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Abstract 

The main goal of this study is to use effective microorganisms as a probiotic to improve the ability of tilapia fish to cope with 

temperature stress and heavy metal exposure. The experiment design was split block, incorporating three temperature levels 

(24 °C, 28 °C, and 32 °C) and three different heavy metals (CuSO4, CdCl2, and Pb (NO3)2), and the duration of the experiment 

was two weeks. All stages groups included EM groups in comparison with treatment groups.  Quantitative real-time PCR 

(qRT-PCR) was used to follow the expression profiles of heat shock proteins (HSP70, HSP27, and HSP90) genes in Nile 

tilapia fish. Moreover, the activities of antioxidant enzymes catalase (CAT) and glutathione-S-transferase (GST) were 

examined in fish liver. Expression levels in HSP27 and HSP 90 genes were increased significantly (p< 0.05) in fish groups 

treated with CuSO4 at all temperature levels while expression levels of HSP70 gene increased significantly (p< 0.05) in the 

fish group treated with CuSO4 at 28 °C. At the same time, results varied in CdCl2 treatment with variations in temperature. 

But in case of Pb(NO3)2 stage, expression levels in HSP27 gene increased significantly (p< 0.05) in fish groups subjected to 

(24°C and 28 °C), while increased in the HSP70 gene significantly (p< 0.05) in fish groups subjected to (24°C and 32°C). 

Results of antioxidants enzymes revealed that, the decrease was more detectable in the groups exposed to 0.1LC50 of (Cu, Cd, 

and Pb) at the most temperatures levels. Results revealed the positive impact of effective microorganisms on tilapia fish 

immunity and adaptation to climate change in aquaculture. As a recommendation EM could be used in fish farms to enhance 

fish productivity and reduce the toxic effects of pollutants. 

 Keywords: Oreochromis niloticus, climate change, heat shock proteins, effective microorganisms, antioxidant enzymes 
  

1. Introduction 

Since people have become more aware of the 

nutritional and medicinal benefits of fish, there has 

been a rise in fish consumption worldwide. Fish is an 

excellent source of protein, as well as being abundant 

in vitamins, unsaturated fatty acids, and crucial 

minerals. Fish, which is low in cholesterol having all 

nine essential amino acids, is thought to supply about 

60% of the world's protein needs, where  60% of 

developing nations getting more than 30% of their 

needed protein from fish [1, 2]. Nile tilapia 

(Oreochromis niloticus) is a widely consumed fish 

species with high nutritional and economic value [3]. 

It has high productivity, adaptability, and high 

tolerance against different stressors which suggests 

Nile tilapia is a successful candidate for 

aquaculture[4]. In recent decades, there has been a 
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growing concern regarding the contamination of 

aquatic resources by various pollutants [5, 6]. The 

Nile tilapia, O. niloticus, has been utilized as a bio-

indicator for a variety of contaminants, including 

heavy metals (zinc, cadmium, and mercury) [7] and 

environmental stresses [8, 9]. When cells experience 

stress from external stimuli, they produce proteins 

called heat shock proteins (HSPs) that protect the 

cells [10, 11]. HSPs are essential for maintaining 

cellular homeostasis because they promote proper 

protein folding and reduce misfolded proteins in cells 

that have been under stress in a specific way [12, 13]. 

HSPs are generally grouped into 5 families, 

(HSP100, HSP90, HSP70, HSP60, and small HSPs) 

based on their molecular weight, the homology of 

their amino acid sequence, and also their functions 

[14]. Heat shock proteins (HSPs), genes associated 

with oxidative stress, and immune system regulators, 

particularly cytokines, are among the genes whose 

expression is influenced by temperature. It has been 

discovered that HSPs can repair and stop cellular 

stress brought on by protein denaturation at high and 

low temperatures [15, 16]. However, HSPs 

expression is fluctuating at both stresses according to 

fish species [16, 17]. Because cells produce a range 

of protective responses in response to oxidative 

stress, which can be easily detected as altered 

enzymatic or genetic expression, oxidative stress is a 

convenient criterion to quantify toxicity and 

ecotoxicity [18, 19]. Catalase (CAT), superoxide 

dismutase (SOD), glutathione-S-transferase (GST) 

and glutathione peroxidase (GPx), which are referred 

to as biomarkers to oxidative stress, make up the 

most powerful antioxidative physiological defense 

systems [20,21]. Using functional feed additives in 

aquaculture is one promising means for the reduction 

of environmental stress [22], as application of such 

additives works to mitigate growth retardation, 

immunosuppression, and oxidative damage in fish 

species [23]. Numerous microbial species have been 

tested as possible probiotics for aquaculture such as: 

yeast Saccharomyces spp., Lactobacillus spp., which 

are used primarily as feed or water additives [24, 25, 

26, and 27]. Recently, thermal stress has become a 

serious global concern. It could disturb cellular 

homeostasis and adversely impact aquatic species' 

susceptibility to toxins [28]. In the aquatic 

environment, the temperature varies dramatically 

from season to season, and living organisms 

experience altered metabolism in addition to other 

pathophysiological problems [29]. As protective 

mechanisms against the decreased dissolved oxygen 

that results from heat stress, the respiratory and 

metabolic rates are increased. This increased rate is 

followed by an increase in the amount of water that 

travels over fish gills carrying dissolved compounds 

(such as trace metals) and other dissolved particles, 

which increases both the bioavailability and 

bioaccumulation of the aquatic pollutants in fish 

organs [30, 31]. The present study aims to evaluate 

the antioxidative state and the gene expression of heat 

stress protein genes HSP27, HSP70, and HSP90 to 

highlight the effects of various heavy metals' toxicity 

on Nile tilapia (O. niloticus) during thermal stress.  

2. Materials and Methods  

2.1. Fish samples:  

About 576 adult tilapia fish (O. niloticus), with a 

weight ranges between 90 – 100 g, were collected 

from the National Research Centre farm (Nubaria, 

Egypt). Tilapia fish were brought to the 

Biotechnology and Biodiversity Conservation Lab, 

National Research Centre, in plastic water containers 

containing aerators as an oxygen source with de-

chlorinated tap water. Fish were supplied with 

commercial fish diet (35% protein) all over the 

experiment.                                                                

 

2.2. Determination of lead, copper and cadmium 

toxicities 96 hr. LC50  

A lethal concentration test (96-hr. LC50) was 

applied for O. niloticus after the 96 hr. treatments of 

(CuSO4·5H2O), (CdCl2.H2O) and Pb(NO3)2 as 

described by [32], LC50 was estimated for  

(CuSO4·5H2O) according to [33] and [34], for 

(CdCl2.H2O) referring to [35], and for Pb (NO3)2 

according to [36]. 

 

2.3. Experimental design 

    After acclimation, the fishes were separated to 

eight groups, with three different temperature levels 

for each group and then placed in glass aquaria (150 

liters) in three replicate groups (8 fish/group). The 

experimental design (Fig. 1) included three stages: 

First stage; treatment with CuSO4, Second stage; 

treatment with CdCl2 and the third stage; treatment 

with Pb (NO3)2.  
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Fig.1. the experimental layout. 

2.4. Measurement of antioxidant enzymes 

activities. 

CAT activity was determined, for isolated 

samples from fish liver, using a colorimetric method, 

as reported in a commercial assay kit was used for 

this assay according to, Bio diagnostic Company in 

Cairo, Egypt [37]. The enzyme levels were measured 

at 510 nm and catalase activity was measured as 

mmol
-1

 H2O2/min
-1

/mg
-1

 protein. The activity of 

Glutathione-S-transferase activity (GST) enzyme was 

examined in fish liver by a spectrophotometric 

process, as reported in a commercial assay kit was 

used for this assay according to [38]. The conjugation 

leads to an increase in absorbance at 340 nm. 

 

2.5. Gene expression of heat shock proteins 

Fish RNA was isolated from fish liver by using 

TRIzol® Reagent (Invitrogen, Germany). Then a unit 

of RQ1 RNAse-free DNAse (Invitrogen, Germany) 

was added to RNA to digest DNA precipitates, then 

DEPC water was added and measured 

photospectrometrically at 260 nm and stored at -

80°C. Aliquots were used in reverse transcription 

(RT) reactions. RNA was converted to cDNA (20 µl 

total volume) by RevertAidTM cDNA Synthesis Kit 

(Fermentas, Germany). RT reactions were applied for 

10 min at 25 °C, then 1 hr. at 42°C, ended by a 

denaturation step for 5 min at 99°C [39]. Step one 

Real-Time PCR system (Applied Biosystems, USA) 

was used to determine cDNA copy number of fish 

liver. Each reaction included 0.5 L 0.2 M sense 

primer, 0.5 L 0.2 M antisense primer, 12.5 L 1× 

SYBR® Premix Ex Taq TM (TaKaRa, Biotech. Co. 

Ltd.), 6.5 L dH2O, and 5 L of cDNA template to a 

final 25 L. The used primers are listed in Table (1). 

A melting curve analysis was done at 95.0°C at the 

end of each qPCR to detect the primers quality [40]. 

Table 1. The HSPs primers used in the current study 

Gene Sequence (5’–3’)a 
GenBank number 

(accession number, NCBI) 

Hsp27 

 

F: CCCAGAACTAATGACACCGCA  

R: GTGCTCGATGGCTGGTTTGA 
KC 192887.1 

Hsp70 

 

F: CGGGAGTTGTAGCGATGAGA  

R: CTTCCTAAATAGCACTGAGCCATAA 
GQ 386813.1 

Hsp90 
F: ATGCCTGAAGAAATGCGCCAAGAGGAG  

R: CCAATGGGCTCACCGTTGTCGACTCTG  
GR 599873.1 

β-Actin 
F: TGGGGCAGTATGGCTTGTATG  

R: CTCTGGCACCCTAATCACCTCT 
EF 206801.1 
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2.6. Statistical analyses 

The study results were represented as mean ± SE. 

Data were statistically analyzed utilizing analysis of 

variance (F-test)andDuncan’smultiplerangetestto

determine differences in means as expressed by 

different case letters in the descending order A, B, C 

and D at P<0.05 using SAS (Statistical Analysis 

System) version 9.1[41] and [42].  

3. Results 

3.1. Antioxidant enzymes activities  

The CAT activity in fish liver increased 

significantly (P < 0.05) in EM treated group than 

other groups exposed to 24°C. While increasing 

temperature to 28°C, the levels were highly 

significant in EM/Cu and control groups. At 

32°C, the enzyme levels were highly significant 

in control followed by EM/Cu fish groups as 

shown in (Table 2). The GST activity levels 

showed different patterns than CAT (Table 2). 

At temperature levels of 24°C and 28°C, 

Enzyme levels increased significantly (P < 0.05) 

in EM group when compared to other groups. 

While at higher temperatures, 32 °C the highest 

GST level was detected in Cu group.

 

 

Table 2. Effect of treatment by CuSO4 on CAT and GST activity in thermal stressed Tilapia fish 

 

 Data are represented as means of eight samples ± S.E. 

 Statistical significant differences (P<0.05) are shown with different capital letters in the same column. 
 

 

 

 

Results of CAT activity in liver of tilapia fish 

increased significantly (P < 0.05) in EM and control 

groups compared to other groups subjected to 28°C 

and 32°C. While the highest enzyme values were 

detected in EM fish group exposed to 24°C as shown 

in (Table 3). The GST activity levels in fish liver 

increased significantly (P < 0.05) in EM group more 

than other groups subjected to both temperatures; 24 

°C and 28 °C. While at 32 °C the maximum enzyme 

level was detected in EM/Cd group (Table 3). Results 

of CAT activity in liver of tilapia fish increased 

significantly (P < 0.05) in EM fish group at both 

temperature levels of 24°C and 32°C. The maximum 

levels were detected in both control and EM fish 

groups subjected to 28°C. Concerning the GST 

activity, the levels increased significantly (P < 0.05) 

in EM group exposed to all temperature levels of 

24°C, 28°C and 32 °C (Table 4). 

 

 

Experimental 

groups 

CAT (u/g) GST (u/g) 

24 °C 28 °C 32°C
 

24 °C 28 °C 32°C
 

Control 0.291 ±0.001 

C 

0.324 ± 0.005 

A 

0.317 ± 0.002 

A 

12.405 ± 0.13 

 B 

11.303 ± 0.03 

B 

12.127 ± 

0.07 

B 

E.M 0.316 ±0.002   

A 

0.305 ± 0.003 

B 

0.310 ± 0.002 

B 

17.320 ± 0.01 

A 

12.767 ± 0.02 

A 

9.04 ± 0.01 

C 

E.M. and Cu 0.302±0.003    

B 

0.318 ±0.003 

A 

0.314  ± 0.001 

AB 

9.73 ± 0.08 

C 

11.500 ± 0.09 

B 

5.11 ± 0.30 

D 

Cu 0.298 ± .003 

BC 

0.296 ± 0.002 

B 

0.299 ± 0.002  

C 

12.65 ± 0.72  

B 

7.70 ± 0.17 

C 

18.077 ± 

0.11 

A 
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Table 3. Effect of treatment by CdCl2 on CAT and GST activity in thermal stressed tilapia fish 

Experimental 

groups 

CAT (u/g) GST (u/g) 

24°C 28°C
 

32°C 24°C 28 °C
 

32 °C 

Control 0.284 ± 0.003 

B 

0.318 ±0.005 

A 

0.314 ±0.003 

A 

12.158±0.16 

B 

11.51 ± 0.19 

B 

12.36±0.077 

B 

E.M 0.319 ± 0.002 

A 

0.304 ± 0.004 

A 

0.307 ±0.001 

A 

17.63 ± 0.38 

A 

12.94±0.35 

A 

9.11 ± 0.10 

C 

E.M. and Cd 0.252  ± 0.002 

C 

0.281  ± 0.005 

B 

0.286 ±0.005 

B 

9.15 ± 0.17 

C 

8.74±0.17 

C 

13.74 ± 0.32 

A 

Cd 0.237 ± 0.002 

D 

0.265 ± 0.003 

B 

0.268±0.004 

C 

7.63 ± 0.24 

D 

5.83 ± 0.20 

D 

4.54 ± 0.18 

D 
 Data are represented as means of eight samples ± S.E. 
 Statistical significant differences (P<0.05) are shown with different capital letters in the same column. 

 
Table. 4. Effect of treatment by Pb (NO3)2 on CAT and GST activity in thermal stressed tilapia fish 

Experimental 

groups 

 

CAT (u/g) GST (u/g) 

24°C 28°C 32°C 
 

24°C 28°C 32°C
 

Control 0.284 ± 0.002 

B 

0.303± 0.002 

A 

0.309 ±0.001  

B 

9.13± 0.20 

B 

8.21± 0.16 

B 

7.83 ±0.17 

B 

E.M 0.318 ± 0.001 

A 

0.306 ±0.002  

A 

0.315± 0.001 

A 

11.13±0.27  

A 

9.85± 0.18 

A 

8.98± 0.04 

A 

E.M. and Pb 0.261± 0.001 

C 

0.256± 0.003 

B 

0.261 ±0.001  

C 

2.27 ± 0.03 

C 

2.62± 0.11 

C 

2.48 ± 0.01 

C 

Pb 0.228 ± 0.001 

D 

0.241± 0.001 

C 

0.248 ±0.001 

D 

1.49± 0.01 

D 

0.50 ±0.07 

D 

1.0 ± 0.03 

D 
 Data are represented as means of eight samples ± S.E. 

 Statistical significant differences (P<0.05) are shown with different capital letters in the same column. 

3.1. Gene expression of heat shock protein genes 

The obtained results of gene expression of HSP27, 

HSP70 and HSP90, in liver of O. niloticus, treated 

with CuSO4, CdCl2. and Pb (NO3)2 under different 

temperature levels are summarized in Figures (2-4). 

Results from the CuSO4 treatment revealed that 

HSP70 gene expression levels significantly increased 

only in the fish group at 28°C while in case of both 

HSP27 and HSP90 genes, the expression levels 

increased at all temperature levels (Fig. 2). In case of 

the fish groups treated with CdCl2 at different 

temperature levels (Fig. 3), the expression levels of 

HSP27 increased significantly in control groups at 

24°C, 28°C and in EM group at 32°C. However, 

expression levels of HSP 70 reached highest levels in 

EM/Cd groups at both 28°C and 32°C, but increased 

significantly in EM group after exposure to 24°C 

Concerning the third gene, HSP 90 expression levels 

increased significantly in EM and control groups at 

24°C and 28°C respectively, while at 32°C the 

expression decreased only in Cd fish group. In the 

treatment with Pb (NO3)2 results are shown in Fig. 

(4). In case of HSP27, highest expression levels were 

seen only in control groups at all temperature levels, 

while for  HSP70 the expression levels increased 

significantly in Pb groups at both 24°C and 32°C. 

Then expression levels of HSP90 increased 

significantly in EM group at all temperature levels. 

From the obtained results, the most affected metal by 

temperature changes is CuSO4 followed by Pb (NO3)2 
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Fig.2. RTqPCR expression of HSP27, HSP70 and HSP90genes in liver tissues of tilapia fish treated by CuSO4 (Control, 

EM, EM/Cu and Cu) at 24 °C, 28 °C or 32 °C. Data are represented as mean ± SE (n = 8). The data showed effect of 

CuSO4 on HSP27, HSP70 and HSP90 genes (P<0.05). 

 

 
 

Fig.3. RTqPCR expression of HSP27, HSP70 and HSP90 genes in liver tissues of tilapia fish exposed to CdCl2 (Control, 

EM, EM/Cd and Cd) with 24 °C, 28 °C or 32 °C. Data are represented as mean ± SE (n = 8). The data showed effect of 

EM on HSP27gene (P<0.05). 
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Fig.4. RTqPCR expression of HSP27, HSP70 and HSP90 genes in liver tissues of tilapia fish exposed to Pb (NO3)2 

(Control, EM, EM/Pb and Pb) with 24 °C, 28 °C or 32°C. Data are represented as mean ± SE (n = 8). The data showed 

effect of EM on HSP27gene (P<0.05). 

 

4. Discussion 

Utilizing healthy microorganisms that have been 

isolated from the environment is one of the key 

technologies used to enhance the environment, 

prevent disease, maintain eco-equilibrium, minimize 

adverse effects, and boost immunity [43, 44]. In this 

study, we examined the impact of EM as a probiotic 

for remediation of some toxic metals and improving 

thermal stress adaptation in Nile tilapia. The data in 

this research reflected the impact of EM on fish 

immunity which appeared in the high significance of 

both antioxidants (CAT and GST) in EM fish groups 

subjected to combined stresses of heavy metals and 

temperature levels. Fish that have accumulated heavy 

metals may have toxicological consequences [45, 46] 

and cause oxidative deterioration to animal tissues 

defining cell function damage [47, 48]. Cu induces 

oxidative stress in fish (Gasterosteus aculeatus) [49]. 

Major antioxidant activities are inhibited by lead, 

generating oxidative stress and other disfunctions in 

proteins, lipids, and DNA [50]. In our investigation 

the levels of GST and CAT significantly decreased as 

a result of the metal contamination, which suggested 

damaged antioxidant defense mechanisms. These 

results agree with the recent findings of [51], which 

stated that the exposure to Cu and Zn enhanced DNA 

damage and significantly reduced transcription of 

SOD, CAT, and GST. In accordance with what has 

been suggested in a previous study by the authors 

[48], we thus agree that a variety of parameters, 

including the intensity and duration of chemical 

stress and the sensitivity of the species under study, 

might either increase or decrease the expression of 

antioxidant biomarkers. HSPs allow fish to cope with 

environmental pressures such as: temperature 

variations, osmotic stress and exposure to different 

xenobiotic parameters. Cross-protection is the 

capability of one stressor to elevate the resistance of 

any organism to a later heterologous pressure [52, 

53]. Alteration in expression levels of HSP genes 

may be resulted from application of EM as in all 

stages of our research during treatment with: CuSO4, 

CdCl2 and Pb (NO3)2. The results revealed that HSP 

genes were significantly increased and reached 

maximum levels in fish treated with Cu followed by 

Pb at varying temperature levels. According to our 

data, the expression levels of HSP70 in liver tissues 

considerably rose in the Pb group and control group 

at both 24°C and 32°C followed by the Pb group at 

28°C. This might be explained by the beneficial 

effects of EM on fish at different temperatures and its 

ability to reduce the negative effects of some 

pollutants. In agreement with our results, it was found 

that fish secrete large quantities of HSP70 as a 
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warning signal to enhance protein integrity and 

reduce apoptosis in response to stress [54, 55]. Even 

though some studies claimed that fish express HSP70 

at lower levels, several in vivo studies showed an 

opposite trend in Nile tilapia [56, 57, 58]. Application 

of probiotics reduced expression of HSP70 gene and 

improved growth and survival of fish [59]. Our 

findings are consistent with a prior work, which 

showed that HSP70 expression levels in Nile tilapia 

subjected to some heavy metals could be utilized as 

indicator to comprehend the fish reaction and 

adaptability to high concentrations of Pb and Cd [60]. 

Also agree with Jatoba et al. [61] who found that 

probiotics can improve growth, digestive physiology 

and the immune response of animals. Our findings 

agree with Acunzo et al. [62] who found that the 

most investigated member of the tiny HSP family, 

HSP27, is essential for several signaling pathways 

that are involved in treatment resistance and 

apoptosis inhibition. The expression level of the 

small heat shock protein 27 (HSP27) is increased in 

response to various stressors [63]. In agreement with 

previous studies, our results revealed that in the fish 

groups treated with CuSO4, we found that expression 

levels increased significantly in Cu group at all 

temperature levels in comparison to other groups, 

while in the treatment with Pb (NO3)2 and CdCl2 

increased significantly in control group at all 

temperature levels except in case of CdCl2 subjected 

to 32°C. Which indicated the positive role of EM in 

reduction of some environmental pollutants and 

adaptive the fish with variation in temperature levels 

as an approach for adaptation to climate change on 

aquaculture and biodiversity. HSP90 is one of the 

genes that is known to be most highly expressed 

under thermal stress and protects the organism's cells 

by interacting with a few co-chaperones [64]. 

Additionally, it plays a part in protein folding of 

misfolded substrates as well as substrate 

discrimination. In the embryonic organisms of 

loggerhead turtles, HSP90 has been found to be a 

useful biomarker of temperature stress [65]. HSP90s 

initially recognized as proteins that respond to stress, 

HSP90 has now been linked to a number of 

homeostatic functions. Furthermore, the extracellular 

HSP90s are able to connect to the surface receptors 

and trigger cellular operations associated with 

immune reaction [66]. In accordance with our results, 

adding EM and other functional feed additives to fish 

meals significantly improved the defense against 

stressors, this may be linked to their beneficial 

effects. These effects included increasing food intake, 

fostering fish growth, and boosting immunity. Little 

immunological responses may be brought on by 

feeding EM supplements, as evidenced by their low 

EM concentration [67, 68]. As obtained in our 

research, tilapia fish was adapted to different 

stressors. Our study showed that heat stress can cause 

oxidative stress and inflammation, while EM 

supplementation significantly improves the defense 

against stress. This may be linked to the beneficial 

effects of EM on enhancing antioxidant capacity and 

immune functions of tilapia fish. Further research is 

intended on the application of EM on a large scale for 

longer periods to reduce various impacts of pollutants 

on fish. 

 

5. Conclusion  

Based on our results, oxidative stress was found to 

be significantly increased, and the levels of these 

proteins were found to be significantly higher in the 

groups that received heavy metal treatments. By 

reducing oxidative stress, these proteins function as a 

protective factor. Three new molecular biomarkers 

(HSP27, HSP90, and HSP70) and antioxidant 

enzymes (CAT and GST) for Pb, Cu, and Cd 

exposure in Nile tilapia with EM were successfully 

developed in this study. We recommend the using of 

probiotics as a technique for EM-induced tilapia fish 

immunity and facing multiple stressors (heavy metals 

- temperature variations). Our Further directions are 

intended on the application of EM as a probiotic for 

longer periods on large scale to minimize different 

effects of stressors on fish. 
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