
MJCIS Vol.14 No.1 Jun 2018

Mansoura Journal of Computers and Information Sciences

17

Swarm Intelligence based Fault-Tolerant Real-Time

Cloud Scheduler

A. S. Abohamama

Computer Science Dept.
University of Mansoura

abohamama@mans.edu.eg

M. F. Alrahmawy
Computer Science Dept.
University of Mansoura
mrahmawy@mans.edu.eg

Mohamed A. Elsoud
Computer Science Dept.
University of Mansoura
moh_soud@mans.edu.sa

Taher T. Hamza

Computer Science Dept.
University of Mansoura
Taher_hamza@yahoo.co

ABSTRACT

Cloud computing is a distributed computing paradigm that is

deployed in many real-life applications. Many of these

applications are real-time such as scientific computing,

financial transactions, etc. Therefore, improving the

dependability of cloud environments is extremely important to

fulfill the reliability and availability requirements of different

applications, especially real-time applications. Fault tolerance

is the most common approach for improving the system’s

dependability. In addition to traditional fault tolerance

techniques such as replication, job migration, software

rejuvenation, etc, fault-tolerant scheduling algorithms can

play a great role toward more dependable systems. In this

paper, an ACO based fault-tolerant soft real-time cloud

scheduler is developed to minimize deadlines missing rate,

makespan, and the imbalance in distributing the workload

among the different machines. The performance of proposed

scheduler has been assessed under different scenarios. Also, it

has been compared to other well-known scheduling

algorithms and the experimental results have shown the

superiority of the proposed algorithm.

General Terms

Artificial Intelligence, Swarm Intelligence

Keywords

Real-Time Applications, Ant Colony Optimization, Fault

Tolerance, Cloud Scheduling

1. INTRODUCTION
Cloud computing is relatively recent computing paradigm that

provides various services over the network on demand

scalability [1]. This computing paradigm is based on a pay-as-

you-go pricing model. Also, it reduces the up-front investment

and maintenance costs [2]. Because of these advantages, the

clouds have been adopted in many fields such as scientific

research, e-commerce, health, etc [3]. Many applications that

employ the clouds, such as scientific computation, financial

transaction, and healthcare applications, are real-time and it

demand specific reliability and availability requirements. The

correct operation of these applications is not based only on the

results correctness, but also on the time by which the results

are generated [4].

 On other side, in cloud based applications, most of

computations are done on remote nodes which increase the

probabilities of error occurrences due to the soft control over

cloud nodes and unexpected network latency [5]. Also, many

cloud providers uses inexpensive commodity hardware in

building the cloud infrastructure which increases the

probability of failure occurrence [4]. Hence, enhancing the

cloud environments’ dependability becomes an active

research area, in industry and academia, because of its

importance.

 Fault Tolerance is the most common approach to build a

dependable system in addition to some other approaches such

as fault avoidance, and fault forecasting [6]. Fault tolerance

means the system’s ability to perform its function correctly

despite of the occurrence of faults [7]. Many traditional

techniques can be adopted to achieve the fault tolerance in the

cloud environment such as preemptive migration, software

rejuvenation, replication, and check-point/restart [8].

However, fault tolerant scheduling has proved its

effectiveness in achieving the fault tolerance where the tasks

are replicated and assigned to different computing nodes [4].

 Using the virtualization technology, the computing

resources of the cloud are usually provided dynamically on

demand to the customers as an apparently unending group of

interconnected virtual machines according to a group of

service level agreements (SLA) established between the cloud

providers and the customers [1]. Hence, the cloud consists of

a large number of virtual machines (VMs). Also, it can

execute many tasks and can offer many services for many

clients in the same time. Therefore, assigning this huge

number of tasks and services to the different VMs manually is

a challenging task. So, an efficient scheduling algorithm,

which is able to satisfy its design objectives, is required in

cloud environments [9]. The cloud scheduler should be as

efficient as possible because it can greatly affect the overall

performance of the cloud system [10].

 Task scheduling is an NP-complete problem where many

heuristics and meta-heuristics have been employed by the

researchers to solve it, seeking an optimal or near-optimal

solution [9]. Swarm Intelligence is a category of bio-inspired

algorithms which attempts to build meta-heuristics to solve

complex problems by mimicking the collective behavior of

swarms and their abilities in solving problems [11]. In this

MJCIS Vol.14 No.1 Jun 2018

18

paper, we use a well-known swarm intelligence technique

called ant colony optimization (ACO) to develop a multi-

objective fault tolerant soft real-time cloud scheduler to

minimize the deadline missing rate, makespan and load

imbalance degree (LIMD), while preserving the fault

tolerance principle.

 The remaining sections of the paper are organized as

follow: Section 2 presents an overview on some research

efforts which have been done to improve the fault tolerance of

cloud environments through adopting the fault tolerant

scheduling. Section 3 describes the main idea of the ant

colony optimization algorithm. Section 4 introduces the

problem statement and formulation. Section 5 presents a

multi-objective ACO based fault-tolerant real-time cloud

scheduler called FTRTS-MOACO. Finally, Sections 6

includes the conclusion and future work.

2. RELATED WORK
Generally, there are many approaches which have been

developed to deal with the task scheduling problem in grid,

multi-processors and distributed systems. However, these

approaches are not suitable and cannot be applied directly in

the cloud systems due to its different characteristics [10].

Therefore, the task scheduling problem in the cloud has

attracted the researchers’ attention and some attempts have

been done to deal with this problem. But, using cloud

environments for executing real-time applications is relatively

new and few approaches have been developed to schedule the

real-time tasks, while keeping their deadlines [5].

 In [12], A particle swarm optimization (PSO) based

scheduling algorithm is presented to schedule application

workflows in the cloud environments. The proposed approach

is concerned with minimizing execution costs of application

workflows including transmission cost and computation cost.

Another ant colony optimization (ACO) based workflow

applications scheduling heuristic is proposed in [13]. The

proposed algorithm called Load balancing optimization

algorithm based on ant colony algorithm (ACO-LB). ACO-

LB is concerned with enhancing the load balance in addition

to minimizing the makespan. Also, in [14], bee swarm

optimization based task scheduler that schedule tasks in the

cloud resources with minimum makespan through an efficient

workloads distribution. In [9], an ant colony optimization

(ACO) based cloud task scheduler is proposed to schedule the

cloud tasks on the hired virtual machines. The proposed

scheduler is aiming at optimizing the total execution time or

the makespan. Additionally, in [15], a number of well-known

scheduling algorithms, including First Come First Serve

(FCFS), Minimum Completion Time (MCT), Minimum

Execution Time (MET), Max-min, Min-min and Sufferage,

have been implemented to schedule independent tasks on

cloud VMs. A number of experiments have been conducted

and the performance of the different algorithms has been

assessed using different performance measuring criteria.

 In [16], a data locality driven cloud scheduling algorithm

is proposed which is a fault tolerant version of Balance

Reduce Algorithm (BAR). The proposed algorithm deals with

the machine failures which occur during tasks execution.

Also, like other data locality based scheduling algorithms, the

proposed algorithm minimizes the network access, bandwidth

usage, and makespan. Another fault tolerant cloud scheduling

algorithm based on LCA optimization algorithm is proposed

in [17]. It is called dynamic clustering league championship

algorithm (DCLCA). The proposed algorithm aims at

minimizing the makespan. Also, it employs task migration

and fault detection strategies to reduce the task failure rate.

Another lookahead genetic algorithm (LAGA) workflow

applications scheduler is proposed in [18] which utilizes

reliability-driven reputation to optimize reliability and

makespan of distributed workflows. Another fault tolerant

scheduling algorithm named MaxRe is proposed in [19] to

achieve the desired reliability requirement for the user through

determining the appropriate number of replicas, using a

reliability analysis mechanism, for the different tasks.

 In [10], a soft real-time scheduler is proposed based

on particle swarm optimization (PSO) with optimized

objectives: cost, makespan, deadline missing ratio, and load

balance. In [20], they propose a multi-objective GA based

scheduler to optimize energy consumption, gas emissions, and

the total profit while taking into account the application’s

deadline. Another green computing supporting real-time

energy-aware task scheduler named EARH is proposed in [21]

which employs a rolling-horizon optimization policy. In [22],

they propose a real-time utility accrual scheduler where tasks

are scheduled in a non-preemptive manner to optimize the

total utility using profit and penalty utility functions. In [23], a

near-optimal computationally efficient greedy real-time task

scheduler is proposed for scheduling real-time batch jobs with

objectives is to maximize the social welfare and revenues

using parallelism. In [24], a reliability-aware scheduler which

uses a reliability assessment model is proposed based on the

node’s reputation in cloud infrastructure; it is used for general

as well as real-time applications. Finally, two cloud

schedulers have been proposed in [25] based on greedy

algorithm and adaptive genetic algorithm. The proposed

schedulers have been designed to schedule hard real-time

tasks with precedence on heterogeneous VMs.

3. ANT COLONY OPTIMIZATION
Ant colony optimization (ACO) is an optimization algorithm

which proposed by M. Dorigo in the early 1990s. It is inspired

by the foraging behaviour of real ant colonies. To find food

sources, ants leave their nest and take random paths to scan

the surrounding area. While moving, the ants put smelly trails

called pheromone on the paths. When choosing a path, the

ants prefer to choose the path that has the strongest

pheromone concentration. When an ant finds a food source, it

takes some of it and leaves pheromone on the path during its

return to the nest. With the repetition of this process, the

shortest paths get high pheromone concentrations. These paths

attract the ants to follow during their next trips [9]. In this

insect society, ants communicate indirectly through modifying

the environment to support cooperation among themselves

toward their target. This type of communication is called

stigmergy [1, 26, 27].

 ACO is a metaheuristic for solving combinatorial

optimization problems through mimicking the behavior of the

real ants [28]. Practically, each artificial ant attempts to build

a solution for the optimization problem under concern. Each

ant leaves pheromone trails on the path it takes to reach this

solution. The pheromone concentration is proportional to the

quality or fitness of the solution. Next ants then attempt to

build their own solutions, but they are affected by the

pheromone trails left on the paths by their predecessors [28].

ACO has pros and cons. The pros of ACO include the use of

the positive feedback mechanism, inner parallelism and

extensible. The cons of ACO metaheuristic include overhead

and the stagnation phenomenon [9]. ACO algorithm has a set

of main steps including pheromone initialization, a candidate

solution construction by every single ant, pheromone update

process (evaporation, intensification). The flowchart of the

ACO algorithm is shown in Figure 1 [28].

MJCIS Vol.14 No.1 Jun 2018

19

Fig 1: Flowchart of the standard ACO

 ACO has been successfully used to solve many

optimization problems such as the traveling salesman problem

[29], the flow shop scheduling problem [30], the quadratic

assignment problem [31], and task scheduling [9]. In this

paper, ACO has been used to a build fault-tolerant soft real-

time cloud scheduler which is described below in detail.

4. PROBLEM STATEMENT AND

FORMULATION
Computing resources in virtualized clouds are provisioned in

the form of virtual machines (VMs) that can run separately

and independently on the same physical machine or on

different ones to execute assigned tasks. In this paper, the task

is the smallest identifiable piece of work that achieves a

specific service/function and it is the smallest schedulable

entity. A real-time task is no more than an ordinary task with

a deadline. Given a set of real-time tasks, { }
where each has a group of attributes (aci,, wi, ei, fi, and

di) which represent arrival, waiting, expected execution,

expected finish and deadline times of , respectively. Also,

given a set of virtual machines, {
 } that represents the hired computing power. Then, the

role of cloud scheduler is to assign the real-time tasks to the

different VMs in a way that achieve its design objectives

which include minimizing deadlines missing and makespan in

addition to achieving good balance in distributing the

workloads among the different VMs.

 The replication mechanism is used in our scheduler to

achieve the fault tolerance, where each has nr replicas. The

expected finish time of each replica is computed by Eq. 1.

 (1)

where k is the index of the original real-time task, r is the

index of the current replica and j is the index of allocated

virtual machine index, is the arrival time of original tasks

at the cloud, is the waiting time of replica r on VMj, and

 is the expected execution time of the replica on VMj

which can be computed by Eq. 2.

 (2)

where TLk is the length of the task in million instructions

(MI), Pe_Numj is the processing elements number of VMj, and

Pe_Mipsj is the computing power of each processing element

in VMj represented by Million Instructions per Second

(MIPS).

 After executing the different replica of real-time task ,
the status of is “Passed” if one of its replicas, at least,

finished execution before di. Otherwise, the status is “Failed”.

In the proposed work, Fail_Num represents the gross number

of failed real-time tasks.

 The total time needed by a certain virtual machine VMj to

finish a number of assigned tasks NTj is denoted by

CTime(VMj) and can be computed by Eq.3

 ()
∑

∑

 (3)

where TLi is the length of task in MI, IFSi is the size of the

input file of task , Pe_Numj* Pe_Mipsj is the total computing

power of VMj, and BWj is the bandwidth of VMj. In the context

of task scheduling, Makespan of a set of tasks is the total time

that elapses from the start time to the finish time and can be

computed by Eq. 4 [15].

 (()) (4)

where M is the total number of hired VMs.

 Also, load balancing is a major issue in designing any

task scheduler. In the proposed work, the term “Load

Imbalance Degree” or LIMD is used to represent the

imbalance in distributing the workload among the different

VMs. Therefore, the smaller the value of LIMD is, the better

the performance of the scheduler in terms of resource

utilization. LIMD is computed by Eq.5 [15].

 (5)

where Makespan, MinCTime and AvgCTime are computed by

Equations 4, 6, and 7, respectively.

 (()) (6)

∑ ()

 (7)

 From the aforementioned description, the task scheduling

problem can be defined as a multi-objective optimization

problem as shown in Eq. 8.

 (8)

5. PROPOSED ALGORITHM (FTRTS-

MOACO)
A new scheduling algorithm is proposed here, with a main

objective is to fulfill the fault tolerance for real-time tasks that

are running on cloud environment. The name of the proposed

algorithm is Fault Tolerant Real-time Task Scheduling based

on Multi-Objective Ant Colony Optimization (FTRTS-

MOACO). The pseudocode of FTRTS-MOACO is shown in

Algorithm1. FTRTS-MOACO starts by applying the

replication process to achieve the fault tolerance. It generates

a real-time task list, TRT-List {

 }, by tripling the original list RT-List

{ }, i.e., nr =3, where , and are the

replicas of the original real-time task . For more simplicity,

an easier indexing mechanism is used in the rest of this paper

instead of this doubly indexing in which is replaced by

where . After applying

that, the replicated list becomes RT-List

 { } where

 .

Start

Initialize Pheromone Values

For each ant: construct a candidate solution

Decrease pheromone values (Evaporation)

Increase pheromone values (Intensification)

Terminated

Output the optimal solution

End

Yes

No

MJCIS Vol.14 No.1 Jun 2018

20

Algorithm1: Multi-objective ACO Scheduler
Input:

 List of n real-time tasks, RT-List

 List of M virtual machines , VM-List

 Number of ants, AntsNum

 Number of iterations, Imax

Output: optimal schedule, S

1. Apply the tripling process on the original RT-List to generate
TRT-List.

2. Create and initialize the pheromone matrix, τ of size N M,
using Eq. 9.

3. OptimalFitness = .
4. For i=1,2,……, AntsNum

5. Create an ant and put it in the ants list, AntList.
6. For i=1,2,……, Imax

7. Foreach ant AntList do

8. Schedule = MakeTour (TRT-List, VMList). /* (Algo. 2)*/

9. Set ScheduleFitness for Schedule using Eq. 10.
10. If (ScheduleFitness < OptimalFitness)

 S = Schedule.

 OptimalFitness = ScheduleFitness.
11. Evaporate the pheromone matrix, τ, using Eq. 12.

12. Foreach ant AntList do
13. Intensify the pheromone matrix, τ, locally using Eq. 13.

14. Intensify the pheromone matrix, τ, globally using Eq. 15.

15. Return S

In order to use the ACO algorithm, it is important to define

the pheromone information in such a way that reflects the

most paramount information for solution construction. In the

proposed algorithm, the pheromone information is encoded as

pheromone matrix, of size . The pheromone value

 represents the desirability to assign ti to VMj where

 and . is initialized using Eq. 9 [9].

 (9)

where c is a user-defined small positive value.

 During each iteration, each ant makes a tour to create a

possible schedule using Algorithm 2. Then, the fitness value

of the proposed schedule is computed using Eq. 10.

 (10)

Where and are weighting parameters with total

summation equal to 1. SingularExecutionTime is put as a

denominator in the third term to reduce the effect of

MakeSpan which has a range of values larger than the ranges

of the first and second terms, i.e., SingularExecutionTime is

used to normalize MakeSpan. It can be computed using Eq.

11.

∑

∑

 (11)

 In the evaporation process, all pheromone values in the

pheromone matrix, , are decreased by a fixed proportion, , at

the end of each iteration using Eq. 12 [9].

 (12)

 The pheromone values are intensified at two levels: local

and global. In the first level, each ant updates the pheromone

values proportional to the quality of its candidate solution

using Eq. 13 [9].

 (13)

where is the pheromone update value which is computed

using Eq. 14 and is the binary tour matrix.

 (14)

where
 is the fitness value of the tour made by ant k at

iteration t. in the second level, the pheromone matrix, , is

intensified only by the best ant, which produced the best tour

during the iteration, using Eq. 15.

 (15)

where
 is the fitness value of the best tour generated during

the current iteration.

Algorithm2: MakeTour Operation
Input:

 List of N real-time tasks, RT-List

 List of M virtual machines , VM-List
Output: optimal schedule, S

1. Create a zero matrix TM of size N M.

2. Create Probabilistic Transition Matrix, P of size N M.
3. Initialize P using Eq. 16.

4. Foreach t TRT-List do
5. Set TaskId to the index of t.
6. Create a list L, a list of VMs which cannot be allocated to

replica t.

7. Allowed {Vm-List – L}.

8. Update P using Eq. 18.

9. Select VM Allowed using Roulette Wheel Selection.
10. Set VmId to the index of selected VM.

11. TM [TaskId, VmId] =1.

12. Return TM

 Algorithm 2 is employed by each ant to make a tour to

generate a possible schedule. It starts by creating a binary

 tour matrix, , which represents the schedule matrix.

Then, another probabilistic transition matrix is

created and initialized using Eq. 16 [9]. includes the

probabilities of choosing a specific VM to execute a certain

real-time replica . For example, if , then VM5

can be chosen for executing the replica with a probability

value of 0.3 [9].

∑

 (16)

where is the pheromone value of allocating to the

replica at iteration zero, is an additional problem-

dependent heuristic parameter that helps the ant in selecting

 where causes the smallest load value, and and are

used to determine the relative weight of pheromone value and

heuristic value, respectively. The value of is computed

using Eq. (17).

 (17)

where CTimeij represent the time needed to execute the replica

 if VMj is allocated to it. It is computed using Eq. (18) [9].

 (18)

where TLi is the length of (MI), IFSi is the input file size of

 , Pe_Numj is the number of processing elements of ,

Pe_Mipsj is the computing power of the processing elements

in in (MIPS), and BWj is The bandwidth of .

 The replicas of a certain task are allocated to different

VMs to satisfy the fault tolerance requirement. Hence, before

selecting a VM to execute a real-time replica , a list of Not-

allowed VMs, L, is created for the current replica. This list

contains the VMs previously allocated to other replicas of the

same real-time task. Then, the list of allowed, Allowed, VMs

is specified. After that, P is updated using Eq. 19. The update

process considers the current replica to be assigned and the

previously assigned replicas for each VM.

MJCIS Vol.14 No.1 Jun 2018

21

 {

[]

 [

]

∑
 *

 +

 (19)

where

 (20)

and

 ()

 ∑
 (21)

 After updating P, a VM is chosen by employing the

roulette wheel selection algorithm, and the tour matrix is

updated. Finally, after allocating a VM for each real-time

replica, the tour matrix is returned.

6. Implementation and Evaluation
The performance of FTRTS-MOACO is assessed using a

custom-made stimulated cloud environment built using c#.

The experiments are conducted on two datacenters which

contains 15-45 virtual machines. Table 1 shows the simulation

parameters.

Table1: the default values of simulation parameters

Entity Parameter Value

Real-Time Task

Task length

1000-30000

MI

Size of input file 300 Byte

Deadline Time 25-175 Second

Number of Replicas 3

Virtual

Machines

MIPS 1000-4000

RAM 256-2048

Bandwidth 1000

Number of PEs 1

Data Center
Number of Data

2

Centers

Number of Hosts 3-6

 Four groups of experiments are conducted to assess the

performance of FTRTS-MOACO. The first group evaluates

its performance by applying a number of values for each

parameter. The other groups compare the performance of

FTRTS-MOACO to three other fault-tolerant real-time task

scheduling algorithms. The first algorithm (FTRTS-ACO) is a

variation of the algorithm introduced in [9], which is based on

ant colony optimization. The second and third algorithms are

FTRTS-MIN and FTRTS-MAX, which we implemented as

extended versions of the well-known task scheduling heuristic

algorithms Min-Min and Max-Min [15][30]. In our

implementation of these three algorithms, we added replicas

of the scheduled tasks and assigned deadlines to them. The

performance of FTRTS-MOACO is compared to other

scheduling algorithms in terms of makespan, LIMD, fitness,

and deadline missing rate (DMR) that is computed by Eq. 22.

 (21)

where n is the number of real-time tasks and Fail_Num

represents the number of failed real-time tasks. For FTRTS-

MOACO and FTRTS-ACO, the results are the average of ten

executions. Additionally, 95% confidence interval (CI) of

each result is shown in the graphs.

6.1 FTRTS-MOACO Evaluation
FTRTS-MOACO used a rich set of parameters which

includes , , , , , , , AntsNum, and Imax. Different

values of these parameters are used to address the effect of

each one on the performance of proposed algorithm. The

default values are (α =1, β =1, ρ =.5, λ =10, γ =.5, δ =.3, δ =.2,

AntsNum =10, and MaxIteration =10). The experiments are

conducted using 200 real-time tasks with deadlines [50-150]

and 30 VMs. The set of values are: AntsNum (1, 10, 20, 50,

100), Imax (10, 20, 50, 100, 500, 1000), (0.1, 0.2, 0.3,

0.6, 1), (0, 0.5, 1, 2, 3), (0, 0.2, 0.5, 0.7, 0.9), and

(1, 10, 100, and 500). The results of these experiments are

shown in Figures 2-7, respectively.

Fig 2: Performance of FTRTS-MOACO using different numbers of ants

0
1
2
3
4
5
6
7
8

1 10 20 50 100

D
M

R
(%

)

(a) The effect of number of ants on

DMR

100

150

200

250

300

350

400

1 10 20 50 100

M
ak

es
p

an

(b) The effect of number of ants on

Makespan

0

0.5

1

1.5

2

2.5

3

1 10 20 50 100

L
IM

D

(c) The effect of number of ants on

LIMD

MJCIS Vol.14 No.1 Jun 2018

22

Fig 3: Performance of FTRTS-MOACO using different iterations numbers

Fig 4: Performance of FTRTS-MOACO using different values for the parameter α

Fig 5: Performance of FTRTS-MOACO using different values for the parameter β

Fig 6: Performance of FTRTS-MOACO using different values for the parameter ρ

0
1
2
3
4
5
6
7
8

10 20 50 100 500 1000

D
M

R
(%

)

(a) The effect of number of

iterations on DMR

100

150

200

250

300

350

400

10 20 50 100 500 1000

M
ak

es
p

an

(b) The effect of number of

iterations on Makespan

0

0.5

1

1.5

2

2.5

3

10 20 50 100 500 1000

LI
M

D

(c) The effect of number of

iteration on LIMD

0
1
2
3
4
5
6
7
8

0.1 0.2 0.3 0.6 1

D
M

R
(%

)

(a) The effect of α on DMR

100

150

200

250

300

350

400

0.1 0.2 0.3 0.6 1

M
ak

es
p

an

(b) The effect α on Makespan

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.6 1

LI
M

D

(c) The effect of α on LIMD

0
1
2
3
4
5
6
7
8

0 0.5 1 2 3

D
M

R
(%

)

(a) The effect of β on DMR

100

150

200

250

300

350

400

0 0.5 1 2 3

M
ak

es
p

an

(b) The effect of β on Makespan

0

0.5

1

1.5

2

2.5

3

0 0.5 1 2 3

L
IM

D

(c) The effect of β on LIMD

0
1
2
3
4
5
6
7
8

0 0.2 0.5 0.7 0.9

D
M

R
(%

)

(a) The effect of ρ on DMR

100

150

200

250

300

350

400

0 0.2 0.5 0.7 0.9

M
ak

es
p

an

(b) The effect of ρ on Makespan

0

0.5

1

1.5

2

2.5

3

0 0.2 0.5 0.7 0.9

LI
M

D

(a) The effect of ρ on LIMD

0
1
2
3
4
5
6
7
8

1 10 100 500

D
M

R
(%

)

(a) The effect of λ on DMR

100

150

200

250

300

350

400

1 10 100 500

M
ak

es
p

an

(b) The effect of λ s on Makespan

0

0.5

1

1.5

2

2.5

3

1 10 100 500

L
IM

D

(c) The effect of λ on LIMD

MJCIS Vol.14 No.1 Jun 2018

23

Fig 7: Performance of FTRTS-MOACO using different values for the parameter λ

 The conducted experiments have shown the effect of

each parameter on the different performance measures of the

proposed scheduler. The best values of each parameter

regarding the different performance measures are shown in

Table 2.

 From Table 2, we can observe that a single ant is

sufficient to find an optimized solution that minimizes the

makespan or minimizes the load imbalance because the

behavior of many ants would be the same because of using the

probabilistic transition matrix as road map toward the

optimum solution, where the solution space itself is narrowed

due to inhibiting the assignment of replicas of the same task to

the same virtual machine. While a single ant is not sufficient,

as demonstrated by the first group, to a find an optimized

solution that minimizes the deadline missing ratio because

adding the deadline constraints makes the optimization

problem is much harder and requires more ants to cooperate in

finding an optimum solution. In order to provide a balanced

performance regarding the different performance measuring

criteria, the following parameter values are used in the

remaining experiments: AntsNum =100, Imax =100, α =0.6,

β=1, ρ=0.2 and λ=1.

Table 2: The best values for the different parameters

Criteria AntsNum Imax α β ρ λ

DMR 100 500 0.6 3 0 100

Makespan 1 1000 0.3 1 0.9 1

LIMD 1 1000 0.1 0.5 0.2 1

6.2 Evaluating the Different Scheduling

Algorithms Using Different Deadline

Ranges
 In this section, the performance of FTRTS-MOACO is

evaluated against FTRTS-ACO, FTRTS-MIN, and FTRTS-

MAX using 200 real-time tasks of different deadline ranges

namely, [25-125], [50-150], and [75-175] with 30 VMs. The

obtained results are appeared in Figure 8.

 Based on Figure 8, we can see that the DMR of different

scheduling algorithms is clearly decreased with enlarging the

deadline ranges. This notice is justified, where the task of

large deadline has a higher probability to meets its deadline.

However, FTRTS-MOACO provides the best DMR followed

by FTRTS-ACO then FTRTS-MIN and finally FTRTS-MAX.

On the other side, regarding Makespan and LIMD, FTRTS-

MAX provides the best values followed by FTRTS-MIN then

FTRTS-MOACO and finally FTRTS-ACO. FTRTS-MOACO

provides the best fitness values achieving a good balance

between the different scheduling objectives.

6.3 Evaluating the Different Scheduling

Algorithms Using Different Number of

Tasks
 In this section, the performance of FTRTS-MOACO is

evaluated against FTRTS-ACO, FTRTS-MIN, and FTRTS-

MAX using different numbers of tasks namely, 50, 100, 150

and 200 with deadline range of [50-150], and 30 VMs. The

obtained results are appeared in Figure 9.

 Based on Figure 9, we can observe that the different

performance measures are influenced by increasing the

number of tasks, particularly, DMR and fitness values with

FTRTS-MAX. Once again, FTRTS-MOACO provides the

best DMR and Fitness values achieving the highest degree of

fault tolerance and the highest degree of balance among the

different scheduling objective. On the other side, FTRTS-

MAX and FTRTS-MIN, in order, are providing the best

values regarding Makespan and LIMD. FTRTS-ACO

performs well on the different criteria but FTRTS-MOACO is

still better

6.4 Evaluating the Different Scheduling

Algorithms Using Different Number of

VMs
 In this section, the performance of FTRTS-MOACO is

evaluated against FTRTS-ACO, FTRTS-MIN, and FTRTS-

MAX using 200 real-time tasks of deadline range [50-150]

executed on a different number of VMS namely, 15, 30, and

45. The obtained results are shown in Figure 10

0

10

20

30

40

50

60

70

[25-125] [50-150] [75-175]

D
M

R
 (

%
)

(a) Deadline Missing Rate

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX
0

40
80

120
160
200
240
280
320
360
400

[25-125] [50-150] [75-175]

M
ak

es
p

an

(b) Makespan

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

MJCIS Vol.14 No.1 Jun 2018

24

Fig 8: Performance of different scheduling algorithms using different deadline ranges

Fig 9: Performance of the different scheduling algorithms using different number of tasks

 .

0

0.5

1

1.5

2

2.5

3

[25-125] [50-150] [75-175]

L
IM

D

(c) LIMD

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

[25-125] [50-150] [75-175]

F
it

n
es

s

(d) Fitness

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

0
10
20
30
40
50
60
70
80

50 100 150 200

D
M

R
 (

%
)

(a) Deadline Missing Rate

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX
0

40
80

120
160
200
240
280
320
360
400

50 100 150 200

M
ak

es
p

an

(b) Makespan

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

0

0.5

1

1.5

2

2.5

3

50 100 150 200

L
IM

D

(c) LIMD

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

0
5

10
15
20
25
30
35
40
45
50

50 100 150 200

F
it

n
es

s

(d) Fitness

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

0

10

20

30

40

50

60

70

80

90

15 30 45

D
M

R
 (

%
)

(a) Deadline Missing Rate

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

0
40
80

120
160
200
240
280
320
360
400

15 30 45

M
ak

es
p

an

(b) Makespan

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

MJCIS Vol.14 No.1 Jun 2018

25

Fig 10: Performance of the different scheduling algorithms using different number VMs

 Based on Figure 10, we can notice that the different

performance measures are greatly improved by increasing the

number of used VMS except LIMD. Once again, we can

notice that FTRTS-MOACO is the best in terms of DMR and

fitness values and FTRTS-MAX and FTRTS-MIN, in order,

are the best in terms of Makespan and LIMD. FTRTS-ACO

performs well with all criteria but FTRTS-MOACO is still

better.

7. CONCLUSION
Recently, improving the dependability of cloud environments

for hosting real-time applications becomes a commercially

and academically major concern. In this paper, a multi-

objectives ACO based fault-tolerant real-time cloud

scheduler, called FTRTS-MOACO, has been designed and

implemented. The proposed scheduler aimed to optimize the

deadline missing rate, Makespan, and load imbalance degree

while preserving the principle of fault tolerance. A set of

experiments are designed and performed to evaluate the

performance of FTRTS-MOACO against a set of other fault-

tolerant scheduling algorithms under different scenarios. The

obtained results have shown the effectiveness and efficiency

of the proposed scheduler regarding the different performance

measures, particularly, DMR and Fitness. In the future, we

intend to enhance the proposed scheduler to consider the

highly restrictive requirements of hard real-time tasks in

addition to improving both of Makespan and LIMD.

8. REFERENCES
[1] Gao, Y., Guan, H., Qi, Z., Hou, Y. and Liu, L., 2013. A

multi-objective ant colony system algorithm for virtual

machine placement in cloud computing. Journal of

Computer and System Sciences, 79(8), pp.1230-1242.

[2] Mohammed, B., Kiran, M., Maiyama, K.M., Kamala,

M.M. and Awan, I.U., 2017. Failover strategy for fault

tolerance in cloud computing environment. Software:

Practice and Experience.

[3] Bilal, K., Khalid, O., Malik, S.U.R., Khan, M.U.S.,

Khan, S.U. and Zomaya, A.Y., 2016. Fault Tolerance in

the Cloud. Encyclopedia of Cloud Computing, pp.291-

300.

[4] Wang, J., Bao, W., Zhu, X., Yang, L.T. and Xiang, Y.,

2015. FESTAL: fault-tolerant elastic scheduling

algorithm for real-time tasks in virtualized clouds. IEEE

Transactions On Computers, 64(9), pp.2545-2558.

[5] Malik, S. and Huet, F., 2011, July. Adaptive fault

tolerance in real time cloud computing. In Services

(SERVICES), 2011 IEEE World Congress on (pp. 280-

287). IEEE.

[6] Knight, J., 2012. Fundamentals of Dependable

Computing for Software Engineers. CRC Press.

[7] Menychtas, A. and Konstanteli, K.G., 2012. Fault

detection and recovery mechanisms and techniques for

service oriented infrastructures. In Achieving Real-Time

in Distributed Computing: From Grids to Clouds (pp.

259-274). IGI Global.

[8] Ganesh, A., Sandhya, M. and Shankar, S., 2014,

February. A study on fault tolerance methods in cloud

computing. In Advance Computing Conference (IACC),

2014 IEEE International (pp. 844-849). IEEE.

[9] Tawfeek, M.A., El-Sisi, A., Keshk, A.E. and Torkey,

F.A., 2015, November. Cloud task scheduling based on

ant colony optimization. The International Arab Journal

of Information Technology 12 (2), pp.129-137.

[10] Chen, H. and Guo, W., 2015, June. Real-Time Task

Scheduling Algorithm for Cloud Computing Based on

Particle Swarm Optimization. In International

Conference on Cloud Computing and Big Data in

Asia (pp. 141-152). Springer, Cham.

[11] Selvaraj, C., Kumar, R.S. and Karnan, M., 2014. A

survey on application of bio-inspired

algorithms. International Journal of Computer Science

and Information Technologies, 5(1), pp.366-70.

[12] Pandey, S., Wu, L., Guru, S.M. and Buyya, R., 2010,

April. A particle swarm optimization-based heuristic for

scheduling workflow applications in cloud computing

environments. In Advanced information networking and

applications (AINA), 2010 24th IEEE international

conference on (pp. 400-407). IEEE.

[13] Xue, S., Li, M., Xu, X., Chen, J. and Xue, S., 2014. An

ACO-LB algorithm for task scheduling in the cloud

environment. Journal of Software, 9(2), pp.466-473.

[14] Bitam, S., 2012, February. Bees life algorithm for job

scheduling in cloud computing. In Proceedings of The

Third International Conference on Communications and

Information Technology (pp. 186-191).

[15] Madni, S.H.H., Latiff, M.S.A., Abdullahi, M. and

Usman, M.J., 2017. Performance comparison of heuristic

algorithms for task scheduling in IaaS cloud computing

environment. PloS one, 12(5), p.e0176321.

[16] Antony, S., Antony, S., Beegom, A.A. and Rajasree,

M.S., 2012, September. Task scheduling algorithm with

fault tolerance for cloud. In Computing Sciences (ICCS),

2012 International Conference on (pp. 180-182). IEEE.

[17] Latiff, M.S.A., Madni, S.H.H. and Abdullahi, M., 2016.

Fault tolerance aware scheduling technique for cloud

computing environment using dynamic clustering

algorithm. Neural Computing and Applications, pp.1-15.

0

0.5

1

1.5

2

2.5

3

15 30 45

L
IM

D

(c) LIMD

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

0

10

20

30

40

50

60

70

80

90

15 30 45

F
it

n
es

s

(d) Fitness

FTRTS-MOACO

FTRTS-ACO

FTRTS-MIN

FTRTS-MAX

MJCIS Vol.14 No.1 Jun 2018

26

[18] Wang, X., Yeo, C.S., Buyya, R. and Su, J., 2011.

Optimizing the makespan and reliability for workflow

applications with reputation and a look-ahead genetic

algorithm. Future Generation Computer Systems, 27(8),

pp.1124-1134.

[19] Zhao, L., Ren, Y., Xiang, Y. and Sakurai, K., 2010,

September. Fault-tolerant scheduling with dynamic

number of replicas in heterogeneous systems. In High

Performance Computing and Communications (HPCC),

2010 12th IEEE International Conference on (pp. 434-

441). IEEE.

[20] Kessaci, Y., Melab, N. and Talbi, E.G., 2013. A Pareto-

based metaheuristic for scheduling HPC applications on

a geographically distributed cloud federation. Cluster

Computing, 16(3), pp.451-468.

[21] Zhu, X., Yang, L.T., Chen, H., Wang, J., Yin, S. and Liu,

X., 2014. Real-time tasks oriented energy-aware

scheduling in virtualized clouds. IEEE Transactions on

Cloud Computing, 2(2), pp.168-180.

[22] Liu, S., Quan, G. and Ren, S., 2010, July. On-line

scheduling of real-time services for cloud computing.

In Services (SERVICES-1), 2010 6th World Congress

on (pp. 459-464). IEEE.

[23] Jain, N., Menache, I., Naor, J.S. and Yaniv, J., 2015.

Near-optimal scheduling mechanisms for deadline-

sensitive jobs in large computing clusters. ACM

Transactions on Parallel Computing, 2(1), p.3.

[24] Malik, S., Huet, F. and Caromel, D., 2012, December.

Reliability aware scheduling in cloud computing.

In Internet Technology And Secured Transactions, 2012

International Conference for (pp. 194-200). IEEE.

[25] Mahmood, A. and Khan, S.A., 2017. Hard Real-Time

Task Scheduling in Cloud Computing Using an Adaptive

Genetic Algorithm. Computers, 6(2), p.15.

[26] Corne, D.W., Reynolds, A. and Bonabeau, E., 2012.

Swarm intelligence. In Handbook of Natural

Computing (pp. 1599-1622). Springer Berlin Heidelberg.

[27] Dorigo, M. and Blum, C., 2005. Ant colony optimization

theory: A survey. Theoretical computer science, 344(2-

3), pp.243-278.

[28] Merkle, D. and Middendorf, M., 2014. Swarm

intelligence. In Search methodologies (pp. 213-242).

Springer US.

[29] Dorigo, M. and Gambardella, L.M., 1997. Ant colony

system: a cooperative learning approach to the traveling

salesman problem. IEEE Transactions on evolutionary

computation, 1(1), pp.53-66.

[30] Shyu, S.J., Lin, B.M. and Yin, P.Y., 2004. Application of

ant colony optimization for no-wait flowshop scheduling

problem to minimize the total completion

time. Computers & industrial engineering, 47(2),

pp.181-193.

[31] Maniezzo, V. and Colorni, A., 1999. The ant system

applied to the quadratic assignment problem. IEEE

Transactions on knowledge and data engineering, 11(5),

pp.769-778.

[32] Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D. and

Freund, R.F., 1999. Dynamic mapping of a class of

independent tasks onto heterogeneous computing

systems. Journal of parallel and distributed

computing, 59(2), pp.107-131.

