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A REVISIT OF THE MODIFIED CELEBIOGLU-CUADRAS

COPULA

CHRISTOPHE CHESNEAU

Abstract. In recent years, efforts have been made to improve the scope of
modeling the dependence of well-known copulas by modifying their mathemat-

ical structure. This was the case, among others, of the so-called Celebioglu-

Cuadras copula. In this article, we make contributions to this subject by (i)
significantly improving an existing result from the literature on the admissi-

ble values for a modified version of the Celebioglu-Cuadras copula and (ii)

studying a generalization of this modified copula using an additional setting
shape parameter. The characteristics of the introduced copulas are discussed,

including the shapes of the copula-related functions, various symmetry and

dependence structure types, copula inequalities, diverse correlation measures,
and bivariate distribution generation. In particular, we highlight the fact that

they are ideal for modeling a wide variety of negative-type dependencies and
offer an interesting alternative to the Celebioglu-Cuadras and Gumbel-Barnett

copulas. Several graphics are produced, and digital work is carried out as sup-

port.

1. Introduction

Since the work in [1, 2], copulas have proven to be effective mathematical tools
that allow for the modeling of complex dependence structures between random
variables. In the past, dependence structures were often assumed to be linear, which
limited the types of relationships that could be modeled. Copulas, however, allow
for a more flexible approach. They enable researchers to capture more nuanced
dependence structures, better understand the relationships between the random
variables, and more accurately model their behavior. Copulas are used in a variety
of fields, including finance, environmental science, and engineering, among others.
The majority of the theoretical and practical information on copulas can be found
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in [3, 4, 5, 6]; modern applications are given in [7, 8, 9, 10]; and current advances
include [11, 12, 13, 14, 15, 16, 17, 18, 19].

Recently, the author in [20] considers a three-parameter bivariate copula of the
following general form:

Cop(x, y; a, b, c) = xy exp
[
−a(1− xb)(1− yc)

]
, (x, y) ∈ Ξ, (1)

where Ξ = [0, 1]2, and a, b and c are real numbers that aim to flexibilize the
exponential structure. The optimal ranges of values for a, b and c that make
Cop(x, y; a, b, c) a valid copula are a mathematical challenge. Beyond this challenge,
the motivations for considering this copula and the limitations of the existing results
are described below.

• By taking b = c = 1 and a ∈ [−1, 1], Cop(x, y; a, b, c) corresponds to the
Celebioglu-Cuadras (CC) copula established in [21, 22]. This copula has
numerous attractive properties, including the cover of the independence
copula, simple copula-related functions, modulable functionalities thanks to
a, and various degrees of negative and positive-type dependence structures
(see [23], [24], [25], [26], [27], and [20]).

• For the tunable cases b > 0, c > 0 and a ∈ R but with strong interdepen-
dence conditions on them, the above properties are considerably enhanced.
In particular, the modulation of these parameters allows the copula-related
functions to accommodate a wide panel of shapes. This implies greater
modeling perspectives for Cop(x, y; a, b, c) in comparison to the former CC
copula, but at the price of more complexity in the handling of the param-
eters. These aspects are demonstrated in detail in [20].

• A contribution in [20, Proposition 1] is to show that, under some circum-
stances, the cases b < 0, c < 0 and a ∈ R can be considered. More precisely,
under a strict condition involving a stringent interdependence between a,
b and c, Cop(x, y; a, b, c) is a valid copula. Furthermore, it can reach an
extreme level of negative dependence structure; the rho of Spearman can
attain the value −1.

For the last point, however, there is room for improvements and new discoveries.
This article provides contributions in this direction. More precisely, in the first
part, we revisit the case b = c = −1 corresponding to a copula of the following
form:

Cop(x, y; a) = xy exp

[
−a

(1− x)(1− y)

xy

]
, (x, y) ∈ Ξ. (2)

For this copula, if we apply the strict condition in [20, Proposition 1], we find a = 1
only. We prove that this pointwise value condition can be significantly improved;
it can be replaced by a ∈ [0, 1]. In particular, this shows that it covers a plethora
of intermediate cases, starting with the independence copula obtained by taking
a = 0. The proof is based on appropriate differentiation techniques, factoring
methods, and polynomial inequalities.

In the second part, we go beyond the existing literature by proposing an extension
of the copula in Equation (2). This extension consists in adding a shape parameter
b to the denominator term. More precisely, we consider

Cop(x, y; a, b) = xy exp

[
−a

(1− x)(1− y)

xbyb

]
, (x, y) ∈ Ξ. (3)
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We thus determine the admissible values of a and b making Cop(x, y; a, b) a valid
copula. Based on our findings, we can take a ∈ [0, 1] and b ∈ (0, 1] without interde-
pendence between them. This result is of particular interest for statistical purposes
because the parameters can be estimated independently of each other. Appropriate
differentiation techniques, factoring methods, and polynomial inequalities serve as
the foundation for the proof. To the best of our knowledge, the extended mod-
ified CC copula in Equation (3) has never been considered before, and offers an
alternative option to the CC, Gumbel-Barnett (GB) and extended CC copulas as
described in [20]. In the third part, we illustrate this claim by investigating the
shapes of the copula-related functions, various kinds of symmetry, quadrant de-
pendence, copula bounds, tail dependence, correlation properties, and distribution
generation operations.

The rest of the article is basically divided into the following sections: Section
2 gives the main theoretical results, providing the detailed proof of the admissible
values of the parameters for the copulas in Equations (2) and (3). The properties
of these copulas are described in Section 3. A conclusion is made in Section 4.

2. Results

Before presenting the main results of this article, it is worth recalling the precise
definition of a bivariate copula. It is important to note that, here, the notion of
copula will be understood in the absolutely continuous bivariate (ACB) case.

Definition 2.1. In the ACB case, a copula is a differentiable function defined on
Ξ, say Cop(x, y), (x, y) ∈ Ξ, such that the following conditions are fulfilled:

Boundary (Bo) condition:: For any (x, y) ∈ Ξ, we have

Cop(x, 0) = 0, Cop(0, y) = 0, Cop(x, 1) = x, Cop(1, y) = y.

Positive derivative (PoDe) condition:: For any (x, y) ∈ Ξ, we have

∂x,yCop(x, y) =
∂2

∂x∂y
Cop(x, y) ≥ 0.

The Bo condition is often easy to demonstrate, while the PoDe condition gen-
erally requires more or less difficult developments. We are now able to prove the
main results of the article, starting with the following proposition dealing with the
copula in Equation (2).

Propsition 1. The bivariate function defined by

Cop(x, y; a) = xy exp

[
−a

(1− x)(1− y)

xy

]
, (x, y) ∈ Ξ, (4)

is a valid copula for a ∈ [0, 1].

Proof. The proof is based on checking the conditions of Definition 2.1.

Proof of the Bo condition:: For any (x, y) ∈ Ξ and a ∈ [0, 1], we have

lim
y→0

−a
(1− x)(1− y)

xy
= −a

(
1

x
− 1

)
lim
y→0

(
1

y
− 1

)
= −∞,

implying that

Cop(x, 0; a) = lim
y→0

xy exp

[
−a

(1− x)(1− y)

xy

]
= 0.
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In a similar way, we obtain Cop(0, y; a) = 0. On the other hand, more
directly, we have

Cop(x, 1; a) = x× 1× exp

[
−a

(1− x)(1− 1)

x× 1

]
= x× exp(0) = x.

We also obtain Cop(1, y; a) = y. The Bo condition is satisfied.
Proof of the PoDe condition:: For any (x, y) ∈ Ξ, after some differential

and algebraic manipulations, we establish

∂x,yCop(x, y; a) =

1

x2y2
exp

[
−a

(1− x)(1− y)

xy

] [
a2(1− x)(1− y)− axy(x+ y − 1) + x2y2

]
. (5)

For any (x, y) ∈ Ξ, it is clear that the two first main terms are positive, i.e.,
1/(x2y2) and the exponential term. Moreover, we have a2(1−x)(1−y) ≥ 0
and, for a ∈ [0, 1], we find

− axy(x+ y − 1) + x2y2 = −axy(x+ y − 1− xy) + (1− a)x2y2

= axy(1− x)(1− y) + (1− a)x2y2 ≥ 0.

As a result, the term in square brackets in Equation (5) is non-negative,
implying that

∂x,yCop(x, y; a) ≥ 0.

The PoDe condition is fulfilled.

The desired result is demonstrated. □

For the purposes of this study, the copula described in Equation (4) is called
the modified CC (MCC) copula. This is a special case of the one proposed in [20]
but with a strong contribution: the proof of its validity for a ∈ [0, 1], and not just
a = 1. It is worth noting that the MCC and CC copulas are related in the following
intriguing way: for any (x, y) ∈ Ξ and a ∈ [0, 1], we have

Cop(MCC)(x, y; a) =
[
Cop(CC)(x, y; a)

]1/(xy)
,

where Cop(MCC)(x, y; a) is the MCC copula as defined in Equation (4) and
Cop(CC)(x, y; a) is the CC copula defined by Cop(CC)(x, y; a) = xy exp[−a(1−x)(1−
y)]. However, the CC copula allows negative values for a, i.e., from a ∈ [−1, 1],
whereas the MCC copula does not.

In order to underline the interest of the MCC copula, we can mention the sched-
uling properties presented below involving some major copulas from the literature.

Lemma 2.1. For any (x, y) ∈ Ξ and a ∈ [0, 1], the following scheduling property
holds:

Cop(MCC)(x, y; a) ≤ Cop(GB)(x, y; a) ≤ Cop(CC)(x, y; a) (≤ Cop(Ind)(x, y)),

where Cop(MCC)(x, y; a) is the MCC copula defined in Equation (4), Cop(GB)(x, y; a)
is the GB copula defined by Cop(GB)(x, y; a) = xy exp[−a log(x) log(y)], Cop(CC)(x, y; a)
is the CC copula defined by Cop(CC)(x, y; a) = xy exp[−a(1 − x)(1 − y)], and
Cop(Ind)(x, y) is the indepence copula, i.e., Cop(Ind)(x, y) = xy.
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Proof. For any x ∈ [0, 1], the following logarithmic inequalities are well-known:

x− 1

x
≤ log(x) ≤ x− 1 ≤ 0,

with the limit case for x = 0. As a result, for any (x, y) ∈ Ξ, we have

− (1− x)(1− y)

xy
≤ − log(x) log(y) ≤ −(1− x)(1− y) ≤ 0

and, for a ∈ [0, 1], since the exponential function is increasing, we have

exp

[
−a

(1− x)(1− y)

xy

]
≤ exp [−a log(x) log(y)] ≤ exp [−(1− x)(1− y)] ≤ 1.

By multiplying all the terms by xy ∈ [0, 1], we get the stated scheduling property.
The lemma is proved. □

In the sense of Lemma 2.1, the MCC copula can be considered an alternative to
the GB and CC copulas. Moreover, it has other interesting properties, which will
be studied later.

Let us now deal with a more general version of the MCC copula described in the
result below.

Propsition 2. The bivariate function defined by

Cop(x, y; a, b) = xy exp

[
−a

(1− x)(1− y)

xbyb

]
, (x, y) ∈ Ξ, (6)

is a valid copula for a ∈ [0, 1] and b ∈ (0, 1]. The case b = 0 can be included with
the condition a ∈ [0, 1], but this condition on a is not optimal anymore.

Proof. The proof is based on checking the conditions of Definition 2.1. It is,
however, more technical than the proof of Proposition 1 because of the presence of
b.

Proof of the Bo condition:: For any (x, y) ∈ Ξ, a ∈ [0, 1] and b ∈ (0, 1],
we have

lim
y→0

−a
(1− x)(1− y)

xbyb
= −a

1− x

xb
lim
y→0

1− y

yb
= −∞,

implying that

Cop(x, 0; a, b) = lim
y→0

xy exp

[
−a

(1− x)(1− y)

xbyb

]
= 0.

In a similar way, we obtain Cop(0, y; a, b) = 0. On the other hand, we have

Cop(x, 1; a, b) = x× 1× exp

[
−a

(1− x)(1− 1)

xb × 1b

]
= x× exp(0) = x.

We also arrive at Cop(1, y; a, b) = y. The Bo condition is satisfied.
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Proof of the PoDe condition:: For any (x, y) ∈ Ξ, after some differential
and algebraic manipulations, we have

∂x,yCop(x, y; a, b) = x−2by−2b exp

[
−a

(1− x)(1− y)

xbyb

]
×{

a2(1− x)(1− y)[b+ (1− b)x][b+ (1− b)y]− axbyb{(3− b)y[b+ (1− b)x]

+ b[b(1− x) + 3x− 2]− x− y}+ x2by2b
}

= x−2by−2b exp

[
−a

(1− x)(1− y)

xbyb

]
×{

a2(1− x)(1− y)[b+ (1− b)x][b+ (1− b)y] + axbybP (x, y; a) +Q(x, y; a, b)

}
,

(7)

where

P (x, y; a) = (b− 3)y[b+ (1− b)x]− b[b(1− x) + 3x− 2] + x+ y + xy

and
Q(x, y; a, b) = −axb+1yb+1 + x2by2b.

For any (x, y) ∈ Ξ, it is clear that the two first main terms in Equation (7)
are positive, i.e., x−2by−2b and the exponential term. Moreover, we have
a2(1 − x)(1 − y) ≥ 0, and, since b ∈ (0, 1], we have b + (1 − b)x ≥ 0 and
b+ (1− b)y ≥ 0. It is also clear that axbyb ≥ 0. Therefore, to conclude the
proof, it is enough to prove that P (x, y; a) ≥ 0 and Q(x, y; a, b) ≥ 0.
Proof that P (x, y; a) ≥ 0:: This is mainly a factoring game. After some

algebraic manipulations, the following simplified expression is obtained,
step by step:

P (x, y; a) = −b2xy + b2x+ b2y − b2 + 4bxy − 3bx− 3by + 2b− 2xy + x+ y

= (4b− b2 − 2)xy + (b2 − 3b+ 1)x+ (b2 − 3b+ 1)y + 2b− b2

= (4b− 2b2 − 2)xy + (1− b)2x+ (1− b)2y + 2b− b2 − bx− by + b2xy

= −2(1− b)2xy + (1− b)2x+ (1− b)2y − (1− b)2 + (1− bx)(1− by)

= (1− b)2x(1− y) + (1− b)2y(1− x) + (1− bx)(1− by)− (1− b)2.

For any (x, y) ∈ Ξ, it is clear that (1 − b)2x(1 − y) ≥ 0 and (1 −
b)2y(1 − x) ≥ 0. Since b ∈ (0, 1], we have 1 − bx ≥ 1 − b ≥ 0 and
1 − by ≥ 1 − b ≥ 0, implying that (1 − bx)(1 − by) ≥ (1 − b)2, so
(1−bx)(1−by)−(1−b)2 ≥ 0. Therefore, we establish that P (x, y; a) ≥
0.

Proof that Q(x, y; a, b) ≥ 0:: Let us notice that, for any (x, y) ∈ Ξ,
since b ∈ (0, 1], we have xb+1 ≤ x2b and yb+1 ≤ y2b, implying that
−xb+1yb+1 ≥ −x2by2b. Therefore, since a ∈ [0, 1], we have

Q(x, y; a, b) = −axb+1yb+1 + x2by2b ≥ (1− a)x2by2b ≥ 0.

As a result, we have

∂x,yCop(x, y; a, b) ≥ 0.

The PoDe condition is fulfilled.
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The desired result is demonstrated. □

For the purposes of this study, the copula described in Equation (6) is called
the extended MCC (EMCC) copula. By taking b = 1, it corresponds to the MCC
copula. It is not covered in the copulas studied in [20]. When b → 0, it corresponds
to the CC copula. Like the MCC copula but with a higher degree of flexibility
thanks to b, the EMCC copula can be considered an alternative to the GB and CC
copulas. Moreover, it has other interesting properties, which will be studied in the
next section.

3. Properties

Some interesting properties of the proposed copulas are described below.

3.1. For the MCC copula. Let us begin by presenting MCC copula-related func-
tions. We recall that a ∈ [0, 1]. Based on Equation (5), the MCC copula density is
given by

cop(x, y; a) = ∂x,yCop(x, y; a)

=
1

x2y2
exp

[
−a

(1− x)(1− y)

xy

] [
a2(1− x)(1− y)− axy(x+ y − 1) + x2y2

]
,

(x, y) ∈ Ξ.

The more versatile the shapes of a copula density, the more it can accommodate
different dependence structures. In order to visualize the shape behavior of the
MCC copula density, Figure 1 plots the corresponding contours and intensities for
a = 0.05 and a = 0.3, and Figure 2 does the same for a = 0.6 and a = 1 (the values
of a are arbitrarily chosen such that a ∈ [0, 1]).

(a) (b)

Figure 1. Plots of the MCC copula density for (a) a = 0.05 and
(b) a = 0.3.
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(a) (b)

Figure 2. Plots of the MCC copula density for (a) a = 0.6 and
(b) a = 1.

From these figures, we see the flexibility of the MCC copula density with only
one tuning parameter. Diverse skewness shapes and intense zones are observed,
mainly in the left portion of the unit square.

As another important MCC copula-related function, we may present the MCC
survival copula as

Ĉop(x, y; a) = x+ y − 1 + Cop(1− x, 1− y; a)

= x+ y − 1 + (1− x)(1− y) exp

[
−a

xy

(1− x)(1− y)

]
, (x, y) ∈ Ξ.

(8)

Still under the condition a ∈ [0, 1], it offers a new one-parameter copula.
Clearly, the MCC copula is diagonally symmetric since Cop(x, y; a) = Cop(y, x; a)

for any (x, y) ∈ Ξ. By taking a = 0.15, after calculations, we find that

Cop(0.2, Cop(0.5, 0.8; a); a) = 0.02958326

and
Cop(Cop(0.2, 0.5; a), 0.8; a) = 0.02301698.

Since these values differ, the MCC copula is not associative, and consequently, it
is not Archimedean. The MCC copula is not radially symmetric because, based on
Equation (8), it is easy to find a (x, y) ∈ Ξ such that Ĉop(x, y; a) ̸= Cop(x, y; a). The
MCC copula satisfies the following product geometric property: for any (x, y) ∈ Ξ,
β ∈ [0, 1], a1 ∈ [0, 1] and a2 ∈ [0, 1], we have

Cop(x, y; a1)
βCop(x, y; a2)

1−β = Cop (x, y;βa1 + (1− β)a2) .

Hence, the MCC copula benefits from a kind of product geometric stability.
The MCC copula is a decreasing function with respect to a, implying that it

is negatively quadrant dependent: for any (x, y) ∈ Ξ and a ∈ [0, 1], we have
Cop(x, y; a) ≤ xy.

As one of main ingredients of the copula theory, the Fréchet-Hoeffding bounds
are satisfied. Hence, for any (x, y) ∈ Ξ and a ∈ [0, 1], we have max(x+ y − 1, 0) ≤
Cop(x, y; a) ≤ min(x, y), i.e.,

max(x+ y − 1, 0) ≤ xy exp

[
−a

(1− x)(1− y)

xy

]
≤ min(x, y).
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The lower and upper tail dependence parameters are computed using typical limit
methods as follows:

σLow = lim
x→0

Cop(x, x; a)

x
= lim

x→0
x exp

[
−a

(1− x)2

x2

]
= 0

and

σUpp = lim
x→1

1− 2x+ Cop(x, x; a)

1− x
= lim

x→1

1− 2x+ x2 exp
[
−a(1− x)2/x2

]
1− x

= 0,

respectively. Hence, σLow = σUpp = 0 and the MCC copula is free of tail de-
pendence. The medial correlation coefficient of the MCC copula is expressed as
follows:

Med = 4Cop(0.5, 0.5; a)− 1 = exp(−a)− 1.

It is obvious that this coefficient is non-positive, highlighting the negative depen-
dence feature of the MCC copula.

The basic definition of the rho of Spearman related to the MCC copula is

ρSpear = 12

∫
Ξ

[Cop(x, y; a)− xy] dxdy

= 12

∫
Ξ

xy

{
exp

[
−a

(1− x)(1− y)

xy

]
− 1

}
dxdy.

This correlation measure cannot be expressed in a simple way, but a numerical
study is possible. With the use of the software R and the package pracma along
with the function integral2 in particular (see [28]), Table 1 presents its numerical
values (four decimals are retained).

Table 1. Numerical study on ρSpear for a = 0, a = 0.1, . . . , a = 1

a 0.0 0.1 0.2 0.3 0.4 0.5

ρSpear 0 −0.1875 −0.3124 −0.4115 −0.4949 −0.5672

a 0.6 0.7 0.8 0.9 1.0

ρSpear −0.6312 −0.6887 −0.741 −0.789 −0.8333

This table illustrates the wide range of amplitudes that the rho of Spearman of
the MCC copula can have, which is shown here to be between −0.8333 and 0. The
MCC copula is therefore perfect for modeling different types of negative dependence
structure. Compared to the GB and CC copulas, it provides a wider perspective
on this aspect.

Naturally, the MCC copula can be used as a generator of bivariate distributions.
Indeed, for any cumulative distribution functions of absolutely continuous distribu-
tions, say F (x) and G(x), the following bivariate function defines a new bivariate
cumulative distribution function:

H(x, y; ξ) = Cop(F (x), G(y); a) = F (x)G(y) exp

[
−a

[1− F (x)][1−G(y)]

F (x)G(y)

]
,

(x, y) ∈ R2,



10 CHRISTOPHE CHESNEAU EJMAA-2023/11(2)

where ξ symbolizes the vector of all the distributional parameters, including a. As
a result, this function might be used to create an infinite number of new bivari-
ate distributions (see, for instance, [29] for motivated choices of baseline lifetime
distributions).

3.2. For the EMCC copula. Logically, the EMCC copula shares most of the
properties of the MCC copula, but with more flexibility on some of them. We focus
on these ones below.

Let us begin by presenting EMCC copula-related functions. We recall that a ∈
[0, 1] and b ∈ (0, 1]. Based on Equation (7), the EMCC copula density is given by

cop(x, y; a, b) = ∂x,yCop(x, y; a, b)

= x−2by−2b exp

[
−a

(1− x)(1− y)

xbyb

]
×{

a2(1− x)(1− y)[b+ (1− b)x][b+ (1− b)y]− axbyb{(3− b)y[b+ (1− b)x]

+ b[b(1− x) + 3x− 2]− x− y}+ x2by2b
}
, (x, y) ∈ Ξ.

Clearly, the effect of b is real, and makes this copula density more flexible than that
of the MCC copula. In order to highlight that, we take the same values of a chosen
for Figure 1, and we take two values of b, here b = 0.2 and b = 0.8 to fix the idea.

Hence, Figure 3 displays the EMCC copula density for a = 0.05, and b = 0.2
and b = 0.8, Figure 4 does the same for a = 0.3, and b = 0.2 and b = 0.8, Figure 5
does the same for a = 0.6, and b = 0.2 and b = 0.8, and, finally, Figure 6 does the
same for a = 1, and b = 0.2 and b = 0.8.

(a) (b)

Figure 3. Plots of the EMCC copula density for a = 0.05, and
(a) b = 0.2 and (b) b = 0.8.
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(a) (b)

Figure 4. Plots of the EMCC copula density for a = 0.3, and (a)
b = 0.2 and (b) b = 0.8.

(a) (b)

Figure 5. Plots of the EMCC copula density for a = 0.6, and (a)
b = 0.2 and (b) b = 0.8.

(a) (b)

Figure 6. Plots of the EMCC copula density for a = 1, and (a)
b = 0.2 and (b) b = 0.8.
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Based on these figures, the effects of a and b are clearly important, and demon-
strate the interest of the EMCC copula in the negative dependence modeling. It is
logically more flexible than the MCC copula in this regard.

As another important EMCC copula-related function, we may present the EMCC
survival copula as

Ĉop(x, y; a, b) = x+ y − 1 + Cop(1− x, 1− y; a, b)

= x+ y − 1 + (1− x)(1− y) exp

[
−a

xy

(1− x)b(1− y)b

]
, (x, y) ∈ Ξ.

Still under the conditions a ∈ [0, 1] and b ∈ (0, 1], it offers a new two-parameter
copula.

Among the common properties between the MCC and EMCC copulas are the di-
agonal symmetry property, the non-radial symmetry property, the non-Archimedean
property, the product geometric property, the negative quadrant dependence prop-
erty, the Fréchet-Hoeffding bounds property, the no-tail dependence property, and
the generation of bivariate distributions property.

The medial correlation coefficient of the EMCC copula is expressed as follows:

Med = 4Cop(0.5, 0.5; a, b)− 1 = exp
[
−a22(b−1)

]
− 1.

As expected in view of the medial correlation coefficient of the MCC copula, that
of the EMCC copula is also non-positive.

The basic definition of the rho of Spearman related with the EMCC copula is

ρSpear = 12

∫
Ξ

[Cop(x, y; a, b)− xy] dxdy

= 12

∫
Ξ

xy

{
exp

[
−a

(1− x)(1− y)

xbyb

]
− 1

}
dxdy.

As with the MCC copula, it cannot be expressed in a simple way, but a numerical
study is possible. Since Cop(x, y; a, b) is a decreasing function with respect to b,
it is greater than the rho of Spearman of the MCC copula and still negative, and
thus, is included into the set [−0.8333; 0]. However, from a modeling perspective,
in view of the diversity in shapes illustrated in Figures 3, 4, 5, and 6, the EMCC
copula is clearly the more interesting option.

4. Conclusion

In this article, we have revisited and extended a modified version of the CC
copula, significantly improving an existing result on its mathematical validity. A
condition on the involved parameter is drastically relaxed. Then, based on this
result, we proposed an extension of it with the addition of a shape parameter. We
thus introduced a new two-parameter modified CC copula, which reveals itself to be
ideal for modeling diverse kinds of negative dependence structures. A wide panel
of graphics illustrated the versatility of the corresponding copula density, and a
numerical study on the related rho of Spearman supports the attractive negative
dependence feature. Clearly, the proposed copulas offer an alternative to the former
CC and GB copulas and are recommended to be used for the same practical area
when bivariate data needs to be analyzed (like finance, insurance, biology, etc.).



EJMAA-2023/11(2) A REVISIT OF THE MODIFIED CELEBIOGLU-CUADRAS COPULA 13

References
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