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ABSTRACT 

Cloud computing is a distributed computing paradigm that is 

deployed in many real-life applications. Many of these 

applications are real-time such as scientific computing, 

financial transactions, etc. Therefore, improving the 

dependability of cloud environments is extremely important to 

fulfill the reliability and availability requirements of different 

applications, especially real-time applications. Fault tolerance 

is the most common approach for improving the system’s 

dependability. In addition to traditional fault tolerance 

techniques such as replication, job migration, software 

rejuvenation, etc, fault-tolerant scheduling algorithms can 

play a great role toward more dependable systems. In this 

paper, an ACO based fault-tolerant soft real-time cloud 

scheduler is developed to minimize deadlines missing rate, 

makespan, and the imbalance in distributing the workload 

among the different machines. The performance of proposed 

scheduler has been assessed under different scenarios. Also, it 

has been compared to other well-known scheduling 

algorithms and the experimental results have shown the 

superiority of the proposed algorithm. 

General Terms 

Artificial Intelligence, Swarm Intelligence 

Keywords 
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1. INTRODUCTION 
Cloud computing is relatively recent computing paradigm that 

provides various services over the network on demand 

scalability [1]. This computing paradigm is based on a pay-as-

you-go pricing model. Also, it reduces the up-front investment 

and maintenance costs [2]. Because of these advantages, the 

clouds have been adopted in many fields such as scientific 

research, e-commerce, health, etc [3]. Many applications that 

employ the clouds, such as scientific computation, financial 

transaction, and healthcare applications, are real-time and it 

demand specific reliability and availability requirements. The 

correct operation of these applications is not based only on the 

results correctness, but also on the time by which the results 

are generated [4]. 

 On other side, in cloud based applications, most of 

computations are done on remote nodes which increase the 

probabilities of error occurrences due to the soft control over 

cloud nodes and unexpected network latency [5]. Also, many 

cloud providers uses inexpensive commodity hardware in 

building the cloud infrastructure which increases the 

probability of failure occurrence [4]. Hence, enhancing the 

cloud environments’ dependability becomes an active 

research area, in industry and academia, because of its 

importance.  

 Fault Tolerance is the most common approach to build a 

dependable system in addition to some other approaches such 

as fault avoidance, and fault forecasting [6]. Fault tolerance 

means the system’s ability to perform its function correctly 

despite of the occurrence of faults [7]. Many traditional 

techniques can be adopted to achieve the fault tolerance in the 

cloud environment such as preemptive migration, software 

rejuvenation, replication, and check-point/restart [8]. 

However, fault tolerant scheduling has proved its 

effectiveness in achieving the fault tolerance where the tasks 

are replicated and assigned to different computing nodes [4]. 

 Using the virtualization technology, the computing 

resources of the cloud are usually provided dynamically on 

demand to the customers as an apparently unending group of 

interconnected virtual machines according to a group of 

service level agreements (SLA) established between the cloud 

providers and the customers [1]. Hence, the cloud consists of 

a large number of virtual machines (VMs). Also, it can 

execute many tasks and can offer many services for many 

clients in the same time. Therefore, assigning this huge 

number of tasks and services to the different VMs manually is 

a challenging task. So, an efficient scheduling algorithm, 

which is able to satisfy its design objectives, is required in 

cloud environments [9]. The cloud scheduler should be as 

efficient as possible because it can greatly affect the overall 

performance of the cloud system [10].  

 Task scheduling is an NP-complete problem where many 

heuristics and meta-heuristics have been employed by the 

researchers to solve it, seeking an optimal or near-optimal 

solution [9]. Swarm Intelligence is a category of bio-inspired 

algorithms which attempts to build meta-heuristics to solve 

complex problems by mimicking the collective behavior of 

swarms and their abilities in solving problems [11]. In this 
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paper, we use a well-known swarm intelligence technique 

called ant colony optimization (ACO) to develop a multi-

objective fault tolerant soft real-time cloud scheduler to 

minimize the deadline missing rate, makespan and load 

imbalance degree (LIMD), while preserving the fault 

tolerance principle. 

 The remaining sections of the paper are organized as 

follow: Section 2 presents an overview on some research 

efforts which have been done to improve the fault tolerance of 

cloud environments through adopting the fault tolerant 

scheduling. Section 3 describes the main idea of the ant 

colony optimization algorithm. Section 4 introduces the 

problem statement and formulation. Section 5 presents a 

multi-objective ACO based fault-tolerant real-time cloud 

scheduler called FTRTS-MOACO. Finally, Sections 6 

includes the conclusion and future work. 

 

2. RELATED WORK 
Generally, there are many approaches which have been 

developed to deal with the task scheduling problem in grid, 

multi-processors and distributed systems. However, these 

approaches are not suitable and cannot be applied directly in 

the cloud systems due to its different characteristics [10]. 

Therefore, the task scheduling problem in the cloud has 

attracted the researchers’ attention and some attempts have 

been done to deal with this problem. But, using cloud 

environments for executing real-time applications is relatively 

new and few approaches have been developed to schedule the 

real-time tasks, while keeping their deadlines [5].  

 In [12], A particle swarm optimization (PSO) based 

scheduling algorithm is presented to schedule application 

workflows in the cloud environments. The proposed approach 

is concerned with minimizing execution costs of application 

workflows including transmission cost and computation cost. 

Another ant colony optimization (ACO) based workflow 

applications scheduling heuristic is proposed in [13]. The 

proposed algorithm called Load balancing optimization 

algorithm based on ant colony algorithm (ACO-LB). ACO-

LB is concerned with enhancing the load balance in addition 

to minimizing the makespan. Also, in [14], bee swarm 

optimization based task scheduler that schedule tasks in the 

cloud resources with minimum makespan through an efficient 

workloads distribution. In [9], an ant colony optimization 

(ACO) based cloud task scheduler is proposed to schedule the 

cloud tasks on the hired virtual machines. The proposed 

scheduler is aiming at optimizing the total execution time or 

the makespan. Additionally, in [15], a number of well-known 

scheduling algorithms, including First Come First Serve 

(FCFS), Minimum Completion Time (MCT), Minimum 

Execution Time (MET), Max-min, Min-min and Sufferage, 

have been implemented to schedule independent tasks on 

cloud VMs. A number of experiments have been conducted 

and the performance of the different algorithms has been 

assessed using different performance measuring criteria. 

 In [16], a data locality driven cloud scheduling algorithm 

is proposed which is a fault tolerant version of Balance 

Reduce Algorithm (BAR). The proposed algorithm deals with 

the machine failures which occur during tasks execution. 

Also, like other data locality based scheduling algorithms, the 

proposed algorithm minimizes the network access, bandwidth 

usage, and makespan. Another fault tolerant cloud scheduling 

algorithm based on LCA optimization algorithm is proposed 

in [17]. It is called dynamic clustering league championship 

algorithm (DCLCA). The proposed algorithm aims at 

minimizing the makespan. Also, it employs task migration 

and fault detection strategies to reduce the task failure rate. 

Another lookahead genetic algorithm (LAGA) workflow 

applications scheduler is proposed in [18] which utilizes 

reliability-driven reputation to optimize reliability and 

makespan of distributed workflows. Another fault tolerant 

scheduling algorithm named MaxRe is proposed in [19] to 

achieve the desired reliability requirement for the user through 

determining the appropriate number of replicas, using a 

reliability analysis mechanism, for the different tasks.  

 In [10], a soft real-time scheduler is proposed based 

on particle swarm optimization (PSO) with optimized 

objectives: cost, makespan, deadline missing ratio, and load 

balance. In [20], they propose a multi-objective GA based 

scheduler to optimize energy consumption, gas emissions, and 

the total profit while taking into account the application’s 

deadline. Another green computing supporting real-time 

energy-aware task scheduler named EARH is proposed in [21] 

which employs a rolling-horizon optimization policy. In [22], 

they propose a real-time utility accrual scheduler where tasks 

are scheduled in a non-preemptive manner to optimize the 

total utility using profit and penalty utility functions. In [23], a 

near-optimal computationally efficient greedy real-time task 

scheduler is proposed for scheduling real-time batch jobs with 

objectives is to maximize the social welfare and revenues 

using parallelism. In [24], a reliability-aware scheduler which 

uses a reliability assessment model is proposed based on the 

node’s reputation in cloud infrastructure; it is used for general 

as well as real-time applications. Finally, two cloud 

schedulers have been proposed in [25] based on greedy 

algorithm and adaptive genetic algorithm. The proposed 

schedulers have been designed to schedule hard real-time 

tasks with precedence on heterogeneous VMs.  

3. ANT COLONY OPTIMIZATION  
Ant colony optimization (ACO) is an optimization algorithm 

which proposed by M. Dorigo in the early 1990s. It is inspired 

by the foraging behaviour of real ant colonies. To find food 

sources, ants leave their nest and take random paths to scan 

the surrounding area. While moving, the ants put smelly trails 

called pheromone on the paths. When choosing a path, the 

ants prefer to choose the path that has the strongest 

pheromone concentration. When an ant finds a food source, it 

takes some of it and leaves pheromone on the path during its 

return to the nest. With the repetition of this process, the 

shortest paths get high pheromone concentrations. These paths 

attract the ants to follow during their next trips [9]. In this 

insect society, ants communicate indirectly through modifying 

the environment to support cooperation among themselves 

toward their target. This type of communication is called 

stigmergy [1, 26, 27]. 

 ACO is a metaheuristic for solving combinatorial 

optimization problems through mimicking the behavior of the 

real ants [28]. Practically, each artificial ant attempts to build 

a solution for the optimization problem under concern. Each 

ant leaves pheromone trails on the path it takes to reach this 

solution. The pheromone concentration is proportional to the 

quality or fitness of the solution. Next ants then attempt to 

build their own solutions, but they are affected by the 

pheromone trails left on the paths by their predecessors [28]. 

ACO has pros and cons. The pros of ACO include the use of 

the positive feedback mechanism, inner parallelism and 

extensible. The cons of ACO metaheuristic include overhead 

and the stagnation phenomenon [9]. ACO algorithm has a set 

of main steps including pheromone initialization, a candidate 

solution construction by every single ant, pheromone update 

process (evaporation, intensification). The flowchart of the 

ACO algorithm is shown in Figure 1 [28]. 
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Fig 1: Flowchart of the standard ACO 

 ACO has been successfully used to solve many 

optimization problems such as the traveling salesman problem 

[29], the flow shop scheduling problem [30], the quadratic 

assignment problem [31], and task scheduling [9]. In this 

paper, ACO has been used to a build fault-tolerant soft real-

time cloud scheduler which is described below in detail. 

 

4. PROBLEM STATEMENT AND 

FORMULATION 
Computing resources in virtualized clouds are provisioned in 

the form of virtual machines (VMs) that can run separately 

and independently on the same physical machine or on 

different ones to execute assigned tasks. In this paper, the task 

is the smallest identifiable piece of work that achieves a 

specific service/function and it is the smallest schedulable 

entity. A real-time task is no more than an ordinary task with 

a deadline. Given a set of real-time tasks,   {            } 
where each      has a group of attributes (aci,, wi, ei, fi, and 

di) which represent arrival, waiting, expected execution, 

expected finish and deadline times of   , respectively. Also, 

given a set of virtual machines,    {               
    } that represents the hired computing power. Then, the 

role of cloud scheduler is to assign the real-time tasks to the 

different VMs in a way that achieve its design objectives 

which include minimizing deadlines missing and makespan in 

addition to achieving good balance in distributing the 

workloads among the different VMs. 

 The replication mechanism is used in our scheduler to 

achieve the fault tolerance, where each    has nr replicas. The 

expected finish time of each replica is computed by Eq. 1. 
 

                                                                          (1) 
 

where k is the index of the original real-time task, r is the 

index of the current replica and j is the index of allocated 

virtual machine index,     is the arrival time of original tasks 

at the cloud,      is the waiting time of replica r on VMj, and 

       is the expected execution time of the replica on VMj 

which can be computed by Eq. 2. 
 

                               
   

                 
                              (2)    

  

where TLk is the length of the task    in million instructions 

(MI), Pe_Numj is the processing elements number of VMj, and 

Pe_Mipsj is the computing power of each processing element 

in VMj represented by Million Instructions per Second 

(MIPS).  

 After executing the different replica of real-time task   , 
the status of    is “Passed” if one of its replicas, at least,  

finished execution before di. Otherwise, the status is “Failed”. 

In the proposed work, Fail_Num represents the gross number 

of failed real-time tasks.  

 The total time needed by a certain virtual machine VMj to 

finish a number of assigned tasks NTj is denoted by 

CTime(VMj) and can be computed by Eq.3 

             (   )  
∑    

   
   

                
  

∑     

   
   

   
            (3)  

where TLi is the length of task    in MI, IFSi is the size of the 

input file of task   , Pe_Numj* Pe_Mipsj is the total computing 

power of VMj, and BWj is the bandwidth of VMj. In the context 

of task scheduling, Makespan of a set of tasks is the total time 

that elapses from the start time to the finish time and can be 

computed by Eq. 4 [15].                               

            (      (   ))                 (4) 

where M is the total number of hired VMs. 

 Also, load balancing is a major issue in designing any 

task scheduler. In the proposed work, the term “Load 

Imbalance Degree” or LIMD is used to represent the 

imbalance in distributing the workload among the different 

VMs. Therefore, the smaller the value of LIMD is, the better 

the performance of the scheduler in terms of resource 

utilization. LIMD is computed by Eq.5 [15]. 

                             
                 

        
                         (5) 

where Makespan, MinCTime and AvgCTime are computed by 

Equations 4, 6, and 7, respectively. 

            (      (   ))                  (6) 

                                  
∑       (   )

 
   

 
                      (7) 

 From the aforementioned description, the task scheduling 

problem can be defined as a multi-objective optimization 

problem as shown in Eq. 8. 

                                                          (8) 

                                                         

                                                                                           

5. PROPOSED ALGORITHM (FTRTS-

MOACO) 
A new scheduling algorithm is proposed here, with a main 

objective is to fulfill the fault tolerance for real-time tasks that 

are running on cloud environment. The name of the proposed 

algorithm is Fault Tolerant Real-time Task Scheduling based 

on Multi-Objective Ant Colony Optimization (FTRTS-

MOACO). The pseudocode of FTRTS-MOACO is shown in 

Algorithm1. FTRTS-MOACO starts by applying the 

replication process to achieve the fault tolerance. It generates 

a real-time task list, TRT-List {                               

              }, by tripling the original list RT-List 

{            }, i.e., nr =3, where     ,      and      are the 

replicas of the original real-time task   . For more simplicity, 

an easier indexing mechanism is used in the rest of this paper 

instead of this doubly indexing in which     is replaced by    

where                     . After applying 

that, the replicated list becomes RT-List 

 {                      } where              

    . 

 

Start 

Initialize Pheromone Values 

For each ant: construct a candidate solution 

Decrease pheromone values (Evaporation) 

Increase pheromone values (Intensification) 

Terminated 

Output the optimal solution 

End 

Yes 

No 
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Algorithm1: Multi-objective ACO Scheduler 
Input:  

 List of n real-time tasks, RT-List 

 List of M virtual machines , VM-List 

 Number of ants, AntsNum 

 Number of iterations,  Imax 
 

Output: optimal schedule, S 

1. Apply the tripling process on the original RT-List to generate 
TRT-List. 

2. Create and initialize the pheromone matrix, τ of size N   M, 
using Eq. 9. 

3. OptimalFitness =    . 
4. For i=1,2,……, AntsNum 

5.  Create an ant and put it in the ants list, AntList. 
6. For i=1,2,……, Imax 

7.  Foreach ant   AntList do 

8.  Schedule = MakeTour (TRT-List, VMList). /* (Algo.  2)*/ 

9.  Set ScheduleFitness for Schedule using Eq. 10. 
10. If (ScheduleFitness < OptimalFitness) 

  S = Schedule. 

  OptimalFitness = ScheduleFitness.     
11. Evaporate the pheromone matrix, τ, using Eq. 12. 

12. Foreach ant   AntList do 
13. Intensify the pheromone matrix, τ, locally using Eq. 13. 

14. Intensify the pheromone matrix, τ, globally using Eq. 15. 

15. Return S 

In order to use the ACO algorithm, it is important to define 

the pheromone information in such a way that reflects the 

most paramount information for solution construction. In the 

proposed algorithm, the pheromone information is encoded as 

pheromone matrix,  of size    . The pheromone value 

      represents the desirability to assign ti to VMj where 

        and       .   is initialized using Eq. 9 [9]. 

                                                               (9) 

where c is a user-defined small positive value. 

 During each iteration, each ant makes a tour to create a 

possible schedule using Algorithm 2. Then, the fitness value 

of the proposed schedule is computed using Eq. 10.  
                       

        

                     
    (10)                                    

Where     and   are weighting parameters with total 

summation equal to 1.  SingularExecutionTime is put as a 

denominator in the third term to reduce the effect of 

MakeSpan which has a range of values larger than the ranges 

of the first and second terms, i.e., SingularExecutionTime is 

used to normalize MakeSpan. It can be computed using Eq. 

11. 

                           
∑    

 
   

∑                 
 
   

       (11) 

 In the evaporation process, all pheromone values in the 

pheromone matrix, , are decreased by a fixed proportion,  , at 

the end of each iteration using Eq. 12 [9]. 

                                                       (12) 

 The pheromone values are intensified at two levels: local 

and global. In the first level, each ant updates the pheromone 

values proportional to the quality of its candidate solution 

using Eq. 13 [9]. 

                                                                    (13) 
 

where   is the pheromone update value which is computed 

using Eq. 14 and   is the binary tour matrix. 
 

                
 

  
                                         (14) 

where   
  is the fitness value of the tour made by ant k at 

iteration t. in the second level, the pheromone matrix, , is 

intensified only by the best ant, which produced the best tour 

during the iteration, using Eq. 15. 

                                             
          

  
                     (15) 

where   
  is the fitness value of the best tour generated during 

the current iteration. 

 

Algorithm2: MakeTour Operation 
Input:  

 List of N real-time tasks, RT-List 

 List of M virtual machines , VM-List 
Output: optimal schedule, S 

1. Create a zero matrix TM of size N M. 

2. Create Probabilistic Transition Matrix, P of size N M. 
3. Initialize P using Eq. 16. 

4. Foreach t   TRT-List do 
5.  Set TaskId to the index of t. 
6. Create a list L, a list of VMs which cannot be allocated to 

replica t. 

7.  Allowed   {Vm-List – L}. 

8.  Update P using Eq. 18. 

9.  Select VM   Allowed using Roulette Wheel Selection. 
10.  Set VmId to the index of selected VM.   

11.  TM [TaskId, VmId] =1. 

12. Return TM 

 Algorithm 2 is employed by each ant to make a tour to 

generate a possible schedule. It starts by creating a binary 

    tour matrix,  , which represents the schedule matrix. 

Then, another     probabilistic transition matrix   is 

created and initialized using Eq. 16 [9].   includes the 

probabilities of choosing a specific VM to execute a certain 

real-time replica   . For example, if            , then VM5 

can be chosen for executing the replica    with a probability 

value of 0.3 [9]. 

                  
               

 

∑                
  

   
                           (16) 

 

where     is the pheromone value of allocating     to the 

replica    at iteration zero,     is an additional problem-

dependent heuristic parameter that helps the ant in selecting 

    where    causes the smallest load value, and   and   are 

used to determine the relative weight of pheromone value and 

heuristic value, respectively. The value of    is computed 

using Eq. (17).                                     
                                       

 

       
                                    (17) 

where CTimeij represent the time needed to execute the replica 

   if VMj is allocated to it. It is computed using Eq. (18) [9]. 
 

                       
   

                
  

    

   
           (18) 

 

where TLi is the length of    (MI), IFSi is the input file size of 

  , Pe_Numj is the number of processing elements of    , 

Pe_Mipsj is the computing power of the processing elements 

in     in (MIPS), and BWj is The bandwidth of    . 

 The replicas of a certain task are allocated to different 

VMs to satisfy the fault tolerance requirement. Hence, before 

selecting a VM to execute a real-time replica   , a list of Not-

allowed VMs, L, is created for the current replica. This list 

contains the VMs previously allocated to other replicas of the 

same real-time task. Then, the list of allowed, Allowed, VMs 

is specified. After that, P is updated using Eq. 19. The update 

process considers the current replica to be assigned and the 

previously assigned replicas for each VM.  
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where 
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and 
 

                               (   )               

 ∑                                                      
   (21) 

 

 After updating P, a VM is chosen by employing the 

roulette wheel selection algorithm, and the tour matrix    is 

updated. Finally, after allocating a VM for each real-time 

replica, the tour matrix    is returned. 

6. Implementation and Evaluation 
The performance of FTRTS-MOACO is assessed using a 

custom-made stimulated cloud environment built using c#. 

The experiments are conducted on two datacenters which 

contains 15-45 virtual machines. Table 1 shows the simulation 

parameters.  

Table1: the default values of simulation parameters 

Entity Parameter Value 

Real-Time Task 

Task length 

1000-30000 

MI 

Size of input file 300 Byte 

Deadline Time 25-175 Second 

Number of Replicas 3 

Virtual 

Machines 

MIPS 1000-4000 

RAM 256-2048 

Bandwidth 1000 

Number of PEs 1 

Data Center 
Number of Data 

2 

Centers 

Number of Hosts 3-6 

 

 Four groups of experiments are conducted to assess the 

performance of FTRTS-MOACO. The first group evaluates 

its performance by applying a number of values for each 

parameter. The other groups compare the performance of 

FTRTS-MOACO to three other fault-tolerant real-time task 

scheduling algorithms. The first algorithm (FTRTS-ACO) is a 

variation of the algorithm introduced in [9], which is based on 

ant colony optimization. The second and third algorithms are 

FTRTS-MIN and FTRTS-MAX, which we implemented as 

extended versions of the well-known task scheduling heuristic 

algorithms Min-Min and Max-Min [15][30]. In our 

implementation of these three algorithms, we added replicas 

of the scheduled tasks and assigned deadlines to them. The 

performance of FTRTS-MOACO is compared to other 

scheduling algorithms in terms of makespan, LIMD, fitness, 

and deadline missing rate (DMR) that is computed by Eq. 22. 

                                  
        

 
                           (21) 

where n is the number of real-time tasks and Fail_Num 

represents the number of failed real-time tasks. For FTRTS-

MOACO and FTRTS-ACO, the results are the average of ten 

executions. Additionally, 95% confidence interval (CI) of 

each result is shown in the graphs. 

6.1 FTRTS-MOACO Evaluation 
FTRTS-MOACO used a rich set of parameters which 

includes  ,  ,  ,  ,  ,  ,  , AntsNum, and Imax. Different 

values of these parameters are used to address the effect of 

each one on the performance of proposed algorithm. The 

default values are (α =1, β =1, ρ =.5, λ =10, γ =.5, δ =.3, δ =.2, 

AntsNum =10, and MaxIteration =10). The experiments are 

conducted using 200 real-time tasks with deadlines [50-150] 

and 30 VMs. The set of values are: AntsNum   (1, 10, 20, 50, 

100), Imax   (10, 20, 50, 100, 500, 1000),     (0.1, 0.2, 0.3, 

0.6, 1),     (0, 0.5, 1, 2, 3),     (0, 0.2, 0.5, 0.7, 0.9), and     

(1, 10, 100, and 500). The results of these experiments are 

shown in Figures 2-7, respectively.  

  
Fig 2: Performance of FTRTS-MOACO using different numbers of ants 
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Fig 3: Performance of FTRTS-MOACO using different iterations numbers 

 

Fig 4: Performance of FTRTS-MOACO using different values for the parameter α 

 

Fig 5: Performance of FTRTS-MOACO using different values for the parameter β 

 

Fig 6: Performance of FTRTS-MOACO using different values for the parameter ρ 
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Fig 7: Performance of FTRTS-MOACO using different values for the parameter λ 

 

 The conducted experiments have shown the effect of 

each parameter on the different performance measures of the 

proposed scheduler. The best values of each parameter 

regarding the different performance measures are shown in 

Table 2. 

 From Table 2, we can observe that a single ant is 

sufficient to find an optimized solution that minimizes the 

makespan or minimizes the load imbalance because the 

behavior of many ants would be the same because of using the 

probabilistic transition matrix as road map toward the 

optimum solution, where the solution space itself is narrowed 

due to inhibiting the assignment of replicas of the same task to 

the same virtual machine. While a single ant is not sufficient, 

as demonstrated by the first group, to a find an optimized 

solution that minimizes the deadline missing ratio because 

adding the deadline constraints makes the optimization 

problem is much harder and requires more ants to cooperate in 

finding an optimum solution. In order to provide a balanced 

performance regarding the different performance measuring 

criteria, the following parameter values are used in the 

remaining experiments: AntsNum =100, Imax =100, α =0.6, 

β=1, ρ=0.2 and λ=1. 

Table 2: The best values for the different parameters 

Criteria AntsNum Imax α β ρ λ 

DMR 100 500 0.6 3 0 100 

Makespan 1 1000 0.3 1 0.9 1 

LIMD 1 1000 0.1 0.5 0.2 1 

 

6.2 Evaluating the Different Scheduling 

Algorithms Using Different Deadline 

Ranges 
 In this section, the performance of FTRTS-MOACO is 

evaluated against FTRTS-ACO, FTRTS-MIN, and FTRTS-

MAX using 200 real-time tasks of different deadline ranges 

namely, [25-125], [50-150], and [75-175] with 30 VMs. The 

obtained results are appeared in Figure 8. 

 

 Based on Figure 8, we can see that the DMR of different 

scheduling algorithms is clearly decreased with enlarging the 

deadline ranges. This notice is justified, where the task of 

large deadline has a higher probability to meets its deadline.  

However, FTRTS-MOACO provides the best DMR followed 

by FTRTS-ACO then FTRTS-MIN and finally FTRTS-MAX. 

On the other side, regarding Makespan and LIMD, FTRTS-

MAX provides the best values followed by FTRTS-MIN then 

FTRTS-MOACO and finally FTRTS-ACO. FTRTS-MOACO 

provides the best fitness values achieving a good balance 

between the different scheduling objectives. 

 

6.3 Evaluating the Different Scheduling 

Algorithms Using Different Number of 

Tasks 
 In this section, the performance of FTRTS-MOACO is 

evaluated against FTRTS-ACO, FTRTS-MIN, and FTRTS-

MAX using different numbers of tasks namely, 50, 100, 150 

and 200 with deadline range of [50-150], and 30 VMs. The 

obtained results are appeared in Figure 9. 

 

 Based on Figure 9, we can observe that the different 

performance measures are influenced by increasing the 

number of tasks, particularly, DMR and fitness values with 

FTRTS-MAX. Once again, FTRTS-MOACO provides the 

best DMR and Fitness values achieving the highest degree of 

fault tolerance and the highest degree of balance among the 

different scheduling objective. On the other side, FTRTS-

MAX and FTRTS-MIN, in order, are providing the best 

values regarding Makespan and LIMD. FTRTS-ACO 

performs well on the different criteria but FTRTS-MOACO is 

still better 

 

6.4 Evaluating the Different Scheduling 

Algorithms Using Different Number of 

VMs 
 In this section, the performance of FTRTS-MOACO is 

evaluated against FTRTS-ACO, FTRTS-MIN, and FTRTS-

MAX using 200 real-time tasks of deadline range [50-150] 

executed on a different number of VMS namely, 15, 30, and 

45. The obtained results are shown in Figure 10
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Fig 8: Performance of different scheduling algorithms using different deadline ranges 

  

 

 

Fig 9: Performance of the different scheduling algorithms using different number of tasks 
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Fig 10: Performance of the different scheduling algorithms using different number VMs 

 Based on Figure 10, we can notice that the different 

performance measures are greatly improved by increasing the 

number of used VMS except LIMD. Once again, we can 

notice that FTRTS-MOACO is the best in terms of DMR and 

fitness values and FTRTS-MAX and FTRTS-MIN, in order, 

are the best in terms of Makespan and LIMD. FTRTS-ACO 

performs well with all criteria but FTRTS-MOACO is still 

better. 

7. CONCLUSION 
Recently, improving the dependability of cloud environments 

for hosting real-time applications becomes a commercially 

and academically major concern. In this paper, a multi-

objectives ACO based fault-tolerant real-time cloud 

scheduler, called FTRTS-MOACO, has been designed and 

implemented. The proposed scheduler aimed to optimize the 

deadline missing rate, Makespan, and load imbalance degree 

while preserving the principle of fault tolerance. A set of 

experiments are designed and performed to evaluate the 

performance of FTRTS-MOACO against a set of other fault-

tolerant scheduling algorithms under different scenarios. The 

obtained results have shown the effectiveness and efficiency 

of the proposed scheduler regarding the different performance 

measures, particularly, DMR and Fitness. In the future, we 

intend to enhance the proposed scheduler to consider the 

highly restrictive requirements of hard real-time tasks in 

addition to improving both of Makespan and LIMD. 
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