
MJCIS Vol.14 No.1 Jun 2018

Mansoura Journal of Computers and Information Sciences

37

Representation Learning Framework of Object

Recognition via Feature Construction

Muhammad H. Zayyan
Faculty of computers and

information systems , C.S dep.

Mansoura University, Egypt,
mhaggag@mans.edu.eg

Samir Elmougy

Faculty of computers and
information systems , C.S dep.

Mansoura University, Egypt

mougy@mans.edu.eg

Mohammed F. AlRahmawy
Faculty of computers and

information systems , C.S dep.
Mansoura University, Egypt

mrahmawy@mans.edu.eg

ABSTRACT

In this paper, we recognize objects within images by

collecting information from a large number of random-size

patches of the image. The different backgrounds accompany

the foreground object demand to have a learning system to

identify each patch as belonging to the object category or to

the background category. We strengthen a recent method

called Evolution-COnstructed (ECO), which is based on the

ensemble learning approach which combines several weak

classifier. The improvement is relying on decreasing the

overfitting problem. Two different improving ideas are

proposed: 1) Pooling operation, which is applied to the weak

classifiers data, 2) Random Forest algorithm, which combines

the weak classifiers outcomes. Experimental results are

reported for classification of 9 categories of Caltech-101 data

sets and proved that our modifications boost the performance

over the base method and other existing methods.

Keywords

Object recognition, ECO features, Adaboost, Random Forest,

Pooling, Genetic Algorithm.

1. INTRODUCTION
The choice of data representation or features has a great

impact on the accuracy of machine learning methods. So,

many efforts had been used in designing preprocessing

pipelines and data transformations that resulted in a

representation of the data to support effective machine

learning. Feature engineering is the process of using the

domain knowledge of the data to create features. This process

is important but it is labor intensive and shows a weakness of

the current learning algorithms, as they lack the ability to

mine the discriminative information from the data.

Building learning algorithms that are less dependent on

feature engineering is highly desired to expand the usage of

machine learning. Artificial Intelligence (AI) methods are

used to learn representation of data, as they can identify and

sort out the suppressed explanatory factors unseen in the

observed low-level data. Adequate representation of the data

makes it easier to extract useful information when building

supervised classifiers.

Our proposed recognition approach revisits a method called

ECO [1]. It's identifying the remarkable patches of the objects

in the images. For each patch, its data representation is

controlled by a Genetic Algorithm (GA) [2] which selects the

optimal sequence of transformations (filters). Each patch's

discriminative ability is assessed by a weak classifier. A

number of candidate patches are collected and combined with

Adaboost [3] algorithm to build strong classifier.

Overfitting is one of the biggest causes for poor performance

of machine learning algorithms. So, this paper handles the

issue of overfitting of the learning algorithm through

proposing two potential places for enhancements of ECO.

First, we enhance the predictive performance of the weak

classifier by injecting a pooling operation (which is resizing

the original image to half size) after applying each filter in the

sequence obtained by GA. Second, we replace the boosting

algorithm (Adaboost) in [1] by a more powerful bagging

ensemble learning algorithm called Random Forest.

The paper is structured as follows: the next section introduces

some related works. Section 3 describes ECO [1, 4]. Section 4

discusses the importance of the enhancements. Section 5

provides the experimental results obtained by applying the

proposed framework on the Caltech 101 datasets. Finally,

conclusion and future work are provided in Section 6.

2. RELATED WORKS
Most of the current recognition systems are based on specific

procedures for extracting the relevant features. As a result;

these domain-specific systems are not working well with all

real classification tasks. Building a general method for

recognition requires learning how to pick up the useful

features from the raw images as the training images. Bulitko

et al. [5] created automated image interpretation to recognize

forest inventorization areas using Markov processes; the same

technique is used by Draper et al. [6] to identify common

household objects. Lin et al. [7] synthesized effective

composite features in recognizing objects in radar modality

images using coevolutionary genetic programming. Krawiec

and Bhanu [8-13] used an evolutionary algorithm to find

series of transformations that are used in composing the

features. New features are deduced via utilizing operators

such as (add, sub, max) on extracted features such as various

moments and other pixel statistics of the image.

MJCIS Vol.14 No.1 Jun 2018

38

3. RECOGNITION ALGORITHM

OVERVIEW
This section gives a summarized overview of the ECO

algorithm. ECO method consists of two stages. First stage is

used to generate candidate features in which each feature has

its own classifier. These classifiers are joined together in the

second stage using Adaboost algorithm to construct a strong

classifier.

Figure 1 shows an example of three ECO features. Every

patch is selected randomly from the image, which is defined

by the coordinates x1, y1, x2, y2. Patches can be overlapped to

each other. Selective sequence of transformations is picked by

a customizing GA and is applied on the patch. Each feature

has its own classifier, which is considered as a weak classifier

represented by a single layer neural network called

perceptron. The final result of the classification is achieved by

selecting the relevant features and combining their perceptron

classifiers α using Adaboost model.

Figure 2: Examples of crossover and mutation of ECO

feature

In the customizing GA, a GA chromosome refers to a feature.

At initialization, each chromosome has a random patch of the

image and can have between 2 and 8 random transformations.

The training of the feature consists of applying sequentially its

transformations to an image region of interest that is defined

by the feature's patch in all training images. The output of last

transformation is used in training the feature’s perceptron.

Once all features have been processed, genetic operator's

crossover and mutations are performed to determine the next

generation as depicted in Figure 2.Tournament selection is

used to determine the features for crossover operator.

Each ECO feature is considered as a weak classifier. The

quality of this classifier is computed with the fitness function

after training the feature and its perceptron is tested with the

testing set of images. The fitness score is in the range of

[0,1000] as shown in Equation 1 based on the following

terms:

Variables kept in the perceptron class are as follows:

 tp : number of positive images classified correctly

 fn : number of positive images classified incorrectly

 tn : number of negative images classified correctly

 fp : number of negative images classified incorrectly

 (1)

In Adaboost, the output of the weak classifiers is combined

into a weighted sum that represents the final output of the

boosted strong classifier.

4. THE PROPOSED MODIFICATIONS

of ECO
ECO [1] works accurately on the datasets where the images

are cropped around the object of interest. This guarantees, the

same patch raw data to be nearly consistent across all images,

therefore simplifies the classifier task. On the contrary,

object's shape variation in the dataset images makes the same

patch inconsistent. As a result, ECO performance degrades

when relies on these unremarkable patches as features.

The power of the ensemble strong model depends on the weak

classifiers. Therefore, enhancing the quality of the weak

classifier increases the final prediction by the model. The

proposed additions focus on improving the following

classifiers:

4.1 Weak Classifier
ECO [1] employs a weak linear classifier called perceptron

which is a single-layer neural network. Perceptron only

classifies linearly separable sets of vectors. This means that, if

the vectors are not linearly separable, then the classifier fails

to discriminate them correctly.

Learning the classifier with an input vector of much data

makes it prone to overfitting. To address this issue, a simple

approach is used to aggregate statistics of these raw data at

various locations. That gains a spatial robustness to object

translation. For example, the maximum, the minimum or the

average value is computed over a patch of the image. These

summary statistics are much lower in dimension (compared to

the raw data input vector) and can also improve results (less

overfitting). This operation is called "pooling".

The pooling operation is injected after each transformation

and hence it downsizes the patch size for the next

transformation in the sequence.

4.2 Strong Classifier
ECO [1] utilizes Adaboost ensemble algorithm. AdaBoost

works by building a highly accurate strong classifier by

combining many relatively weak and inaccurate classifiers. It

works iteratively on weak classifiers and gives more weight to

x1,y1

x2,y2

P1

 T1 T2

Image patches Transformations (Filters) Perceptrons Adaboost classifier

α1

α2

αX

Figure 1: ECO features and their perceptrons are combined by AdaBoost to classify an image [1]

MJCIS Vol.14 No.1 Jun 2018

39

the misclassified classifiers in next iteration. The final

classification is done after combining prediction of each

classifier. Adaboost works perfectly on weak classifiers that

have high bias and low variance. Adaboost can be sensitive to

noisy data and outliers which degrade it's predictive

performance [14].

We utilize an alternative ensemble learning algorithm called

Random Forest [15]. It's based on generating many trees and

the final decision based on the majority of votes of each tree.

Random Forest works perfectly on overfitting models that

have low bias and high variance.

5. THE EXPERIMENTS AND THEIR

RESULTS
The proposed framework is implemented within Microsoft

visual studio C#. GA and Adaboost are customized coded,

while Random Forest, perceptron and images transformations

are called from EmguCV v2.4 [16], which is a .NET wrapper

of OpenCV. The proposed system runs on an Intel i7 2.20GHz

Processor with 8 GB RAM.

5.1 Evaluation Settings
Table 1 lists the parameters of GA used in our recognition

framework. The number of GA individuals is set to 100 while

the algorithm keeps creating candidate individuals (features)

along 10 generations. The length of each individual is in the

range of [2 to 8]. Crossover operator type is 'cut and splice'

which results in different lengths of the offspring individuals.

To overcome a premature convergence of GA, the lower

fitness-value individuals are given a chance to contribute as

parents to generate the new offsprings. Individual selection is

fulfilled using tournament selection by taking the individual

with higher fitness-value of randomly two individuals (size of

tournament pool).

Table 1. Configuration setting of the parameters of the GA

Generations count 10

Population size 100

Chromosome's genes length 8

Selection method Tournament selection

Size of tournament pool 2

Operator type of crossover Cut and splice

Crossover ratio 90%

Mutation ratio 0.05%

Table 2. List of image transformations with their number

of parameters in column named Θ

Image transformation Θ Image transformation Θ

Adaptive Threshold 3 Harris Corner 3

Canny Edge 3 Histogram

Equalization

0

Census Transformation 1 Integral

Transformation

0

Contrast Limited

Adaptive Histogram

2 Laplacian Edge 1

Distance

Transformation

2 Log 0

Dilate 1 Median Blur 1

Difference of Gaussian 2 Rank Transformation 1

Erode 1 Sobel 3

Gaussian Blur 1 Square Root 0

Gradient 1 -- --

In our evaluation, we use 19 image transformations in

generating ECO features. For every transformation, the

number of parameters is specified as stated in Table 2; for

example, "Adaptive Threshold" transformation has three

parameters: 1) Adaptive type: GAUSSIAN or MEAN. 2)

Threshold type: BINARY or BINARY_INV. 3) Block size.

5.2 Evaluation Metrics
Several measures are used in evaluating the efficiency of the

recognition system. The following metrics are used:

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

The results of the above measurements are expressed as

percentages. These metrics calculations depend on the basic

terms: TP, TN, FP, and FN, which are true positive, true

negative, false positive and false negative respectively.

5.3 The Experiments Composition
Our framework has two parts: composing features classifiers

and combining features classifiers. For each part, there are

alternative components. To conduct an experiment, we select

a component from each stage. All combinations of different

component from each stage are assessed.

Figure 3 illustrates the various configurations of all the

experiments where the path with dotted edges represents the

only experiment that are applied by ECO [1], while other

paths are our proposed solutions.

With each of the four different configurations, we randomly

choose 30 positive and 30 negative images as training data,

while the rest of the data is used as testing data. Negative

images are chosen from the background category. Each

experiment is carried out 5 times with different randomly

chosen training and testing images. The results are presented

in average accuracies with 95% confidence intervals.

Adaboost and Random Forest are applied to the same features

that are generated from GA stage. Moreover, all the

experiments are performed using the same seed of

randomization.

Figure 3: Different configurations of the experiments

A
p

p
ly

 P
o

o
li

n
g

? Yes

No

E
n

se
m

b
le

 A
lg

o
ri

th
m

Random Forest

Adaboost

MJCIS Vol.14 No.1 Jun 2018

40

5.4 Caltech-101 Dataset
We evaluate the performance of our proposed method on 9

different object categories existing in Caltech-101 [17]

dataset.

Figure 4 shows sample of the positive images that contain the

object for each category. The negative images that are used

against the positive images are picked from the Background

category. All training and testing images are converted to gray

color and resized to a resolution of 128 x 80 pixels.

Cellphone

Dragonfly

Guitar

Ibis

Ketch

Lamp

Laptop

Sunflower

Watch

Background

Figure 4: Grayscale images of Caltech datasets

5.5 Evaluating the Framework using

Caltech Datasets and Comparing with

other Methods

We implemented Adaboost algorithm as used in [1] which

creating a weighted sum strong model using several weak

classifiers. Random Forest is implemented using a class

"RTrees" in EmguCV wrapper [16]. There are two parameters

that affect Random Forest learning: maxDepth that specifies

the maximum possible depth of the tree, and maxIteration that

specifies the maximum number of generated trees. In pooling

we used the average operation.

Preparing input vectors for Random Forest learning

Each training/testing image is converted into input vector that

contains 0's and 1's. All the candidate features weak classifiers

that are found in GA stage classify each image and the

responses of the weak classifiers are concatenated to form an

input vector for each image. For positive image, when the

weak classifier classifies it, then the response is 1, otherwise

is 0. The opposite for negative image where the response is 0

if it's being classified, otherwise is 1.

In Table 3, the left side reports the results that are obtained by

contemporary methods. Original ECO [1] and two published

methods results in [18] are shown. The right side shows the

proposed three different methods configurations as illustrated

in Figure 3. Integrating the pooling operation with Adaboost

leads to heighten all the Adaboost results for all the datasets

except for Ketch dataset.

On the other hand, using Random Forest instead of Adaboost

returns high results in comparing to results of ECO [1]. The

maximum results are obtained when using pooling along with

the Random Forest which outperforms all the other methods.

Table 3. Accuracies (%) on binary classification tasks for 9 categories from Caltech-101

Other Methods The Proposed Methods

Dataset
Adaboost

(ECO) [1] SIFT+SVM

[18]
Sparse Code

[18]

Adaboost Random Forest

without Pooling Pooling without Pooling Pooling

Cellphone 85.5 ±6.9 68.7 ±5.1 87.9 ±4.2 93.5 ±4.6 92.8 ±4.6 95.2 ±4.1

Dragonfly 82.3 ±5.6 66.0 ±4.0 87.0 ±4.1 89.0 ±4.0 87.3 ±4.5 91.0 ±3.1

Guitar 76.7 ±8.4 70.0 ±2.4 80.9 ±5.1 81.3 ±8.6 83.3 ±8.3 88.0 ±6.1

Ibis 76.0 ±4.3 67.8 ±6.0 83.0 ±1.9 79.7 ±6.6 87.0 ±3.7 87.0 ±8.1

Ketch 91.7 ±3.9 82.2 ±0.8 89.2 ±2.4 91.0 ±3.8 95.3 ±2.7 96.3 ±1.7

Lamp 78.0 ±6.9 61.5 ±4.5 81.7 ±3.7 83.0 ±7.8 82.0 ±9.4 88.7 ±5.2

Laptop 81.0 ±7.1 73.5 ±5.3 87.9 ±2.2 91.7 ±4.9 84.7 ±8.2 96.0 ±3.5

Sunflower 93.0 ±5.7 76.0 ±2.5 92.9 ±2.5 98.0 ±0.9 95.3 ±4.0 99.3 ±1.1

Watch 80.7 ±8.0 90.1 ±1.0 91.3 ±2.0 88.0 ±6.5 87.7 ±4.8 92.3 ±4.3

MJCIS Vol.14 No.1 Jun 2018

41

Figure 5, depicts the impact of our proposed modifications,

pooling and Random Forest on the classifier predictive

performance using Receiver Operating Characteristic (ROC)

curve. We applied four experiments with different

configurations as illustrated in Figure 3 on "Laptop" dataset.

Each experiment is carried out 5 times (folds). In each fold,

true positive rates (TPR) are plotted against false positive

rates (FPR) for all the four experiments (classifiers). The

advantage of ROC curve is determining the optimal cut off

(threshold) value via analysis of the ROC curve itself.

The improvement in performance illustrates by raising the

classifier curve, which results in increasing the area under the

curve (AUC). AUC is computed for each classifier's curve.

The higher value of AUC, the more flexibility of the classifier

to tradeoff between TPR and FPR at different thresholds.

In Figure 5f, it shows the accuracy in each fold for all the

classifiers. Based on these results, Random Forest with

pooling outperforms Adaboost with pooling. On the other

hand, the later AUC curve is slightly greater than the former

AUC curve in Figure 5a, 5b ,5e. This implies that Adaboost

can reach Random Forest highest results but at different

'Threshold' level which differs from a testing set to another. In

our evaluation, we use the default threshold level "0" for

Adaboost and "0.5" for Random Forest for all experiments.

The accuracy of Random Forest when uses the default cut-off

is robust to different testing sets rather than Adaboost.

Each reported accuracy value in Table 3 is computed by

running the experiment five times then computing their

average. For example, evaluating the configuration of pooling

and Random Forest against "Laptop" dataset returns 96.0±3.5,

where the accuracies percentages of the five repeated

experiments are 96.7, 93.3, 100, 93.4 and 96.7 respectively.

Table 4 results are computed based on the accuracy

performance metric. Accuracy metric assigns an equal cost to

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
u
e
 P

o
si

ti
ve

 R
at

e

False Positive Rate

RF + Pooling (area = 0.994)

Adaboost + Pooling (area = 0.996)

RF (area = 0.892)

Adaboost (area = 0.916)

(a) Fold 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
u
e
 P

o
si

ti
ve

 R
at

e

False Positive Rate

RF + Pooling (area = 0.978)

Adaboost + Pooling (area = 0.983)

RF (area = 0.850)

Adaboost (area = 0.886)

(b) Fold 2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
u
e
 P

o
si

ti
ve

 R
at

e

False Positive Rate

RF + Pooling (area = 1.000)

Adaboost + Pooling (area = 0.992)

RF (area = 0.983)

Adaboost (area = 0.960)

(a) Fold 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
u
e
 P

o
si

ti
ve

 R
at

e

False Positive Rate

RF + Pooling (area = 0.974)

Adaboost + Pooling (area = 0.947)

RF (area = 0.861)

Adaboost (area = 0.881)

(d) Fold 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
u
e
 P

o
si

ti
ve

 R
at

e

False Positive Rate

RF + Pooling (area = 0.990)

Adaboost + Pooling (area = 0.997)

RF (area = 0.918)

Adaboost (area = 0.927)

(e) Fold 5

RF+Pooling Ada+Pooling RF Ada

Fold 1 96.7 95.0 83.3 83.3

Fold 2 93.3 91.7 80.0 73.3

Fold 3 100.0 93.3 95.0 86.7

Fold 4 93.3 85.0 78.3 76.7

Fold 5 96.7 93.3 86.7 85.0

Average 96.0 ±3.5 91.7 ±4.9 84.7 ±8.2 81.0 ±7.1
(f) Accuracies for all folds/classifiers

Figure 5: Effect of using pooling with Adaboost and Random Forest on classification performance using ROC

curves - tested on "Laptop" dataset

MJCIS Vol.14 No.1 Jun 2018

42

the rates of false positives and false negatives, these rates

formulate a trade-off. Based on the problem needs; for

example, if the requirement is not missing any true positive

cases regardless false positives, then we should use Recall

metric. Changing the 'Threshold' of the ensemble model can

affect all the metrics, so we can apply a user-defined threshold

based on the need.

Table 4 shows the computed performance metrics for one of

the repeated five times of an experiment with a configuration

of pooling and Random Forest. The experiment is applied on

the "Laptop" dataset. Threshold level (the majority of votes) is

computed as the ratio of the number of trees that votes for the

positive class and the total trees in the Random Forest model.

The highest accuracy is 96.7% obtained at threshold level of

0.5 with 93% recall, while if we need to have 100% recall,

then we should use a threshold level of 0.36.

6. Conclusion
In this paper, we proposed a framework that provides many

alternative designs of the evolutionary constructed features in

[1] by presenting two enhancements. First, we applied a

pooling operation on the data that is fed to the weak classifiers

to improve their predictive performance. Second, we utilized

Random Forest ensemble learning, which it is more powerful

than Adaboost. The highest accuracy is achieved with the use

of pooling with Random Forest. In addition, pooling operation

reduces the size of the processing data which dramatically

decreases the required time for building and evaluating the

final model in comparing to ECO [1]. Although we replaced

the genetic algorithm with simulated annealing which

provides no improvement, we plan to investigate other

optimization algorithms as a future work.

7. REFERENCES
[1] Lillywhite, K., et al., A feature construction method for

general object recognition. Pattern Recognition, 2013.

46(12): p. 3300-3314.

[2] Mitchell, M., An introduction to genetic algorithmsThe

MIT Press. Cambridge, MA, 1996.

[3] Freund, Y. and R.E. Schapire. Experiments with a new

boosting algorithm. in ICML. 1996.

[4] Lillywhite, K., B. Tippetts, and D.-J. Lee, Self-tuned

Evolution-COnstructed features for general object

 recognition. Pattern Recognition, 2012. 45(1): p. 241-

251.

[5] Bulitko, V., et al. Adaptive image interpretation: A

spectrum of machine learning problems. in Proceedings

of the ICML Workshop on The Continuum from Labeled

 to Unlabeled Data in Machine Learning and Data

Mining. 2003. Citeseer.

[6] Draper, B.A., U. Ahlrichs, and D. Paulus. Adapting

object recognition across domains: A demonstration. in

 International Conference on Computer Vision Systems.

2001. Springer.

[7] Lin, Y. and B. Bhanu, Evolutionary feature synthesis for

object recognition. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and

Reviews), 2005. 35(2): p. 156-171.

[8] Krawiec, K. and B. Bhanu. Coevolution and linear

genetic programming for visual learning. in Genetic and

Evolutionary Computation—GECCO 2003. 2003.

Springer.

[9] Krawiec, K. and B. Bhanu. Coevolutionary computation

for synthesis of recognition systems. in Computer Vision

and Pattern Recognition Workshop, 2003. CVPRW'03.

Conference on. 2003. IEEE.

[10] Krawiec, K. and B. Bhanu, Visual learning by

coevolutionary feature synthesis. Systems, Man, and

Cybernetics, Part B: Cybernetics, IEEE Transactions on,

2005. 35(3): p. 409-425.

[11] Krawiec, K. and B. Bhanu, Visual learning by

evolutionary and coevolutionary feature synthesis.

Evolutionary Computation, IEEE Transactions on, 2007.

11(5): p. 635-650.

[12] Krawiec, K. and B. Bhanu, Visual Learning by

Evolutionary Feature Synthesis. IEEE Transactions on

Evolutionary Computation, 2007. 11(5): p. 635 - 650

[13] Lin, Y. and B. Bhanu. Learning features for object

recognition. in Genetic and Evolutionary

Computation—GECCO 2003. 2003. Springer.

[14] Schapire, R.E., Explaining adaboost, in Empirical

inference. 2013, Springer. p. 37-52.

[15] Breiman, L., Random forests. Machine learning, 2001.

45(1): p. 5-32.

[16] Emgu. Emgu CV is a cross platform .Net wrapper to the

OpenCV. April 2016; Available from:

http://www.emgu.com/wiki/index.php/Main_Page.

[17] Fei-Fei, L., R. Fergus, and P. Perona, Learning

generative visual models from few training examples:

An incremental bayesian approach tested on 101 object

categories. Computer vision and Image understanding,

2007. 106(1): p. 59-70.

[18] Hong, Y., et al., Unsupervised learning of compositional

sparse code for natural image representation. Quarterly

of Applied Mathematics, 2013. 72: p. 373-406.

Table 4: Performance measurements at various thresholds of pooling and Random Forest on "Laptop" dataset
T

h
re

sh
o

l

d

T
ru

e

P
o

si
ti

v
e

F
a

ls
e

N
eg

a
ti

v
e

T
ru

e

N
eg

a
ti

v
e

F
a

ls
e

P
o

si
ti

v
e

R
ec

a
ll

S
p

ec
if

ic
it

y

P
re

ci
si

o
n

N
eg

a
ti

v
e

P
re

d
ic

ti
v

e
V

a
lu

e

F
a

ls
e

P
o

si
ti

v
e

R
a

te

F
a

ls
e

N
eg

a
ti

v
e

R
a

te

A
cc

u
ra

cy

0.61 23 7 30 0 0.77 1.00 1.00 0.81 0.00 0.23 0.883

0.57 25 5 30 0 0.83 1.00 1.00 0.86 0.00 0.17 0.917

0.54 26 4 30 0 0.87 1.00 1.00 0.88 0.00 0.13 0.933

0.50 28 2 30 0 0.93 1.00 1.00 0.94 0.00 0.07 0.967

0.45 28 2 29 1 0.93 0.97 0.97 0.94 0.03 0.07 0.950

0.36 30 0 26 4 1.00 0.87 0.88 1.00 0.13 0.00 0.933

Table 4: Performance measurements at various thresholds of pooling and Random Forest on "Laptop" dataset
T

h
re

sh
o

l

d

T
ru

e

P
o

si
ti

v
e

F
a

ls
e

N
eg

a
ti

v
e

T
ru

e

N
eg

a
ti

v
e

F
a

ls
e

P
o

si
ti

v
e

R
ec

a
ll

S
p

ec
if

ic
it

y

P
re

ci
si

o
n

N
eg

a
ti

v
e

P
re

d
ic

ti
v

e
V

a
lu

e

F
a

ls
e

P
o

si
ti

v
e

R
a

te

F
a

ls
e

N
eg

a
ti

v
e

R
a

te

A
cc

u
ra

cy

0.61 23 7 30 0 0.77 1.00 1.00 0.81 0.00 0.23 0.883

0.57 25 5 30 0 0.83 1.00 1.00 0.86 0.00 0.17 0.917

0.54 26 4 30 0 0.87 1.00 1.00 0.88 0.00 0.13 0.933

0.50 28 2 30 0 0.93 1.00 1.00 0.94 0.00 0.07 0.967

0.45 28 2 29 1 0.93 0.97 0.97 0.94 0.03 0.07 0.950

0.36 30 0 26 4 1.00 0.87 0.88 1.00 0.13 0.00 0.933

