
MJCIS Vol. 13 No.1 Dec2017

Mansoura Journal of Computers and Information Sciences

9

Automatic Cloud-Based IoT Mashup Algorithm

Dalia Elwi
Faculty of computers and

information systems , C.S dep.
Mansoura University, Egypt

dalia_elwi@yahoo.com

Omaima Nomair
Faculty of computers and

information systems , C.S dep.
Mansoura University, Egypt

omnomir@yahoo.com

Samir Elmougy
Faculty of computers and

information systems , C.S dep.
Mansoura University, Egypt

samirelmougy@yahoo.com

ABSTRACT

Internet of Things (IoT) and cloud computing are two of the

most important trends in information and communication

technology that attract the attention of many researchers in

recent years. A new trend is raised from integrating both

trends called Cloud of Things (CoT). In this paper, we focus

on integrating IoT with cloud computing because of the

benefits that IoT can gained from unlimited storage and

unlimited processing capabilities provided by cloud

computing. Firstly, we propose a CoT architecture that

supports Things as a Service (TaaS) and IoT Mashup as a

Service (MaaS). Secondly, we develop an automatic IoT

Mashup Algorithm (IoTMA) for application development in

less response time by composing existing things services and

web services without needing of high experience in

programming. Experimental results proved that our algorithm

reduced the response time compared to some other recent

related works.

General Terms

Internet of Things, Cloud Computing, Cloud of Things,

Mashup.

Keywords

Internet of Things, Cloud Computing, Cloud of Things,

Mashup, CoT Architecture, IoTMA algorithm, Planning

Graph,

1. INTRODUCTION
The Internet of Things (IoT) [1] is a technology where all

things in the world such as devices, humans and animals are

connected to the internet and have a unique address URL,

which makes the communication easier. So, IoT things can be

monitored and controlled remotely. The number of things

connected to the internet is increasing day after day

dramatically. Therefore, Internet Protocol version 6 (IPv6) is

implemented to solve the huge increasing problem. IoT is

used in many applications to facilitate our lives [17] such as

transportation, medical healthcare, agriculture, smart cities,

and monitoring systems.

Cloud computing [18] is a computing technique used to

deliver computing resources as a services over the internet

such as servers, storage, databases, software…etc. The

company that hosts their services in the cloud is called the

service provider. Service consumer pays for the services and

resources he/she is used (Pay-as-you-go). There are three

types of cloud computing Software as a Service (SaaS),

Platform as a Service (PaaS), and Infrastructure as a Service

(IaaS) [18, 19]. IaaS offers all infrastructure services like

servers, storage, virtual machines, and networks resources for

renting rather than purchasing. PaaS offers software

developing, testing, delivering, and managing services needed

by developers. SaaS offers on-demand software applications

over internet without installation requirements.

IoT challenges such as limited storage, and limited

computational capabilities could be solved by integrating IOT

with cloud computing in which the integrated trend is called

Cloud of Things (CoT). In CoT, cloud computing has

virtually unlimited capabilities and provides everything as a

service. Also, it provides Things as a Service (TaaS) beside

SaaS, PaaS, and IaaS.

Services Mashup is a web application used to create a new

service from existing services composition in consistent state

with the new requirements. For example, museum branches’

addresses and pictures may be tied with a Google map for

establishing a map mashup [3]. Mashup approaches can be

classified based on several criteria such as manual vs

automated approach, and single-source vs multiple-sources.

In manual approach, the user should create a mashup by using

either composition language such as Business Process

Execution Language (BPEL) or drag and drop GUI. This

approach is time consuming, error-prone, and requires the

user to have a great knowledge about services needed for

mashup. However, in automatic approach the user makes a

request then services discovery, selection and composition are

automatically executing. This approach requires the user to

specify the request precisely. There is another mashup

approach called semi-automated approach that aims to assist

the user at each step of the services composition procedure

[4].

Single-source mashup means that each service can be

composed with only one other so the mashup is considered as

a single source path. However, multiple-sources means that

mailto:dalia_elwi@yahoo.com
mailto:omnomir@yahoo.com
mailto:samirelmougy@yahoo.com

MJCIS Vol.13 No.1 Dec2017

10

each service can be composed with more than one other so the

mashup is considered as a tree not as a path.

In this work, we propose a CoT architecture consists of four

types of services: SaaS, PaaS, IaaS, and MaaS. Also, it

supports things as a service where they can be accessed based

on a service-oriented model, and mashup as a service with

developing a related automatic IoT Mashup Algorithm

(IoTMA) for IoT applications development. Where, IoTMA is

modified from service composition algorithms over the graph

plan discussed in [9] to extract the optimal solution in less

response time.

In Section 2, we discuss some related works. In Section 3, we

present our proposed CoT Architecture and IoTMA algorithm.

We present the experimental results compared with other

mashup algorithms results in Section 4. In Section 5, we

conclude our work.

2. RELATED WORKS
There are several researches had been done in integrating IoT

and cloud computing. In [10], Zhou et al. analyzed IoT

requirements for smart home application and presented a

cloud architecture for dynamic service composition. In [11,

12], Distefano et al. assumed that things can be accessed

according to service oriented architecture and therefore they

employed a cloud paradigm for enabling sensing and

actuation as a service. In [13], Janggwan et al. proposed a

model for IoT mashup called IoTMaaS based on the model

driven architecture and cloud computing. In addition, they

designed a cloud based platform to execute their model and

implemented a prototype platform for proving the architecture

concepts. In [14], Bhattasali et al. focused on the integration

between IoT and Cloud computing from the point of view of

security where they proposed secure trusted things as a

service based on encryption approach and a trust model. In

[15], Blackstock and Lea developed a toolkit for manual IoT

mashup called WoTkit in which it is a java web application

includes user dashboard to visualize sensor data and mashup

processing. In [16], Kleinfeld et al. built a manual IoT

composition platform called glue.things by integrating and

adapting a popular open source solution addressed in IoT

domain. Glue.things is presented as a web of things hub for

everyday things in our lives. In [9], Yan and Chen proposed a

new QoSGraphPlan algorithm for multiple-sources web

service mashup, which return correct solutions but it takes a

long time and with redundant web services.

3. THE PROSOSED CoT

ARCHITECTURE AND IoTMA

ALGORITHM
In Section 3.1, we present our proposed CoT architecture. In

Section 3.2, and Section 3.3, we explain some definitions of

IoT mashup and planning graph based on [20], [21], and [9].

In Section 3.4, we discuss our proposed algorithm (IoTMA).

3.1 CoT Architecture
IoT can take advantage of unlimited capabilities of cloud

computing in storage and processing data to improve the

performance of its applications. Therefore, we propose a CoT

architecture as shown in Figure 1. Where, there are four

layers: a) IaaS layer for virtualization and hardware provided

by the Cloud, b) PaaS layer includes databases and APIs for

web services, and IoT things that can be used to access their

data, c) MaaS as a new layer that contains a set of services for

IoT mashup which discussed in details in the next section, and

d) SaaS layer for software applications that is provided by the

cloud.

Figure 1. The proposed CoT architecture

MaaS layer is responsible for automatic IoT mashup to

accelerate IoT application development without high

programming skills. A shown in Figure 2, MaaS layer consists

of:

 Request management service for user request analysis

and for preparing a new service with user specification.

 Create planning graph by searching for the suitable IoT

things and web services that can be mashed up to get the

desired output from the available user inputs and

conform to the user specifications.

 Solution tree extraction service extracts the optimal

solution from the graph plan among all solutions

constructed by the previous service.

 Mashup execution service executes the solution by

accessing all APIs contained in the solution tree to get

the needed data to be composed according to the desired

output.

Figure 2. MaaS layer services for IoT mashup

MJCIS Vol.13 No.1 Dec2017

11

3.2 IoT Mashup
IoT thing is a device connected to the internet that has a

unique identifier (URL) to access that device in order to get

its data. Therefore, it can be dealt with it like the Restful web

services [2] through HTTP request.

Mashup is enabled when there are a set of services (IoT

services and Web Services) that can be integrated so that they

conform to the user request.

Definition 1: Let user request consists of S available inputs

parameters and T desired output parameters in which each

service has input parameters, output parameters, and

Response Time (RT) as presented in Table 1.

Table 1. A set of IoT Services and Web Services

Services Inputs Outputs Response

Time (RT)

S1 a e 100

S2 b, c f, j 200

S3 e, f h 400

S4 J f, z 100

S5 z d, h 200

S6 f d 100

IoTMA is enabled if and only if:

 There is a service where .

 There is a service where .

 There are a set of Mashupable Services that can be

integrated with and as shown in Figure 3.

Figure 3. Enabled Mashup from S to T

Definition 2: The two services and are Mashupable

Services if and only if:

 where is called Producer

service while is called Consumer service as shown in

Figure 4 where i, e, f, h, e, r, and o are parameters.

Figure 4. Mashupable Services

3.3 Planning Graph Technique and

Solution Extraction
The proposed automatic IoT Mashup algorithm depends on

using AI Planning Graph technique [7] for mashup planning

with applying Dijkstra algorithm [8] for solution extraction.

Graph plan is used for mashup planning as a set of layers

and layers, where and P represent service and parameter

layers respectively as shown in Figure 5.

Definition 3: Let is a graph

where:

 is an initial layer contains parameters.

 layer is a set of services 1, 2,…, m in which each

service has input parameters called Preconditions

defined as .

 layer is a set of parameters 1, 2,…, i in which

 In this case is

called .

 Last layer in is called .

 The solution is found if and only if the

parameters layer.

Figure 5. Mashup Graph Plan

MJCIS Vol.13 No.1 Dec2017

12

Definition 4: parameter p P layers, P may have more

than one parent so that the Best Parent of p is a service with

the minimum cost where:

 . .

 . where p

,

.

.

To extract the solution tree, backward chaining version of

Dijkstra algorithm [8] is applied from all parameters to any

 parameters. The solution extraction is depending on Best

Parents of each p from layer to layer and

Preconditions of each from layer to layer as in

Figure 6.

Definition 5: Solution tree is extracted by Dijkstra backward

chaining from T to S where:

 Step 1: , extract Best

Parents set denoted by .

 Step 2: , extract Preconditions set denoted by

.

 Step 3: , extract Best Parents set

.

 Step 4: Repeat steps 2 till 3 until reaching .

Figure 6. Solution Extraction

3.4 The Proposed IoTMA Algorithm
The proposed IoTMA is automatic algorithm modified from

service composition algorithm over the graph plan [9] to

extract the optimal solution. The criteria of optimal solution

extracted by our algorithm are:

 Correct solution (get T from S).

 Solution has minimum cost.

 Solution is a tree, which means multiple source solution

may be found.

Algorithm 1: IoTMA Algorithm

Data: parameters, parameters.

1. Let global number called .

2. Let global list called .

3. .

4. .

Algorithm 2: Mashup Algorithm

Data: parameters, parameters.

1. Initialize planning graph with empty layers.

2. Initialize layer with parameters.

3. Add to .

4. Repeat

5. .

6. If layer then

7. .

8. .

9. Until .

Algorithm 3: ExpandGraph Algorithm

Data:

1.
.

2. .

3. For each do

4. For each parameter do

5. .

6. If then

7. If then

8. Remove .

9. Add with min cost to .

10. Otherwise

11. Add to .

12. Add to .

13. Return .

Algorithm 4: ExtractSolution Algorithm

Data: graph, parameters.

1. Let .

2. If then

3. .

4. Set .

5. .

Algorithm 5: FindSolution Algorithm

Data: graph, parameters.

1. For each layer in starting from to do

2. Select Best Parents set

.

3. Add to .

4. .

MJCIS Vol.13 No.1 Dec2017

13

Algorithm 6: UpdateGraph Algorithm

Data: layer.

1. For each do

2. If then

3. Remove from .

Algorithm 7: StopPoint Algorithm

Data: layer, layer.

1. If then

2. Return .

3. Otherwise

4. Return .

Algorithm 8: PrintSolution Algorithm

1. For each set do

2. Print .

Algorithm 1 initiates the global variable named

CurrentGoalCost with and empty global list called

SolutionList, then executes a mashup process using S, T

parameters and the existing services and finally prints the

solution. Algorithm 2 is responsible for the mashup process

where it firstly initiates the graph G with only one layer called

P0, which contains S parameters (steps from 1 to 3). Then,

expands G and checks if the desired output is appeared then

extract the solution and update the graph (steps from 5 to 8).

After that repeats steps from 5 to 8 until the stop point is

reached. Algorithm 3 expands G by calculating the next A, P

layers. An is a set of pairs of service s and its cost where Pn-1

contains inputs of s and cost of s is its response time. Pn is a

set of pairs of output parameters of all services in An and their

costs united with the parameters in Pn-1 where the cost of the

parameter is the cost of its service plus the maximum cost

between its service input parameters. if the parameter is

already existed in Pn-1 then recalculate its cost (steps from 4 to

11). Algorithm 4 assigns the current solution with the found

solution if it has cost less than the previous one. Algorithm 5

assigns the SolutionList with the services that execute the

currents solution. Algorithm 6 updates the graph by removing

all parameters in layer with cost greater than or equal to the

current solution cost (parameters that surely lead to non-

optimal solution). Algorithm 7 checks if the stop point is

appeared or not to stop the whole algorithm. Stop point is

appeared if the last layer Pn contains the same parameters as

in Pn-1 layer. Algorithm 8 is responsible for printing the

solution to the user on the screen in the order of calling.

For example, assume that services in Table 1 are all services

in the system where , and T = {d}. The solution

Sol1 in Figure 7 and the best parents listed in Table 2 are

obtained using the proposed algorithm given in [9] while the

solution Sol2 in Figure 8 and the best parents listed in Table 3

are obtained using our proposed IoTMA algorithm. Compared

both solutions, we found that both algorithms gave the same

optimal solution that is .

Figure 7. Sol1 solution using the algorithm in [9]

Table 2. Best Parents List for

Parameter (p) Parents Best Parent Cost

 - - 0

 - - 0

 - - 0

 S1 S1 100

 S2, S4 S2 200

 S2 S2 200

 S3, S5 S5 500

 S6, S5 S6 300

 S4 S4 300

MJCIS Vol.13 No.1 Dec2017

14

Figure 8. Sol2 solution using the proposed IoTMA

Algorithm

Table 3. Best Parents List for

Parameter (p) Parents Best Parent Cost

 - - 0

 - - 0

 - - 0

 S1 S1 100

 S2, S4 S2 200

 S2 S2 200

 S3 S3 600

 S6 S6 300

 S4 S4 300

From the two solutions, we can observe that our algorithm

created a number of layers less than that presented in [9] and

therefore it reduces the time needed to find the solution. This

is because UpdateGraph Algorithm isolates all known non-

optimal solutions paths early.

4. EXPIREMENTAL RESULTS
The mashup time needed to find the solution is affected by

several factors such as size of the data set used in the system

and the number and the size of layers created to find the

solution, which is affected by:

 Number of input services S

that ().

 The Solution Cost.

In our experiments, we create our data sets with different sizes

due to the difficulty of having ready-made ones. Our data sets

contains the service name, its input and output parameters,

and its response time.

4.1 Data Set Size
We use four data sets for evaluation as: 40, 120, 200, 350

services with fixed solution cost = 800, and only one input

services to conclude the effect of data set size on the

algorithm time needed to find the optimal solution where S =

{aa, bb} and T = {D}. The obtained results are listed in Table

4 where the time is measured in milliseconds.

Table 4. Algorithms time in case of different data set sizes

and fixed number of layers (#layers)

DS Size Alg1

Time

IoTMA

Time

Alg1

#layers

IoTMA

#layers

1 40 5 5 5 3

2 120 5 5 5 3

3 200 6 6 5 3

4 350 6.5 6.5 5 3

MJCIS Vol.13 No.1 Dec2017

15

Figure 9. The effect of data set size on and

Figure 9 shows that the time needed by Alg1 in [9] and IoTMA

algorithm to find the optimal solution are equal and both are

increased as the data set size is increased.

4.2 Number of Input Services
We conducted nine experiments with different number of

input services, 200 Service as the used data set and fixed

solution cost = 800, where S = {a, b} and T = {D} and the

results are presented in Table 5.

Figure 10.a and Figure 10.b present the time needed by

and in case of 11 layers and 9 layers were created

respectively. Both figures show that the time of both

algorithms are approximately equal and is increased as the

average layers size (ALS) is increased if the created layers

number is fixed.

Table 5. Algorithms time in case of different number of

input services, data set with 200 service

#Input

Services

Alg1

Time

IoTMA

Time

Alg1

#layers

IoTMA

#layers

ALS

9 10.3 10.5 9 9 60

8 13.8 14 11 11 66

7 13.8 14 11 11 65

6 13.8 14 11 11 65

5 10.3 10.5 9 9 54

4 9.3 9.5 9 9 44

3 9.3 9.5 9 9 42

2 12.5 12.7 11 11 49

1 6 6 5 3 2

Figure 10.a. The effect of input services number on

and (the case of 11 layers)

Figure 10.b. The effect of input services number on

and (the case of 9 layers)

4.3 Solution Cost
We test eight different solution costs using 9 input services

with 200 services as data set where the maximum service RT

is 800 and the minimum service RT is 100. If S = {a, b} and T

= {D}, the results are presented in Table 6.

Figure 11 show that the solution cost has no any effects on

Alg1 algorithm time but has a strong effect on IoTMA time

where it decreases as the solution cost decreases. This is

because IoTMA algorithm creates number of layers less than

Alg1 due to the expected non-optimal solution paths

reduction. Therefore, the solution with cost = 100 allows

IoTMA to rejects large number of paths due to the large

number of services has costs large than or equal to 100 (the

desired cost), and this is not occurred when the solution cost

equals 800.

Table 6. Algorithms time in case of different solution costs,

input services = 9, Ds size = 200 service

MJCIS Vol.13 No.1 Dec2017

16

Sol

cost

Alg1

Time

IoTMA

Time

Alg1

#layers

IoTMA

#layers

Alg1

ALS

IoTMA

ALS

800 10.3 10.5 9 9 60 60

700 10.3 8.6 9 7 60 46

600 10.3 8.6 9 7 60 46

500 10.3 8.6 9 7 60 46

400 10.3 8.6 9 7 60 46

300 10.3 7.7 9 7 60 34

200 10.3 6.3 9 5 60 14

100 10.3 6 9 3 60 8

Figure 11. The effect of the solution cost on and

5. CONCLUSON AND FUTURE WORKS
In this paper, we proposed an automatic IoTMA algorithm for

mashup and CoT architecture in which mashup is provided as

a service using IoTMA. By comparing the response time

required by our algorithm and the other one presented in [9] to

find the optimal solution, we observe that the two algorithms

have approximately the same time even if the data set size and

input services number are changed. However, IoTMA needs

time less than the other one as the solution cost decreases.

Accordingly, we conclude that in the best case, our IoTMA

algorithm reduces the required response time by 42% of the

other algorithm time, but in the worst case both algorithms

need approximately the same response time to find the

optimal solution. In the future, we will focus on implementing

a cloud platform depending on our proposed CoT architecture

and IoTMA algorithm that can provide mashup as a service.

6. REFERENCES
[1] A. Whitmore, A. Agarwal, and L. Da Xu (2014), "The

Internet of Things - A survey of topics and trends."

Information Systems Frontiers 17: 261-274.

[2] F. Belqasmi, J. Singh, S. Melhem, and R. H. Glitho

(2012), "Soap-based vs. restful web services: A case

study for multimedia conferencing." IEEE internet

computing 16: 54-63.

[3] E. Pietroniro, and D. Fichter (2006), "Map mashups and

the rise of amateur cartographers and mapmakers."

ACMLA Bulletin127: 26-30.

[4] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S.

Bourne, and X. Xu (2014). "Web services composition:

A decade’s overview." Elsevier Information Sciences

280: 218-238.

[5] D. Skogan, R. Groenmo, and I. Solheim (2004), "Web

service composition in UML," Eighth IEEE International

Enterprise Distributed Object Computing Conference,

2004. EDOC 2004, pp. 47-57. USA-CA-Monterey.

[6] R. Gronmo, D. Skogan, I. Solheim, and J. Oldevik

(2004). "Model-driven web services development," in

Proceedings. IEEE International Conference on e-

Technology, e-Commerce and e-Service, 2004, EEE-04,

pp. 42-45. Taiwan-Taipei.

[7] S. Russell, and P. Norvig (1995), "Artificial Intelligence:

A Modern Approach," Third Edition. Prentice-Hall, Inc.

[8] T. H. Cormen, C. E. Lieserson R. L. Rivest, and C. Stein,

(2009), "Introduction to Algorithms," Third Edition,

Massachusetts Institute of Technology.

[9] Y. Yan, and M. Chen (2015), "Anytime QoS-aware

service composition over the GraphPlan", Service

Oriented Computing and Applications, SOCA-Springer

9: 1-19.

[10] J. Zhou, T. Leppanen, E. Harjula, M. Ylianttila, T. Ojala,

C. Yu, H. Jin, and L. T. Yang (2013), "Cloudthings: A

common architecture for integrating the internet of things

with cloud computing," Seventeenth IEEE International

Conference on Computer Supported Cooperative Work

in Design, 2013. CSCWD 2013, pp. 651-657. USA-

Canada-Whistler.

[11] S. Distefano, G. Merlino, and A. Puliafito (2013),

"Towards the cloud of things sensing and actuation as a

service, a key enabler for a new cloud paradigm," Eighth

IEEE International Conference on P2P, Parallel, Grid,

Cloud and Internet Computing, 2013. 3PGCIC 2013, pp.

60-67. Italy-Capua

[12] S. Distefano, G. Merlino, and A. Puliafito (2012),

"Enabling the Cloud of Things." Sixth IEEE

International Conference on Innovative Mobile and

Internet Services in Ubiquitous Computing, 2012. pp.

858-863. Italy-Palermo.

[13] J. Im, S. Kim, and D. Kim (2013), "IoT mashup as a

service: cloud-based mashup service for the Internet of

things," Tenth IEEE International Conference on

Services Computing, 2013. SCC 2013, pp. 462-469.

USA-Canada-Santa Clara

[14] T. Bhattasali, R. Chaki, and N. Chaki (2013), "Secure

and trusted cloud of things," Annual IEEE India

Conference, 2013. INDICON 2013, pp. 1-6. India-

Kolkata.

MJCIS Vol.13 No.1 Dec2017

17

[15] M. Blackstock, and R. Lea (2012), "IoT mashups with

the WoTKit," Third IEEE International Conference on

Internet of Things, 2012. IoT 2012, pp. 159-166. China-

Jiangsu Province.

[16] R. Kleinfeld, S. Steglich, L. Radziwonowicz, and C.

Doukas (2014), "glue.things: a Mashup Platform for

wiring the Internet of Things with the Internet of

Services," Fifth ACM International Workshop on Web of

Things, 2014. pp. 16-21. USA-Cambridge.

[17] L. Atzori, A. Iera, and G. Morabito (2010), "The Internet

of Things: A survey." Elsevier Computer Networks 54:

2787-2805.

[18] W.T. Tsai, X. Sun, and J. Balasooriya (2010), "Service-

Oriented Cloud Computing Architecture," Seventh IEEE

International Conference on Information Technology,

2010. pp. 684-689. USA-Las Vegas.

[19] A. Botta, W. de Donato, V. Persico, and A. Pescapé

(2016). "Integration of Cloud computing and Internet of

Things: A survey." Elsevier Future Generation Computer

Systems 56: 684-700.

[20] Q. A. Liang, and S. Y. Su (2005), "AND/OR graph and

search algorithm for discovering composite web

services." International Journal of Web Services

Research 2: 46-64.

[21] Y.-J. Lee, and J. S. Kim (2012), "Automatic web API

composition for semantic data mashups," Fourth IEEE

International Conference on Computational Intelligence

and Communication Networks, 2012. CICN 2012, pp.

953-957. India-Uttar Pradesh.

