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ON THE DYNAMICS OF A FRACTIONAL-ORDER RICCATI

DIFFERENTIAL EQUATION WITH PERTURBED DELAY

A. M. A. EL-SAYED, S. M. SALMAN, A. A. F. ABDELFATTAH

Abstract. This paper studies the dynamics of a fractional-order Riccati dif-
ferential equation with perturbed delay and introduces a novel concept of

perturbed delay. The study focuses on understanding the behaviour of the

solution through the application of analytical techniques to investigate the ex-
istence and uniqueness of the solution and its continuous dependence on initial

conditions. Analyses of Hopf bifurcations and the local stability of fixed points

are studied. The discrete system is generated by piecewise constant arguments
in order to simulate the behaviour of the system under consideration. The lo-

cal stability analysis of the fixed points of the discrete system is presented.

Numerical simulations using bifurcation diagrams, Lyapunov exponents and
phase diagrams are illustrated. This helps confirm our research and unearth

more complex dynamics. The theoretical results of the fractional order Riccati
differential equation with delay and its perturbed equation are compared. Our

results show that, under specific conditions, the fractional-order Riccati differ-

ential equation with perturbed delay exhibits equivalent dynamical properties
to the fractional-order Riccati differential equation with delay.

1. Introduction

Dynamical systems are mathematical models that describe the time evolu-
tion of a system [1]. They are used in a wide variety of fields, including physics,
chemistry, biology, engineering, economics and finance [2-4]. Moreover, they can
be used to model a wide variety of phenomena, including the motion of planets,
the growth of populations, the spread of diseases and the behaviour of financial
markets [5-8]. They can also be used to study the behaviour of complex systems,
such as the human brain [9].
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Riccati differential equations find applications in numerous fields of classical
and modern science and engineering, including stochastic realisation theory, net-
work synthesis, diffusion problems, optimal filtering, controls, financial mathemat-
ics, robust stabilisation and random processes [10-15]. Another important model
in physics, the Riccati differential equation is related to the Schrodinger equation
of an one dimension [16].

Mathematical equations that incorporate the derivatives of an unknown func-
tion at a specific time, which is determined by the function’s values at previous
points in time, are called delay differential equations [17]. Furthermore, the de-
lay differential equation may be used to characterise the dynamics of physiological
systems as well as electrochemical intercalation [18-21]. Moreover, certain systems
exhibit instability when subjected to a single delay, but by introducing a second
delay, the system can retain its stability [22].

Despite a lengthy history in mathematics, fractional derivatives were not
employed for a long time in physics. The nonlocal nature of fractional derivatives
may be to blame for their lack of widespread acceptance since they defy obvious
geometrical interpretation [23]. Another explanation is that fractional derivatives
have various, non-equivalent meanings. Fractional calculus has lately gained a lot
of interest from physicists and mathematicians. Many physical phenomena may
be explained by using fractional calculus, including the nonlinear oscillation of
an earthquake model, traffic flow, fluid dynamics, the continuum, diffusion wave
equations and statistical mechanics. [24-26].

Consider the initial value problem of the fractional-order Riccati differential equa-
tion with delay

Dγu(t) = 1− ρu(t)u(t− r), t ∈ (0, T ],

u(t) = uo, t ≤ 0,
(1.1)

where ρ, r > 0.

The problem (1.1) can be rewritten as

Dγu(t) = 1− ρu(t)v(t), t ∈ (0, T ],

v(t) = u(t− r),

u(t) = uo, v(t) = vo, t ≤ 0.

(1.2)

Let there exists a perturbed delay as

v(t) = au(t− r) + ϵu(t− 2r),

where 0 < a, ϵ < 1.

The problem (1.2) can considered as
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Dγu(t) = 1− ρu(t)v(t), t ∈ (0, T ],

v(t) = au(t− r) + ϵu(t− 2r),

u(t) = uo, v(t) = vo, t ≤ 0,

(1.3)

The article is organized in the following structure. Section (2) contains ba-
sic definitions of differentiation and integration of fractional orders. The existence
of the solution of the fractional-order Riccati differential equation with perturbed
delay is discussed in Subsection (3.1). In Subsection (3.2) the continuous depen-
dence of the solution on the initial conditions is studied. Local stability of problem
(1.3) is studied in Subsection (3.3). The Hopf bifurcation analysis is performed
in Subsection (3.4). The method of discretization of the differential equation of
fractional-order Riccati with a perturbed delay is presented in Subsection (3.5).
Local stability of the discrete system is performed in Subsection (3.6). In Subsec-
tion (3.7), we confirm the obtained results with numerical simulations. The work’s
summary and knowledge discussion are included in Section (4).

2. Basic Definitions

We will recall the basic definitions of (Caputo) fractional-order differentiation and
integration [26-28].

Definition 2.1. The function f(t), t > 0 has a fractional integral of order γ ∈ R+

described as follows

Iγf(t) =

∫ t

0

(t− ϕ)γ−1

Γ(γ)
f(ϕ)dϕ.

Definition 2.2. The function f(t), t > 0 has a fractional derivative of order γ ∈
(0, 1) as below

Dγf(t) = I1−γ d

dt
f(t).

3. Main Results

The problem (1.3) can be rewritten as

Dγu(t) = 1− ρu(t)
[
au(t− r) + ϵu(t− 2r)

]
, t ∈ (0, T ],

u(t) = uo, t ≤ 0.
(3.1)

3.1. Existence and uniqueness.

Theorem 3.1. If ρ <
Γ(1 + γ)

(3a+ 4ϵ)T γ
, then there is a unique solution u ∈ C[0, T ] of

the problem (3.1).
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Proof. Let Q = { u ∈ R : 0 ≤ u(t) ≤ 1, t ∈ [0, T ] } and operator F : C[0, T ] →
C[0, T ] by

Fu(t) = uo +

∫ t

0

(t− ϕ)γ−1

Γ(γ)

(
1− ρu(ϕ)

[
au(ϕ− r) + ϵu(ϕ− 2r)

])
dϕ,

= uo +

∫ t

0

(t− ϕ)γ−1

Γ(γ)
dϕ−

∫ t

0

(t− ϕ)γ−1

Γ(γ)
ρu(ϕ)

[
au(ϕ− r) + ϵu(ϕ− 2r)

]
dϕ,

= uo +

∫ t

0

(t− ϕ)γ−1

Γ(γ)
dϕ−

∫ r

0

(t− ϕ)γ−1

Γ(γ)
ρu(ϕ)

[
au(ϕ− r) + ϵu(ϕ− 2r)

]
dϕ

−
∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
ρu(ϕ)

[
au(ϕ− r) + ϵu(ϕ− 2r)

]
dϕ

−
∫ t

2r

(t− ϕ)γ−1

Γ(γ)
ρu(ϕ)

[
au(ϕ− r) + ϵu(ϕ− 2r)

]
dϕ,

= uo +

∫ t

0

(t− ϕ)γ−1

Γ(γ)
dϕ−

∫ r

0

(t− ϕ)γ−1

Γ(γ)
ρu(ϕ)

[
auo + ϵuo

]
dϕ

−
∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
ρu(ϕ)

[
au(ϕ− r) + ϵuo

]
dϕ

−
∫ t

2r

(t− ϕ)γ−1

Γ(γ)
ρu(ϕ)

[
au(ϕ− r) + ϵu(ϕ− 2r)

]
dϕ.

Now for x, y ∈ C[0, T ], we can obtain

|Fu− F v| ≤ ρ(a+ ϵ)uo

∫ r

0

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)− v(ϕ)|dϕ+ ρϵuo

∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)− v(ϕ)|dϕ

+ ρa

∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)u(ϕ− r)− v(ϕ)v(ϕ− r)|dϕ

+ ρa

∫ t

2r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)u(ϕ− r)− v(ϕ)v(ϕ− r)|dϕ

+ ρϵ

∫ t

2r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)u(ϕ− 2r)− v(ϕ)v(ϕ− 2r)|dϕ,

≤ ρ(a+ ϵ)uo

∫ r

0

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)− v(ϕ)|dϕ+ ρϵuo

∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)− v(ϕ)|dϕ

+ ρa

∫ t

r

(t− ϕ)γ−1

Γ(γ)

∣∣∣[u(ϕ)− v(ϕ)
]
v(ϕ− r) + u(ϕ)

[
u(ϕ− r)− v(ϕ− r)

]∣∣∣dϕ
+ ρϵ

∫ t

2r

(t− ϕ)γ−1

Γ(γ)

∣∣∣[u(ϕ)− v(ϕ)
]
v(ϕ− 2r) + u(ϕ)

[
u(ϕ− 2r)− v(ϕ− 2r)

]∣∣∣dϕ,
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then,

||Fu− F v|| ≤
ρ(a+ ϵ)uo

(
tγ − (t− r)γ

)
Γ(1 + γ)

||u− v||+
ρϵuo

(
(t− r)γ − (t− 2r)γ

)
Γ(1 + γ)

||u− v||

+
ρa(t− r)γ

Γ(1 + γ)
||u− v|| ||v||+ ρa(t− r)γ

Γ(1 + γ)
||u− v|| ||u||+ ρϵ(t− 2r)γ

Γ(1 + γ)
||u− v|| ||v||

+
ρϵ(t− 2r)γ

Γ(1 + γ)
||u− v|| ||u||,

≤ ρ(a+ ϵ)T γ

Γ(1 + γ)
||u− v||+ ρϵT γ

Γ(1 + γ)
||u− v||+ ρaT γ

Γ(1 + γ)
||u− v||+ ρaT γ

Γ(1 + γ)
||u− v||

+
ρϵT γ

Γ(1 + γ)
||u− v||+ ρϵT γ

Γ(1 + γ)
||u− v||,

≤ ρ(3a+ 4ϵ)T γ

Γ(1 + γ)
||u− v||.

If ρ <
Γ(1 + γ)

(3a+ 4ϵ)T γ
, then F is contraction and problem (3.1) has a unique solution

u ∈ C[0, T ]. □

3.2. Continuous dependence.

Definition 3.1. The solution of the problem (3.1) depends continuously on the
initial value uo if ∀ ϵ > 0, ∃ δ > 0 such that |uo−u∗

o| ≤ δ implies that ||u−u∗|| ≤ ϵ
where u∗ is the solution of the problem

Dγu(t) = 1− ρu(t)
[
au(t− r) + ϵu(t− 2r)

]
, t ∈ (0, T ],

u(t) = u∗
o, t ≤ 0.

(3.2)

Theorem 3.2. If ρT γ(3a + 4ϵ) ̸= Γ(1 + γ), then the unique solution of (3.1)
depends continuously on the initial value uo.

Proof. Let u and u∗ are the solutions of the problems (3.1) and (3.2) respectively,
then

||u(t)− u∗(t)|| ≤ |uo − u∗
o|+ ρ(a+ ϵ)

∫ r

0

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)uo − u∗(ϕ)u∗

o|dϕ

+ ρϵ

∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)uo − u∗(ϕ)u∗

o|dϕ

+ ρa

∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)u(ϕ− r)− u∗(ϕ)u∗(ϕ− r)|dϕ

+ ρa

∫ t

2r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)u(ϕ− r)− u∗(ϕ)u∗(ϕ− r)|dϕ

+ ρϵ

∫ t

2r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)u(ϕ− 2r)− u∗(ϕ)u∗(ϕ− 2r)|dϕ,
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≤ |uo − u∗
o|+ ρ(a+ ϵ)

∫ r

0

(t− ϕ)γ−1

Γ(γ)
|[u(ϕ)− u∗(ϕ)]uo + [uo − u∗

o]u
∗(ϕ)|dϕ

+ ρϵ

∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
|[u(ϕ)− u∗(ϕ)]uo + [uo − u∗

o]u
∗(ϕ)|dϕ

+ ρa

∫ t

r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)u(ϕ− r)− u∗(ϕ)u∗(ϕ− r)|dϕ

+ ρϵ

∫ t

2r

(t− ϕ)γ−1

Γ(γ)
|u(ϕ)u(ϕ− 2r)− u∗(ϕ)u∗(ϕ− 2r)|dϕ,

≤ |uo − u∗
o|+ ρ(a+ ϵ)||u− u∗|| |uo|

∫ r

0

(t− ϕ)γ−1

Γ(γ)
dϕ

+ ρ(a+ ϵ)|uo − u∗
o| ||u∗||

∫ r

0

(t− ϕ)γ−1

Γ(γ)
dϕ+ ρϵ||u− u∗|| |uo|

∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
dϕ

+ ρϵ|uo − u∗
o| ||u∗||

∫ 2r

r

(t− ϕ)γ−1

Γ(γ)
dϕ

+ ρa

∫ t

r

(t− ϕ)γ−1

Γ(γ)

∣∣∣[u(ϕ)− u∗(ϕ)
]
u∗(ϕ− r) + u(ϕ)

[
u(ϕ− r)− u∗(ϕ− r)

]∣∣∣dϕ
+ ρϵ

∫ t

2r

(t− ϕ)γ−1

Γ(γ)

∣∣∣[u(ϕ)− u∗(ϕ)
]
u∗(ϕ− 2r) + u(ϕ)

[
u(ϕ− 2r)− u∗(ϕ− 2r)

]∣∣∣dϕ,
then,

||u− u∗|| ≤ |uo − u∗
o|+

ρ(a+ ϵ)
(
tγ − (t− r)γ

)
Γ(1 + γ)

||u− u∗|| |uo|+
ρ(a+ ϵ)

(
tγ − (t− r)γ

)
Γ(1 + γ)

|uo − u∗
o| ||u∗||

+
ρϵ
(
(t− r)γ − (t− 2r)γ

)
Γ(1 + γ)

||u− u∗|| |uo|+
ρϵ
(
(t− r)γ − (t− 2r)γ

)
Γ(1 + γ)

|uo − u∗
o| ||u∗||

+
ρa(t− r)γ

Γ(1 + γ)
||u− u∗|| ||u∗||+ ρa(t− r)γ

Γ(1 + γ)
||u|| ||u− u∗||+ ρϵ(t− 2r)γ

Γ(1 + γ)
||u− u∗|| ||u∗||

+
ρϵ(t− 2r)γ

Γ(1 + γ)
||u|| ||u− u∗||,

which implies

||u− u∗|| ≤ Γ(1 + γ) + ρT γ(a+ 2ϵ)

Γ(1 + γ)− ρT γ(3a+ 4ϵ)
|uo − u∗

o|,

which proves that

|uo − u∗
o| ≤ δ =⇒ ||u− u∗|| ≤ Γ(1 + γ) + ρT γ(a+ 2ϵ)

Γ(1 + γ)− ρT γ(3a+ 4ϵ)
δ = ϵ∗.

□

3.3. The local stability of (3.1). The local stability of the equilibrium points

of problem (3.1) will be studied. Namely, u∗
1,2 = ± 1√

ρ(a+ ϵ)
, are the solutions of

equation 1− ρu[au+ ϵu] = 0.
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We will use the linearization and Routh-Hurwitz stability criterion [29] to study
the local stability of the equilibrium points.

We get the linearized equation as

Dγv(t) ≈ ∓
a
√
ρ

√
a+ ϵ

v(t− r)∓
ϵ
√
ρ

√
a+ ϵ

v(t− 2r)

and its characteristic equation is given by

sγ ∓
a
√
ρ

√
a+ ϵ

e−sr ∓
ϵ
√
ρ

√
a+ ϵ

e−2sr = 0. (3.3)

To estimate the local stability of the equation (3.3) at the equilibrium points u∗
1,2

we used Routh-Hurwitz stability criterion. We get the following results.

Proposition 3.1.

(1) The equilibrium point u∗
1 =

1√
ρ(a+ ϵ)

is stable.

(2) The equilibrium point u∗
2 =

−1√
ρ(a+ ϵ)

is unstable.

3.4. Hopf bifurcation. The following is a discussion of the Hopf bifurcation that
we cover in this part. Hopf bifurcation studies have been conducted on delayed
differential equation of fractional order in [30].

Theorem 3.3. If Re

[
ds

dϵ

]∣∣∣∣
ϵ=ϵ∗

=
dk

dϵ

∣∣∣∣
k=0,ω=ωo,ϵ=ϵ∗

̸= 0, ϵ∗ =
−a
(
sin(rωo) + cos(rωo)

)
sin(2rωo) + cos(2rωo)

,

ωo =

(
±

i
√
aρ sec

(
πγ
2

)
sin(rωo)√

sin(3rωo)− sin(4rωo) + cos(rωo)− 1

)1/γ

, then there is a Hopf bi-

furcation when

ϵ = ϵ∗ at the equilibrium u∗
1, where

dk

dϵ

∣∣∣∣
k=0,ω=ωo,ϵ=ϵ∗

=

[
√
ρ

(
− a cos (rωo) + ϵ∗ sin (2rωo) + (ϵ∗ − 2) cos (2rωo)

)]

÷

[
ρr2(a+ ϵ∗)

2
(
a2 + 2aϵ∗ cos (rωo) + ϵ2∗

)
+ γωγ(a+ ϵ∗)

3/2

+ 2
√
ρrϵ∗(a+ ϵ∗) cos (2rωo)

]
.
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Proof. Suppose that equation (3.3) has a pure imaginary solution s = iωo, ωo ∈ R+

for a given value of a parameter ϵ = ϵ∗. Therefore, we get the following equation

(iωo)
γ −

a
√
ρ

√
a+ ϵ

e−iωor −
ϵ
√
ρ

√
a+ ϵ

e−2iωor = 0.

We can rephrase that by

iγωγ
o −

a
√
ρ

√
a+ ϵ

(
cos(rωo)− i sin(rωo)

)
−

ϵ
√
ρ

√
a+ ϵ

(
cos(2rωo)− i sin(2rωo)

)
= 0.

This complex equation is equivalent to the two real equations

ωγ
o cos(

γπ

2
)−

a
√
ρ

√
a+ ϵ

cos(rωo)−
ϵ
√
ρ

√
a+ ϵ

cos(2rωo) = 0, (3.4)

ωγ
o sin(

γπ

2
) +

a
√
ρ

√
a+ ϵ

sin(rωo) +
ϵ
√
ρ

√
a+ ϵ

sin(2rωo) = 0. (3.5)

By solving equation (3.4) and equation (3.5), we get

ϵ∗ =
−a
(
sin(rωo) + cos(rωo)

)
sin(2rωo) + cos(2rωo)

,

ωo =

(
±

i
√
aρ sec

(
πγ
2

)
sin(rωo)√

sin(3rωo)− sin(4rωo) + cos(rωo)− 1

)1/γ

.

In what follows, we show that condition Re

[
ds

dϵ

]∣∣∣∣
ϵ=ϵ∗

̸= 0 is investigated. Put

s(ϵ) = k(ϵ) + iω(ϵ) and use equation (3.3), we have

sγ(ϵ)−
a
√
ρ

√
a+ ϵ

e−rs(ϵ) −
ϵ
√
ρ

√
a+ ϵ

e−2rs(ϵ) = 0. (3.6)

By differentiating (3.6) with respects to ϵ, we obtain

γsγ−1(ϵ)
ds

dϵ
+

√
ρe−2rs(ϵ)

(
2r(a+ ϵ)

(
aers(ϵ) + 2ϵ

) ds
dϵ

+ a
(
ers(ϵ) − 2

)
− ϵ

)
2(a+ ϵ)

3
2

= 0,

then,

ds

dϵ
=

√
ρe−2rs

(
ϵ− a(ers − 2)

)
2(a+ ϵ)

3
2 γsγ−1 + 2r

√
ρe−2rs(a+ ϵ)(aers + 2ϵ)

,

by substituting with s(ϵ) = k(ϵ) + iω(ϵ), we get



JFCA-2023/14(2) ON THE DYNAMICS OF A FRACTIONAL-ORDER RICCATI DE 9

ds

dϵ
=

[
√
ρe−2rk

(
cos(2rω)− i sin(2rω)

)(
ϵ− a(erk

(
cos(rω) + i sin(rω)

)
− 2)

)]

÷
[
2(a+ ϵ)

3
2 γ(k + iω)γ−1 + 2r

√
ρe−2rk

(
cos(2rω)− i sin(2rω)

)
(a+ ϵ)

× (aerk
(
cos(rω) + i sin(rω)

)
+ 2ϵ)

]
,

(3.7)

by Separating equation (3.7) into its real and imaginary parts and using
ds

dϵ
=

dk

dϵ
+ i

dω

dϵ
, we can obtain

Re

[
ds

dϵ

]
=

dk

dϵ
=

[
√
ρe−2rk(ϵ− aerk cos(rωo)− 2) cos(2rωo) +

√
ρe−2rk(ϵ− aerk sin(rωo)) sin(2rωo)

]

÷
[
(a+ ϵ)3/2γ(k2 + ω2)γ/2 + 2r

√
ρe−2rk(a+ ϵ)ϵ cos(2rωo) + r2ρe−4rk(a+ ϵ)2

× (a2 + 2aϵerk cos(rωo) + ϵ2)

]
,

then,

dk

dϵ

∣∣∣∣
k=0,ω=ωo,ϵ=ϵ∗

=

√
ρ
(
− a cos (rωo) + ϵ∗ sin (2rωo) + (ϵ∗ − 2) cos (2rωo)

)
ρr2(a+ ϵ∗)2 (a2 + 2aϵ∗ cos (rωo) + ϵ2∗) + γωγ(a+ ϵ∗)3/2 + 2

√
ρrϵ∗(a+ ϵ∗) cos (2rωo)

.

If Re

[
ds

dϵ

]∣∣∣∣
ϵ=ϵ∗

=
dk

dϵ

∣∣∣∣
k=0,ω=ωo,ϵ=ϵ∗

̸= 0, hence when the parameter ϵ crosses a

certain critical value

ϵ∗ =
−a
(
sin(rωo) + cos(rωo)

)
sin(2rωo) + cos(2rωo)

, ωo =

(
±

i
√
aρ sec

(
πγ
2

)
sin(rωo)√

sin(3rωo)− sin(4rωo) + cos(rωo)− 1

)1/γ

,

the equilibrium point u∗
1 undergoes Hopf bifurcation. □

Likewise, we can illustrate that the equilibrium point u∗
2 undergoes Hopf bifurcation.

3.5. The discrete system. Dynamical systems that are formed by piecewise con-
stant arguments studied in [31-33]. The discretization of fractional-order Riccati
differential equation studied in [34].
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Consider (1.3) with piecewise constant arguments as follows.

Dγu(t) = 1− ρu(r[
t

r
])v(r[

t

r
]), t ∈ (0, T ],

v(r[
t

r
]) = au(r[

t

r
]− r) + ϵu(r[

t

r
]− 2r),

u(t) = uo, v(t) = vo, t ≤ 0,

(3.8)

where [.] denotes the greatest integer function and r is a constant argument.

Let t ∈ [nr, (n + 1)r) and n = 0, 1, 2, ... . The procedure for discretization is as
given below.

1) Let t ∈ [0, r), then [
t

r
] = 0 and the solution of the problem (3.8) is given by

I1−γ d

dt
u(t) = 1− ρuovo

u(t)− u(0) =
(
1− ρuovo

)∫ t

0

(t− ϕ)γ−1

Γ(γ)
dϕ

u(t) = uo +
tγ

Γ(1 + γ)

(
1− ρuovo

)
,

vo = auo + ϵuo.

When t → r and u(r) = u1 we get

u1 = uo +
rγ

Γ(1 + γ)
(1− ρuovo),

vo = auo + ϵuo.

2) Let t ∈ [r, 2r), then [
t

r
] = 1 and the solution of the problem (3.8) is given by

I1−γ d

dt
u(t) = 1− ρu1v(r)

u(t)− u(r) =
(
1− ρu1v(r)

)∫ t

r

(t− ϕ)γ−1

Γ(γ)
dϕ

u(t) = u1 +
(t− r)γ

Γ(1 + γ)

(
1− ρu1v(r)

)
,

v(r) = auo + ϵuo.

When t → 2r, u(2r) = u2 and v(r) = v1 we get

u2 = u1 +
rγ

Γ(1 + γ)
(1− ρu1v1),

v1 = auo + ϵuo.



JFCA-2023/14(2) ON THE DYNAMICS OF A FRACTIONAL-ORDER RICCATI DE 11

3) Let t ∈ [2r, 3r), then [
t

r
] = 2 and the solution of the problem (3.8) is given by

I1−γ d

dt
u(t) = 1− ρu2v(2r)

u(t)− u(2r) =
(
1− ρu2v(2r)

)∫ t

2r

(t− ϕ)γ−1

Γ(γ)
dϕ

u(t) = u2 +
(t− 2r)γ

Γ(1 + γ)

(
1− ρu2v(2r)

)
,

v(2r) = au1 + ϵuo.

When t → 3r, u(3r) = u3 and v(2r) = v2 we get

u3 = u2 +
rγ

Γ(1 + γ)
(1− ρu2v2),

v2 = au1 + ϵuo.

By repeating the process we can deduce that the solution of problem (3.8) is given
by

un+1 = un +
rγ

Γ(1 + γ)
(1− ρunvn),

vn+1 = aun + ϵun−1.

(3.9)

3.6. The discrete system’s local stability. The system (3.9) can be rewritten
as below

un+1 = un +
rγ

Γ(1 + γ)
(1− ρunvn),

vn+1 = aun + ϵwn,

wn+1 = un.

(3.10)

The system has two fixed points (u∗
1, v∗1, w

∗
1) and (u∗

2, v∗2, w
∗
2) where

u∗
1 =

1√
ρ(a+ ϵ)

, v∗1 =
a+ ϵ√
ρ(a+ ϵ)

, w∗
1 =

1√
ρ(a+ ϵ)

,

u∗
2 =

−1√
ρ(a+ ϵ)

, v∗2 =
−(a+ ϵ)√
ρ(a+ ϵ)

, w∗
2 =

−1√
ρ(a+ ϵ)

,

where (a+ ϵ) ̸= 0, which are the solution of the following algebraic system

u = u+
rγ

Γ(1 + γ)
(1− ρuv),

v = au+ ϵw,

w = u.
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The Jacobian matrix associated to the system (3.10) reads

J(u, v, w) =


1− rγ

Γ(1 + γ)
ρv

−rγ

Γ(1 + γ)
ρu 0

a 0 ϵ

1 0 0

 .

What follows is stability analysis of fixed points (u∗
1, v∗1, w

∗
1) and (u∗

2, v∗2, w
∗
2).

3.6.1. Stability analysis at (u∗
1, v∗1, w

∗
1). The Jacobian matrix calculated at (u∗

1, v∗1, w
∗
1)

reads

J(u∗
1, v∗1, w

∗
1) =


1−

rγ
√
ρ(a+ ϵ)

Γ(1 + γ)
√
a+ ϵ

−rγ
√
ρ

Γ(1 + γ)
√
a+ ϵ

0

a 0 ϵ

1 0 0

 .

The characteristic equation associated to J(u∗
1, v∗1, w

∗
1) is given by

P (λ) ≡ λ3 +

(
rγ
√
ρ(a+ ϵ)

Γ(1 + γ)
√
a+ ϵ

− 1

)
λ2 +

rγa
√
ρ

Γ(1 + γ)
√
a+ ϵ

λ+
rγϵ

√
ρ

Γ(1 + γ)
√
a+ ϵ

= 0.

The Jury test described in [35] is used to establish whether or not system (3.10),
at the fixed point (u∗

1, v∗1, w
∗
1), is locally stable. We find the following.

Proposition 3.2. The fixed point (u∗
1, v∗1, w

∗
1) is stable if 0 < ρ <

(a+ ϵ) Γ2(1 + γ)

a2 r2γ

and unstable if ρ >
(a+ ϵ) Γ2(1 + γ)

a2 r2γ
.

3.6.2. Stability analysis at (u∗
2, v∗2, w

∗
2). The Jacobian matrix calculated at (u∗

2, v∗2, w
∗
2)

reads

J(u∗
2, v∗2, w

∗
2) =


1 +

rγ
√
ρ(a+ ϵ)

Γ(1 + γ)
√
a+ ϵ

rγ
√
ρ

Γ(1 + γ)
√
a+ ϵ

0

a 0 ϵ

1 0 0

 .
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The characteristic equation associated to J(u∗
2, v∗2, w

∗
2) is given by

P (λ) ≡ λ3 −
(

rγ
√
ρ(a+ ϵ)

Γ(1 + γ)
√
a+ ϵ

+ 1

)
λ2 −

rγa
√
ρ

Γ(1 + γ)
√
a+ ϵ

λ−
rγϵ

√
ρ

Γ(1 + γ)
√
a+ ϵ

= 0.

Using Jury test, the second condition not satisfied and we find the following.

Proposition 3.3. The fixed point (u∗
2, v∗2, w

∗
2) is always unstable.

3.7. Numerical simulations. In this part, to validate our studies we use
numerical experiments to draw out the theoretical results and show that changes
in r, a, ϵ and γ affect the dynamical behaviour of the dynamical system (3.9). We
have been experimenting with different values of r, a, ϵ and γ and then plotting
bifurcation diagrams as a function of ρ. Moreover, for each bifurcation diagram,
the maximal Lyapunov exponent is introduced below it. In Figure (1a) we start
with the initial point (0.1328, 0.1195, 0.1328) at r = 0.1, a = 0.8, ϵ = 0.1, γ = 0.85
the system undergoes bifurcation at ρ ≃ 63.021. In Figure (1b) we start with
the initial point (0.1195, 0.1195, 0.1195) at r = 0.1, a = 0.8, ϵ = 0.2, γ = 0.85
the system undergoes bifurcation at ρ ≃ 70.024. In Figure (1c) we start with the
initial point (0.2393, 0.2154, 0.2393) at r = 0.2, a = 0.8, ϵ = 0.1, γ = 0.85 the
system suffers a bifurcation at ρ ≃ 19.397. Figure (1g) illustrates that the system
suffers a bifurcation at ρ ≃ 55.327 with initial point (0.1344, 0.1344, 0.1344) and
r = 0.1, a = 0.9, ϵ = 0.1, γ = 0.85. Figure (1h) illustrates that the system
undergoes bifurcation at ρ ≃ 82.073 with initial point (0.1164, 0.1047, 0.1164) and
r = 0.1, a = 0.8, ϵ = 0.1, γ = 0.90. Figure (1i) illustrates that the system
undergoes bifurcation at ρ ≃ 76.422 with initial point (0.1144, 0.1144, 0.1144) and
r = 0.1, a = 0.999, ϵ = 0.001, γ = 0.95. We noticed that when a → 1 and ϵ → 0 the
Riccati equation with perturbed delay (1.3) will be the Riccati differential equation
(1.1) as shown in Figures (1g) and (1i).

Additionally, we introduce some phase diagrams by taking r = 0.1, a = 0.8,
ϵ = 0.2, γ = 0.85 and initial point = (0.1195, 0.1195, 0.1195) as in Figure (2). By
increasing the value of ρ, the curve rotates clockwise and a period-4 orbit forms and
Lyapunov exponent becomes a negative, as shown in Figures (2a)-(2d). The curve
turns into a closed curve with an increase in radius and the Lyapunov exponent
changes between negative and positive as in Figures (2e)-(2h). In Figure (2i) the
closed curve breaks down and the Lyapunov exponent becomes positive again. The
curve appears again as in Figures (2j)-(2k) and the Lyapunov exponent changes
between negative and positive. In figure (2l) the curve breaks down again and
Lyapunov exponent becomes positive again. Figures (2m)-(2n) show that the closed
curve appears again and the Lyapunov exponent changes between negative and
positive. In Figures (2o)-(2p) the closed curve breaks down and a period-7 orbit
forms and Lyapunov exponent becomes negative again. In Figure (2q) show that
the closed curve appears again and the Lyapunov exponent becomes positive. In
Figures (2r)-(2s) the closed curve breaks down and a period-8 orbit forms and
Lyapunov exponent becomes positive again. Figure (2t) shows that the closed
curve appears again then disappears and Lyapunov exponent becomes positive.
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(a) r = 0.1, a = 0.8, ϵ =
0.1, γ = 0.85

(b) r = 0.1, a = 0.8, ϵ =
0.2, γ = 0.85

(c) r = 0.2, a = 0.8, ϵ =
0.1, γ = 0.85

(d) r = 0.1, a = 0.8, ϵ =
0.1, γ = 0.85

(e) r = 0.1, a = 0.8, ϵ =
0.2, γ = 0.85

(f) r = 0.2, a = 0.8, ϵ =
0.1, γ = 0.85

(g) r = 0.1, a = 0.9, ϵ =
0.1, γ = 0.85

(h) r = 0.1, a = 0.8, ϵ =
0.1, γ = 0.90

(i) r = 0.1, a = 0.999, ϵ =
0.001, γ = 0.95

(j) r = 0.1, a = 0.9, ϵ =
0.1, γ = 0.85

(k) r = 0.1, a = 0.8, ϵ =
0.1, γ = 0.90

(l) r = 0.1, a = 0.999, ϵ =
0.001, γ = 0.95

Figure 1. Bifurcation diagrams of system (3.9) and its
corresponding maximum Lyapunov exponent
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(a) ρ = 60 (b) ρ = 65 (c) ρ = 69 (d) ρ = 70

(e) ρ = 70.5 (f) ρ = 71 (g) ρ = 73 (h) ρ = 75

(i) ρ = 78 (j) ρ = 80 (k) ρ = 85 (l) ρ = 88

(m) ρ = 89 (n) ρ = 96 (o) ρ = 97 (p) ρ = 98

(q) ρ = 102 (r) ρ = 103 (s) ρ = 104 (t) ρ = 104.5

Figure 2. Phase diagrams of the system (3.9) with different val-
ues of ρ



16 A. M. A. EL-SAYED, S. M. SALMAN, A. A. F. ABDELFATTAH JFCA-2023/14(2)

4. Conclusion

The paper discussed the dynamics of a fractional-order Riccati differential
equation with perturbed delay and introduced a novel concept of perturbed de-
lay. The study focused on understanding the behaviour of the solution through the
application of analytical techniques to investigate the existence and uniqueness of
the solution and its continuous dependence on initial conditions. Analyses of Hopf
bifurcations and the local stability of fixed points were presented. Utilising piece-
wise constant arguments, the discrete system was generated in order to simulate
the behaviour of the system under consideration. The local stability analysis of the
fixed points of the discrete system was presented. To validate our results, numerical
simulations that generated bifurcation diagrams, Lyapunov exponents and phase
diagrams were used to better understand the underlying complicated dynamics.
The findings of theoretical investigations of the fractional order Riccati differential
equation with delay and its perturbed equation were compared. We found that the
dynamical system is sensitive to shifts in r, a, γ and that even a little perturbation
may cause a significant shift in the system’s chaotic behaviour. Moreover, when
a → 1 and ϵ → 0 the problem (1.3) is equivalent to problem (1.1) with the same
dynamical properties. As well as, when γ → 1 the problem (1.1) and its perturbed
equation (1.3) are equivalent to equation (1) and its perturbed equation (3) in [36]
respectively, with the same dynamical properties.
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