha error equals 0.05. By using G power program version 3.1 for windows the sample size was calculated at an alpha error 0.05, power 95% and an infertility rate anticipated to be 50%, the total sample size was 55 couple in each group.

Inclusion criteria: Male factor infertility couple or unexplained primary or secondary infertility couple who had a history of previous failed ICSI using ejaculated sperm.

Exclusion criteria: Associated female factor **Data collection tool:**

The records included: Age of both partners, Number of previously failed ICSI cycles, Semen parameters. Medical and surgical history, Testicular examination, Testicular biopsy data, Fertilization rate, Pregnancy rate, Live birth rate & Take-Home-Baby rate.

Data Analysis: The data was coded to fit the program of statistical analysis SPSS version 25 under windows10.A random sample of 10% of cases was selected and reviewed to ensure an adequate quality of data.

Statistical tests:

Description of qualitative variables was by frequency and percentage. Description of quantitative variables was in the form of mean and standard deviation (mean \pm SD). Chisquare (χ^2) test was used for comparison of qualitative variables with each other. Comparison between quantitative variables was carried by using: Student t-test of two independent samples. One-way ANOVA test (analysis of variance) was used instead of t- test. For more statistical analysis; suitable statistical tests of significance were used. P-values < 0.05 is considered as statistically significant.

Ethical Consideration: Administrative approvals were sought from the head of selected facilities.

Ethical approval was sought from Beni-Suef University Ethical Committee. They assured that confidential data was and anonymous. Sociodemographic data was recorded for identifying the characteristics, not identity. Data was secured, anonymous, and was obtained from without patient identity. the center

4. Results:

Characteristics	Second testicular ICSI no=55(%)	Second ejaculate ICSI no=55(%)	P-value
Age of husband(years):			
Mean±SD	39.4±8	39.5±8.2	
Range (min-max)	22-60	27-60	0.916
Median	39	39	
Age of wife:			
Mean±SD	32.2±5.6	31.6±5.7	
Range (min-max)	22-44	22-44	0.638
Median	32.00	30	
Duration of marriage:			
Mean±SD	8.1±4.3	7.9±4	
Range (min-max)	2-24	2-18	0.715
Median	8	7	
History of previous marriage	1(1.8%)	1(1.8%)	1.000
History of previouschildren	10(18.2%)	9(16.4%)	0.999

Table (1): Baseline characteristics of the studied couples:

 Table (1) showed that there was no statistically significant difference between patients with second ejaculate

 ICSI and patients with second testicular ICSI regarding their characteristics (P-value>0.05)

Seminal parameters	Second testicular ICSI no=55(%)	Second ejaculateICSI no=55(%)	P-value
Volume			
Mean±SD	2.7±0.9	3.3±1.17	
Range (min-max)	1-4.5	1-5	0.004*
Median	3	3	
Conc			
Mean±SD	17.8±14	20.9±11.7	
Range (min-max)	1.2-48	8-45	0.211
Median	12	20	
Motility			
Mean±SD	13.3±12.3	24±13.9	
Range (min-max)	0-40	9-60	<0.001**
Median	10	20	
DNA Fragmentation			
Mean±SD	47.6±20.5	60.6±20.9	
Range (min-max)	15-90	20-90	0.002*
Median	46	65	

Table (2): Comparison between both groups regarding the seminal profile of the semen analysis

 and after testicular sperm extraction of the studied husbands:

Table (2) showed that there was no statistically significant difference between patients with second ejaculate ICSI and patients with second testicular ICSI regarding sperm concentration in ejaculate (P-value>0.05). Patients underwent second ejaculate ICSI had a higher ejaculate volume, motility, and DNA fragmentation than patients underwent second testicular ICSI.

Table (3): Testicular biopsy data

Test biopsy motility/drop	
Mean±SD	2.9±2
Range (min-max)	0-8
Median	3
Test biopsy conc.	
Mean±SD	2.6±2
Range (min-max)	0.2-7.0
Median	2

Outcomes	Second testicular ICSI no=55(%)	Second ejaculate ICSI no=55(%)	P-value
Fertilization rate			
Mean±SD	55±37.4	41.7±25.3	
Range (min-max)	0-100	15-100	0.031*
Median	73	35	
Number of embryos			
Mean±SD	2.8±2	2.7±2.5	
Range (min-max)	0-12	0-9	0.765
Median	2	2	
Pregnancy rate			
Get pregnancy	<mark>24(43.6%)</mark>	20(36.4%)	0.436
Failed to get pregnancy	31(56.4%)	35(63.6%)	0.430

Table (4): Comparison between outcomes of using second testicular sperm extraction and outcomes of using second ejaculate sperm among the studied husband:

Table (4) showed that there was no statistically significant difference between patients with second ejaculate ICSI and patients with second testicular ICSI regarding the number of embryos and pregnancy rate (P- value>0.05). Patients underwent second testicular ICSI had a fertilization rate insignificantly higher than patients underwent second ejaculate ICSI.

Table (5): Univariate analysis of the factors affecting getting pregnancy among the patients
underwent testicular ICSI:

Characteristics	Got pregnancy n =24(43.6%)	Failed to getpregnancy n=31(56.4%)	P-value
Age of husband (years):		`	
Mean±SD	38.8±7.6	39.8 ± 8.5	
Range (min-max)	22-56	27-60	0.865
Median	39	39	
Age of wife:			
Mean±SD	31.9±5.4	$32.4{\pm}5.9$	0.777
Range (min-max)	22-41	22-44	0.777
Median	32	30	
Duration of marriage:			
Mean±SD	8±3.6	8.3±4.8	0.004
Range (min-max)	3-17	2-24	0.834
Median	7.5	8	
History of previous marriage	1(1.8%)	0(0%)	0.634
History of previous schildren	3(12.5%)	7(22.6%)	0.336
Volume		.(,)	
Mean±SD	2.4±0.7	2.9±0.97	
Range (min-max)	1-3	2.9±0.97 1-4.5	0.022*
Median	2.5	3	0.022
	2.3	5	
Conc Mean±SD	12+0.7	21 6 15 9	
	13±9.7	21.6±15.8	0.020*
Range (min-max)	1.2-31	2-48	0.020*
Median	12.5	12	
DNA Fragmentation	51 5 01 7	45 4 10 6	
Mean±SD	51.5±21.7	45.4±18.6	0.000
Range (min-max)	15-90	15-90	0.309
Median	48	43	
Motility			
Mean±SD	11.1±11	14.8±13	0.301
Range (min-max)	1-35	0-40	0.001
Median	10	10	
Test biopsy motility/drop			
Mean±SD	4.4±1.9	$1.7{\pm}1.5$	<0.001**
Range (min-max)	1-8	0-5	<0.001
Median	5	1	
Test biopsy conc:			
Mean±SD	3.8±2.4	$1.7{\pm}1.5$	<0.001**
Range (min-max)	0.5-7	0.2-5	
Median	3	2	
Number of embryos:			
Mean±SD	4.3±3.3	$1.7{\pm}2.1$	-0 0.01 **
Range (min-max)	1-12	0-5	<0.001**
Median	3.5	1	
Fertilization rate:			1
Mean±SD	76.6±25.4	38.3±36	
Range (min-max)	40-100	0-86	0.001**
Median	86.5	50	

Table (5) showed that there was unexpectedly statistically significant increase of the seminal volume and concentration among the couples who failed to get pregnancy. The statistically significant increase of the Test biopsy motility/drop, Test biopsy conc, Number of embryos and the fertilization rate were associated more with getting pregnancy.

 Table (6): Univariate analysis of the factors affecting getting pregnancy among the patients

 underwent second ejaculate ICSI:

Characteristics	Got pregnancy n=20(36.4%)	Failed to get pregnancy n=35(63.6%)	P-value
Age of husband(years):			
Mean±SD	39±8.2	39.8±8.4	0.733
Range (min-max)	28-60	27-60	0.755
Median	39.5	39	
Age of wife:			
Mean±SD	30.9±5.8	32.1±5.7	0.465
Range (min-max)	22-44	22-44	0.465
Median	29	31	
Duration of marriage:			
Mean±SD	7.3±3.9	8.3±4.1	0.277
Range (min-max)	2-17	2-18	0.377
Median	6	7	
History of previousmarriage	0(0%)	1(2.9%)	0.446
History of previouschildren	5(25%)	5(14.3%)	0.322
Volume			
Mean±SD	3.5±1.4	3.1±0.7	0 1 9 7
Range (min-max)	1-5	2-5	0.187
Median	4	3	
Conc			
Mean±SD	31.8±9.8	14.8 ± 7.4	.0 0.01 44
Range (min-max)	20-45	8-38	<0.001**
Median	33	12.5	
DNA Fragmentation			
Mean±SD	44.7±24.5	69.7±11.3	<0.001**
Range (min-max)	20-90	45-90	

Median	37.5	74	
Motility			
Mean±SD	36.4±16.8	16.9±3.3	<0.001**
Range (min-max)	10-60	9-22	<0.001***
Median	40	16	
Number of embryos:			<0.001**
Mean±SD	5.2±2.4	1.2±1.1	
Range (min-max)	2-9	0-3	
Median	4.50	1	
Fertilization rate:			
Mean±SD	70.8±16.7	25.1±9.4	<0.001**
Range (min-max)	45-100	15-45	
Median	70	20	

Table (6) showed that among patients underwent second ejaculate ICSI, there was a statistically significant increase of motility, concentration, number of embryos and fertilization rate among the couples who get pregnancy than patients with failure ICSI. Also, he lower DNA fragmentation was significantly associated with getting pregnancy.

5. Discussion:

About 13-14% of reproductive-aged couples are unable to achieve a successful pregnancy after 1 yr or more of frequent unprotected sexual intercourse, so infertility is considered as a major health care problem of different communities [1]. The adoption of ARTs notably ICSI has been able to overcome male factor infertility by allowing the consistent ability of а viable spermatozoon to activate an oocyte [2]. accomplished the first Palermo et al successful attempt of ICSI using sperm from OAT males in 1992 [3]. Ever since, researchers have strived to introduce novel

approaches to obtain best quality sperm to improve ICSI results. Of these approaches, was the suggestion of surgical sperm retrieval in cases of recurrent ICSI failures using seminal sperm [16]. In recent years, claims of improved pregnancy outcomes with testicular sperm for patients of infertility, particularly those with high SDF in the ejaculated sperm, have fueled interest in using testicular sperm in preference to ejaculated sperm for in vitro fertilisation (ICSI) [10].

So, this study was conducted to assess the role of testicular sperm versus the ejaculate sperm in repeated failed ICSI. The study included 110 partners with repeated failed ICSI were allocated into two groups retrospectively, one of them underwent testicular ICSI and the other underwent ejaculate ICSI. The two groups were well matched regarding their age of wife, age of husband, duration of marriage, history of previous marriage and previous children.

This study showed that was no statistically significant difference between patients with second ejaculate ICSI and patients with second testicular ICSI regarding sperm concentration in ejaculate (P-value>0.05). Patients underwent second ejaculate ICSI had a higher ejaculate volume, motility, and DNA fragmentation than patients underwent second testicular ICSI. Despite the non-significant difference between patients with second ejaculate ICSI and patients with second testicular ICSI regarding the number of embryos and pregnancy rate, there were still higher number of embryos and pregnancy rate among testicular ICSI group. In addition, patients underwent second testicular ICSI had a higher fertilization rate than patients underwent second ejaculate ICSI.

This finding is consistent with the findings of a study conducted by Westlander and colleagues, who indicated that testicular sperm can produce more dependable fertilisation rates than other sperm types [17]. Also, our study was supported by previous study done by Esteves et al. [10] observed that the clinical characteristics of couples who had ICSI utilising testicular sperm versus ejaculated sperm were not statistically different, but that the birth rate in the TestiICSI group was considerably greater than in the Ejaculate-ICSI group.

High levels of reactive oxygen species (ROS) in the seminal fluid are associated with poor embryo development in humans, which may explain the current findings [18]. When it comes to the accumulation of oxidative damage as sperm proceed through the male reproductive canal, there is very little information available. They hypothesised that the presence of immature spermatozoa, which are recognised sources of endogenous ROS, could cause harm to mature sperm during transit through the epididymis, according to Ollero et al. [19]. As a vasovasostomy site begins to stenose, it is possible that the local environment within the epididymis will become even more strained. If there is an increase in pressure on the testicular side of anastomosis, increasing epididymal the dysfunction may occur, particularly in a system that has already experienced iatrogenic blockage [20]. Utilization of testicular sperm, as demonstrated in our work, may circumvent this potentially harmful local environment, resulting in enhanced IVF-ICSI outcomes in patients with similar characteristics. The lower rate of fertilisation in the ejaculate ICSI group may also be explained by increased DNA fragmentation, as previously observed in patients with elevated DNA fragmentation and recurrent IVF-ICSI failure using ejaculated sperm; additionally, they discovered that testisderived samples had significantly less DNA damage. Although the rates of fertilisation and embryo development were not significantly different between testis and ejaculated samples [21].

Another reason for testicular ICSI's advantage over ejaculate ICSI Apoptosis induced by testicular circumstances and oxidative stress during sperm transit via the male reproductive canal may account for the increased positive for Spermatic DNA fragmentation of ejaculated sperm from infertile individuals. This oxidative-induced sperm chromatin damage can be prevented in chosen ICSI candidates by bypassing the epididymis and using testicular sperms [13,22].

In contrast to our findings, Lu et al. discovered a small advantage for ejaculated sperm in terms of fertilisation rates and embryo quality across a vast number of centres [23]. Similarly, Gnoth and colleagues reviewed 337 IVF-ICSI cycles and discovered no difference in clinical outcomes between ejaculated and testicular sperm for males with azoospermia, but both of those studies were retrospective and hence susceptible to bias [24].

Furthermore, when testicular sperm was compared to ejaculated sperm, a metaanalysis discovered no statistically significant improvement in ICSI pregnancy rates in azoospermic men [25].

6. Conclusion:

In conclusion, ICSI using testicular extracted sperm may be considered an

alternative to using second ejaculated sperm in the treatment plan of infertile couples especially if increased SDF. We infer that increased SDF may be the main cause of repeated failures of ICSI using ejaculated sperm which remains to be proved by various studies. No statistically significant difference between patients with second ejaculate ICSI and patients with second testicular ICSI regarding the number of embryos and pregnancy rate Higher pregnancy and live birth rates are associated more with higher testicular biopsy motility per drop, testicular biopsy concentration, Number of embryos and the fertilization rate.

7. References:

- Guttmacher AF. Factors affecting normal expectancy of conception. J Am Med Assoc. 1956; 161(9):855-60.
- Queenie V. Neri et al., The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medical College, New York, NY, USA (2014)
- Palermo G, Joris H, Devroey P, Van Steirteghem AC. 1992b. Pregnancies after intracytoplasmic injection of single sper- matozoon into an oocyte. Lancet 340 17–18.
- Schoysman R, Vanderzwalmen P, Nijs M, Segal-Bertin G, van de Casseye M. Successful fertilization by testicular spermatozoa in an in-vitro fertilization programme.HumReprod. 1993 Aug;

8(8):1339-40.

- Craft I, Bennett V, Nicholson N. Fertilising ability of testicular spermatozoa.Lancet. 1993 Oct 2; 342(8875):864.
- Devroey P, Liu J, Nagy Z, Goossens A, Tournaye H, Camus M, Van Steirteghem A, Silber S Pregnancies after testicular sperm extraction and intracytoplasmic sperm injection in non-obstructive azoospermia Hum Reprod. 1995 Jun; 10(6):1457-60.
- Schlegel PN, Li PS Microdissection TESE: sperm retrieval in non-obstructive azoospermia. HumReprod Update. 1998 Jul-Aug; 4(4):439.
- 8. Bernie AM, Mata DA, Ramasamy R, Schlegel PN Comparison of microdissection testicular sperm extraction, conventional testicular sperm extraction, and testicular sperm aspiration for nonobstructive azoospermia: a systematic review and meta-analysis. FertilSteril. 2015 Nov: 104(5):1099-103.e1-3.
- Ben-Ami I, Raziel A, Strassburger D, Komarovsky D, Ron-El R, Friedler S FertilSteril. Intracytoplasmic sperm injection outcome of ejaculated versus extracted testicular spermatozoa in cryptozoospermic men. 2013 Jun; 99(7):1867-71.
- Esteves SC, Roque M, Garrido N Use of testicular sperm for intracytoplasmic sperm injection in men with high sperm

DNA fragmentation: a SWOT analysis. Asian J Androl. 2018 Jan-Feb; 20(1):1-8.

- 11. Bradley CK, McArthur SJ, Gee AJ, Weiss KA, Schmidt U, Toogood L. Intervention assisted improves conception intracytoplasmic sperm injection outcomes for patients with high levels DNA of sperm fragmentation: а retrospective analysis. Andrology. 2016; 4:903-10.
- Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the Origin of Sperm DNA Frag- mentation: Role of Apoptosis, Immaturity and Oxidative Stress. MolMed. 2015; 21:109-22.
- Suganuma R, Yanagimachi R, Meistrich ML. Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI. Hum Reprod. 2005; 20:31018.
- 14. Agarwal A, Cho CL, Esteves SC. Should we evaluate and treat sperm DNA fragmentation CurrOpinObstet Gynecol. 2016; 28:164-71.
- 15. Majzoub A, Agarwal A, Cho CL, Esteves SC. Sperm DNA fragmentation testing: a cross sectional survey on current practices of fertilityspecialists.
- 16. Weissman A, Horowitz E, Ravhon A, Nahum H, Golan A, Levran D.
 Pregnancies, and live births following ICSI with testicular spermatozoa after repeated implantation failure using ejaculated spermatozoa. Reproductive

biomedicine online. 2008; 17(5):605-9.

- Westlander G, Barry M, Petrucco O, Norman R. Different fertilization rates between immotile testicular spermatozoa and immotile ejaculated spermatozoa for ICSI in men Kartagener's syndrome: case report. Hum Reprod. 2003; 18:1286–8.
- 18. Zorn B, Vidmar G, Meden Vrtovec H. Seminal reactive oxygen species as predictors of fertilization, embryo quality and pregnancy rates after conventional in vitro fertilization and intracytoplasmic sperm injection. International journal of andrology. 2003 Oct;26(5):279-85.
- 19. Ollero M, GilGuzman E, Lopez MC, Sharma RK, Agarwal A, Lar- son K, Evenson D, Thomas AJ, Alvarez JG. Characterization of subsets of human spermatozoa at different stages of maturation: implications in the diagnosis and treatment of male infertility. Human reproduction. 2001; 16(9):1912-21.
- 20. Schiff J, Chan P, Li PS, Finkelberg S, Goldstein M. Outcome, and late failures compared in 4 techniques of microsurgical vasoepididymostomy in 153 consecutive men. The Journal of urology. 2005; 174(2):651-5.
- 21. Greco E, Romano S, Iacobelli M, Ferrero

S, Baroni E, Minasi MG, Ubaldi F, Rienzi L, Tesarik J. ICSI in cases of sperm DNA damage: beneficial effect of oral antioxidant treatment. Human Reproduction. 2005; 20(9):2590-4.

- 22. Steele EK, McClure N, Maxwell RJ, Lewis SE. A comparison of DNA damage in testicular and proximal epididymal spermatozoa in obstructive azoospermia. Mol Hum Reprod. 1999; 5:831-5
- 23. Lu YH, Gao HJ, Li BJ, Zheng YM, Ye YH, Qian YL, Xu CM, Huang HF, Jin F. Different sperm sources and parameters can in- fluence intracytoplasmic sperm injection outcomes before embryo implantation. Journal of Zhejiang University Science B. 2012; 13(1):1-10.
- 24. Gnoth C, Markhinin V, Maxrath B, Skonieczny T, Friol K, Roos J, Rahimi G, Godehardt E. Impact of sperm cell source on the results of intracytoplasmic sperm injection. Archives of gynecology and obstetrics. 2015; 291(3):663-9.
- 25. Abhyankar N, Kathrins M, Niederberger C. Use of testicular versus ejaculated sperm for intracytoplasmic sperm injection among men with cryptozoospermia: a meta-analysis. Fertil Steril. 2016; 105:1469-1475.