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ABSTRACT 

In this paper, we recognize objects within images by 

collecting information from a large number of random-size 

patches of the image. The different backgrounds accompany 

the foreground object demand to have a learning system to 

identify each patch as belonging to the object category or to 

the background category. We strengthen a recent method 

called Evolution-COnstructed (ECO), which is based on the 

ensemble learning approach which combines several weak 

classifier. The improvement is relying on decreasing the 

overfitting problem. Two different improving ideas are 

proposed: 1) Pooling operation, which is applied to the weak 

classifiers data, 2) Random Forest algorithm, which combines 

the weak classifiers outcomes. Experimental results are 

reported for classification of 9 categories of Caltech-101 data 

sets and proved that our modifications boost the performance 

over the base method and other existing methods. 

Keywords 

Object recognition, ECO features, Adaboost, Random Forest, 

Pooling, Genetic Algorithm. 

1. INTRODUCTION 
The choice of data representation or features has a great 

impact on the accuracy of machine learning methods. So, 

many efforts had been used in designing preprocessing 

pipelines and data transformations that resulted in a 

representation of the data to support effective machine 

learning. Feature engineering is the process of using the 

domain knowledge of the data to create features. This process 

is important but it is labor intensive and shows a weakness of 

the current learning algorithms, as they lack the ability to 

mine the discriminative information from the data. 

Building learning algorithms that are less dependent on 

feature engineering is highly desired to expand the usage of 

machine learning. Artificial Intelligence (AI) methods are 

used to learn representation of data, as they can identify and 

sort out the suppressed explanatory factors unseen in the 

observed low-level data. Adequate representation of the data 

makes it easier to extract useful information when building 

supervised classifiers. 

Our proposed recognition approach revisits a method called 

ECO [1]. It's identifying the remarkable patches of the objects 

in the images. For each patch, its data representation is 

controlled by a Genetic Algorithm (GA) [2] which selects the 

optimal sequence of transformations (filters). Each patch's 

discriminative ability is assessed by a weak classifier. A 

number of candidate patches are collected and combined with 

Adaboost [3] algorithm to build strong classifier. 

Overfitting is one of the biggest causes for poor performance 

of machine learning algorithms. So, this paper handles the 

issue of overfitting of the learning algorithm through 

proposing two potential places for enhancements of ECO. 

First, we enhance the predictive performance of the weak 

classifier by injecting a pooling operation (which is resizing 

the original image to half size) after applying each filter in the 

sequence obtained by GA. Second, we replace the boosting 

algorithm (Adaboost) in [1] by a more powerful bagging 

ensemble learning algorithm called Random Forest. 

 

The paper is structured as follows: the next section introduces 

some related works. Section 3 describes ECO [1, 4]. Section 4 

discusses the importance of the enhancements. Section 5 

provides the experimental results obtained by applying the 

proposed framework on the Caltech 101 datasets. Finally, 

conclusion and future work are provided in Section 6. 

2. RELATED WORKS 
Most of the current recognition systems are based on specific 

procedures for extracting the relevant features. As a result; 

these domain-specific systems are not working well with all 

real classification tasks. Building a general method for 

recognition requires learning how to pick up the useful 

features from the raw images as the training images. Bulitko 

et al. [5] created automated image interpretation to recognize 

forest inventorization areas using Markov processes; the same 

technique is used by Draper et al. [6] to identify common 

household objects. Lin et al. [7] synthesized effective 

composite features in recognizing objects in radar modality 

images using coevolutionary genetic programming. Krawiec 

and Bhanu [8-13] used an evolutionary algorithm to find 

series of transformations that are used in composing the 

features. New features are deduced via utilizing operators 

such as (add, sub, max) on extracted features such as various 

moments and other pixel statistics of the image. 
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3. RECOGNITION ALGORITHM 

OVERVIEW 
This section gives a summarized overview of the ECO 

algorithm. ECO method consists of two stages. First stage is 

used to generate candidate features in which each feature has 

its own classifier. These classifiers are joined together in the 

second stage using Adaboost algorithm to construct a strong 

classifier. 

 

Figure 1 shows an example of three ECO features. Every 

patch is selected randomly from the image, which is defined 

by the coordinates x1, y1, x2, y2. Patches can be overlapped to 

each other. Selective sequence of transformations is picked by 

a customizing GA and is applied on the patch. Each feature 

has its own classifier, which is considered as a weak classifier 

represented by a single layer neural network called 

perceptron. The final result of the classification is achieved by 

selecting the relevant features and combining their perceptron 

classifiers α using Adaboost model. 

Figure 2: Examples of crossover and mutation of ECO 

feature 

In the customizing GA, a GA chromosome refers to a feature. 

At initialization, each chromosome has a random patch of the 

image and can have between 2 and 8 random transformations. 

The training of the feature consists of applying sequentially its 

transformations to an image region of interest that is defined 

by the feature's patch in all training images. The output of last 

transformation is used in training the feature’s perceptron. 

Once all features have been processed, genetic operator's 

crossover and mutations are performed to determine the next 

generation as depicted in Figure 2.Tournament selection is 

used to determine the features for crossover operator. 

 

Each ECO feature is considered as a weak classifier. The 

quality of this classifier is computed with the fitness function 

after training the feature and its perceptron is tested with the 

testing set of images. The fitness score is in the range of 

[0,1000] as shown in Equation 1 based on the following 

terms: 

Variables kept in the perceptron class are as follows: 

 tp : number of positive images classified correctly 

 fn : number of positive images classified incorrectly 

 tn : number of negative images classified correctly 

 fp : number of negative images classified incorrectly 

 

                (1) 

In Adaboost, the output of the weak classifiers is combined 

into a weighted sum that represents the final output of the 

boosted strong classifier. 

 

4. THE PROPOSED MODIFICATIONS 

of ECO 
ECO [1] works accurately on the datasets where the images 

are cropped around the object of interest. This guarantees, the 

same patch raw data to be nearly consistent across all images, 

therefore simplifies the classifier task. On the contrary, 

object's shape variation in the dataset images makes the same 

patch inconsistent. As a result, ECO performance degrades 

when relies on these unremarkable patches as features. 

 

The power of the ensemble strong model depends on the weak 

classifiers. Therefore, enhancing the quality of the weak 

classifier increases the final prediction by the model. The 

proposed additions focus on improving the following 

classifiers: 

4.1 Weak Classifier 
ECO [1] employs a weak linear classifier called perceptron 

which is a single-layer neural network. Perceptron only 

classifies linearly separable sets of vectors. This means that, if 

the vectors are not linearly separable, then the classifier fails 

to discriminate them correctly. 

Learning the classifier with an input vector of much data 

makes it prone to overfitting. To address this issue, a simple 

approach is used to aggregate statistics of these raw data at 

various locations. That gains a spatial robustness to object 

translation. For example, the maximum, the minimum or the 

average value is computed over a patch of the image. These 

summary statistics are much lower in dimension (compared to 

the raw data input vector) and can also improve results (less 

overfitting). This operation is called "pooling". 

The pooling operation is injected after each transformation 

and hence it downsizes the patch size for the next 

transformation in the sequence. 

 

4.2 Strong Classifier 
ECO [1] utilizes Adaboost ensemble algorithm. AdaBoost 

works by building a highly accurate strong classifier by 

combining many relatively weak and inaccurate classifiers. It 

works iteratively on weak classifiers and gives more weight to 

x1,y1 

x2,y2 

 
P1 

 T1 T2 
  

Image patches Transformations (Filters) Perceptrons Adaboost classifier 

α1 

 

α2 

 

αX 

Figure 1: ECO features and their perceptrons are combined by AdaBoost to classify an image [1] 
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the misclassified classifiers in next iteration. The final 

classification is done after combining prediction of each 

classifier. Adaboost works perfectly on weak classifiers that 

have high bias and low variance. Adaboost can be sensitive to 

noisy data and outliers which degrade it's predictive 

performance [14].  

We utilize an alternative ensemble learning algorithm called 

Random Forest [15]. It's based on generating many trees and 

the final decision based on the majority of votes of each tree. 

Random Forest works perfectly on overfitting models that 

have low bias and high variance. 

 

5. THE EXPERIMENTS AND THEIR 

RESULTS 
The proposed framework is implemented within Microsoft 

visual studio C#. GA and Adaboost are customized coded, 

while Random Forest, perceptron and images transformations 

are  called from EmguCV v2.4 [16], which is a .NET wrapper 

of OpenCV. The proposed system runs on an Intel i7 2.20GHz 

Processor with 8 GB RAM. 

 

5.1 Evaluation Settings 
Table 1 lists the parameters of GA used in our recognition 

framework. The number of GA individuals is set to 100 while 

the algorithm keeps creating candidate individuals (features) 

along 10 generations. The length of each individual is in the 

range of [2 to 8]. Crossover operator type is 'cut and splice' 

which results in different lengths of the offspring individuals. 

To overcome a premature convergence of GA, the lower 

fitness-value individuals are given a chance to contribute as 

parents to generate the new offsprings. Individual selection is 

fulfilled using tournament selection by taking the individual 

with higher fitness-value of randomly two individuals (size of 

tournament pool). 

 

Table 1. Configuration setting of the parameters of the GA 

Generations count 10 

Population size 100 

Chromosome's genes length 8 

Selection method Tournament selection 

Size of tournament pool 2 

Operator type of crossover Cut and splice 

Crossover ratio 90% 

Mutation ratio 0.05% 

 

Table 2. List of image transformations with their number 

of parameters in column named Θ 

 

Image transformation Θ Image transformation Θ 

Adaptive Threshold 3 Harris Corner 3 

Canny Edge 3 Histogram 

Equalization 

0 

Census Transformation 1 Integral 

Transformation 

0 

Contrast Limited 

Adaptive Histogram 

2 Laplacian Edge 1 

Distance 

Transformation 

2 Log 0 

Dilate 1 Median Blur 1 

Difference of Gaussian 2 Rank Transformation 1 

Erode 1 Sobel 3 

Gaussian Blur 1 Square Root 0 

Gradient 1 -- -- 

 

In our evaluation, we use 19 image transformations in 

generating ECO features. For every transformation, the 

number of parameters is specified as stated in Table 2; for 

example, "Adaptive Threshold" transformation has three 

parameters: 1) Adaptive type: GAUSSIAN or MEAN. 2) 

Threshold type: BINARY or BINARY_INV. 3) Block size. 

 

5.2 Evaluation Metrics 
Several measures are used in evaluating the efficiency of the 

recognition system. The following metrics are used: 

 

    (2) 

   (3)  

    (4) 

  (5) 

   (6) 

   (7) 

   (8) 

 

The results of the above measurements are expressed as 

percentages. These metrics calculations depend on the basic 

terms: TP, TN, FP, and FN, which are true positive, true 

negative, false positive and false negative respectively. 

 

5.3 The Experiments Composition 
Our framework has two parts: composing features classifiers 

and combining features classifiers. For each part, there are 

alternative components. To conduct an experiment, we select 

a component from each stage. All combinations of different 

component from each stage are assessed. 

Figure 3 illustrates the various configurations of all the 

experiments where the path with dotted edges represents the 

only experiment that are applied by ECO [1], while other 

paths are our proposed solutions. 

With each of the four different configurations, we randomly 

choose 30 positive and 30 negative images as training data, 

while the rest of the data is used as testing data. Negative 

images are chosen from the background category. Each 

experiment is carried out 5 times with different randomly 

chosen training and testing images. The results are presented 

in average accuracies with 95% confidence intervals. 

Adaboost and Random Forest are applied to the same features 

that are generated from GA stage. Moreover, all the 

experiments are performed using the same seed of 

randomization. 

Figure 3: Different configurations of the experiments 
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5.4 Caltech-101 Dataset 
We evaluate the performance of our proposed method on 9 

different object categories existing in Caltech-101 [17] 

dataset. 

 

Figure 4 shows sample of the positive images that contain the 

object for each category. The negative images that are used 

against the positive images are picked from the Background 

category. All training and testing images are converted to gray 

color and resized to a resolution of 128 x 80 pixels. 

Cellphone 

 

Dragonfly 

 

Guitar 

 

Ibis 

 

Ketch 

 

Lamp 

 

Laptop 

 

Sunflower 

 

Watch 

 

Background 

 
 

Figure 4: Grayscale images of Caltech datasets 

5.5 Evaluating the Framework using 

Caltech Datasets and Comparing with 

other Methods 

 

We implemented Adaboost algorithm as used in [1] which 

creating a weighted sum strong model using several weak 

classifiers. Random Forest is implemented using a class 

"RTrees" in EmguCV wrapper [16]. There are two parameters 

that affect Random Forest learning: maxDepth that specifies 

the maximum possible depth of the tree, and maxIteration that 

specifies the maximum number of generated trees. In pooling 

we used the average operation. 

 

Preparing input vectors for Random Forest learning 

Each training/testing image is converted into input vector that 

contains 0's and 1's. All the candidate features weak classifiers 

that are found in GA stage classify each image and the 

responses of the weak classifiers are concatenated to form an 

input vector for each image. For positive image, when the 

weak classifier classifies it, then the response is 1, otherwise 

is 0. The opposite for negative image where the response is 0 

if it's being classified, otherwise is 1. 

 

In Table 3, the left side reports the results that are obtained by 

contemporary methods. Original ECO [1] and two published 

methods results in [18] are shown. The right side shows the 

proposed three different methods configurations as illustrated 

in Figure 3. Integrating the pooling operation with Adaboost 

leads to heighten all the Adaboost results for all the datasets 

except for Ketch dataset. 

On the other hand, using Random Forest instead of Adaboost 

returns high results in comparing to results of ECO [1]. The 

maximum results are obtained when using pooling along with 

the Random Forest which outperforms all the other methods. 

 

 

 

Table 3. Accuracies (%) on binary classification tasks for 9 categories from Caltech-101 

 

 
Other Methods The Proposed Methods 

Dataset 
Adaboost 

(ECO) [1] SIFT+SVM 

[18] 
Sparse Code 

[18] 

Adaboost Random Forest 

 
without Pooling Pooling without Pooling Pooling 

Cellphone 85.5 ±6.9 68.7 ±5.1 87.9 ±4.2 93.5 ±4.6 92.8 ±4.6 95.2 ±4.1 

Dragonfly 82.3 ±5.6 66.0 ±4.0 87.0 ±4.1 89.0 ±4.0 87.3 ±4.5 91.0 ±3.1 

Guitar 76.7 ±8.4 70.0 ±2.4 80.9 ±5.1 81.3 ±8.6 83.3 ±8.3 88.0 ±6.1 

Ibis 76.0 ±4.3 67.8 ±6.0 83.0 ±1.9 79.7 ±6.6 87.0 ±3.7 87.0 ±8.1 

Ketch 91.7 ±3.9 82.2 ±0.8 89.2 ±2.4 91.0 ±3.8 95.3 ±2.7 96.3 ±1.7 

Lamp 78.0 ±6.9 61.5 ±4.5 81.7 ±3.7 83.0 ±7.8 82.0 ±9.4 88.7 ±5.2 

Laptop 81.0 ±7.1 73.5 ±5.3 87.9 ±2.2 91.7 ±4.9 84.7 ±8.2 96.0 ±3.5 

Sunflower 93.0 ±5.7 76.0 ±2.5 92.9 ±2.5 98.0 ±0.9 95.3 ±4.0 99.3 ±1.1 

Watch 80.7 ±8.0 90.1 ±1.0 91.3 ±2.0 88.0 ±6.5 87.7 ±4.8 92.3 ±4.3 
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Figure 5, depicts the impact of our proposed modifications, 

pooling and Random Forest on the classifier predictive 

performance using Receiver Operating Characteristic (ROC) 

curve. We applied four experiments with different 

configurations as illustrated in Figure 3 on "Laptop" dataset. 

Each experiment is carried out 5 times (folds). In each fold, 

true positive rates (TPR) are plotted against false positive 

rates (FPR) for all the four experiments (classifiers). The 

advantage of ROC curve is determining the optimal cut off 

(threshold) value via analysis of the ROC curve itself. 

The improvement in performance illustrates by raising the 

classifier curve, which results in increasing the area under the 

curve (AUC). AUC is computed for each classifier's curve. 

The higher value of AUC, the more flexibility of the classifier 

to tradeoff between TPR and FPR at different thresholds. 

 

In Figure 5f, it shows the accuracy in each fold for all the 

classifiers. Based on these results, Random Forest with 

pooling outperforms Adaboost with pooling. On the other 

hand, the later AUC curve is slightly greater than the former 

AUC curve in Figure 5a, 5b ,5e. This implies that Adaboost 

can reach Random Forest highest results but at different 

'Threshold' level which differs from a testing set to another. In 

our evaluation, we use the default threshold level "0" for 

Adaboost and "0.5" for Random Forest for all experiments.  

 

The accuracy of Random Forest when uses the default cut-off 

is robust to different testing sets rather than Adaboost. 

Each reported accuracy value in Table 3 is computed by 

running the experiment five times then computing their  

 

average. For example, evaluating the configuration of pooling 

and Random Forest against "Laptop" dataset returns 96.0±3.5, 

where the accuracies percentages of the five repeated 

experiments are 96.7, 93.3, 100, 93.4 and 96.7 respectively. 

 

Table 4 results are computed based on the accuracy 

performance metric. Accuracy metric assigns an equal cost to  
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(a) Fold 1 
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(b) Fold 2 
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(a) Fold 3 
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(d) Fold 4 
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(e) Fold 5 

RF+Pooling Ada+Pooling RF Ada

Fold 1 96.7 95.0 83.3 83.3

Fold 2 93.3 91.7 80.0 73.3

Fold 3 100.0 93.3 95.0 86.7

Fold 4 93.3 85.0 78.3 76.7

Fold 5 96.7 93.3 86.7 85.0

Average 96.0 ±3.5 91.7 ±4.9 84.7 ±8.2 81.0 ±7.1  
(f) Accuracies for all folds/classifiers 

 

Figure 5: Effect of using pooling with Adaboost and Random Forest on classification performance using ROC 

curves - tested on "Laptop" dataset 
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the rates of false positives and false negatives, these rates 

formulate a trade-off. Based on the problem needs; for 

example, if the requirement is not missing any true positive 

cases regardless false positives, then we should use Recall 

metric. Changing the 'Threshold' of the ensemble model can 

affect all the metrics, so we can apply a user-defined threshold 

based on the need. 
 

Table 4 shows the computed performance metrics for one of 

the repeated five times of an experiment with a configuration 

of pooling and Random Forest. The experiment is applied on 

the "Laptop" dataset. Threshold level (the majority of votes) is 

computed as the ratio of the number of trees that votes for the  

positive class and the total trees in the Random Forest model. 

The highest accuracy is 96.7% obtained at threshold level of 

0.5 with 93% recall, while if we need to have 100% recall, 

then we should use a threshold level of 0.36. 

6. Conclusion 
In this paper, we proposed a framework that provides many 

alternative designs of the evolutionary constructed features in 

[1] by presenting two enhancements. First, we applied a 

pooling operation on the data that is fed to the weak classifiers 

to improve their predictive performance. Second, we utilized 

Random Forest ensemble learning, which it is more powerful 

than Adaboost. The highest accuracy is achieved with the use 

of pooling with Random Forest. In addition, pooling operation 

reduces the size of the processing data which dramatically 

decreases the required time for building and evaluating the 

final model in comparing to ECO [1]. Although we replaced 

the genetic algorithm with simulated annealing which 

provides no improvement, we plan to investigate other 

optimization algorithms as a future work. 

7. REFERENCES 
[1] Lillywhite, K., et al., A feature construction method for 

general object recognition. Pattern Recognition, 2013. 

46(12): p. 3300-3314. 

[2] Mitchell, M., An introduction to genetic algorithmsThe 

MIT Press. Cambridge, MA, 1996. 

[3] Freund, Y. and R.E. Schapire. Experiments with a new 

boosting algorithm. in ICML. 1996. 

[4] Lillywhite, K., B. Tippetts, and D.-J. Lee, Self-tuned 

Evolution-COnstructed features for general object 

       recognition. Pattern Recognition, 2012. 45(1): p. 241-

251. 

[5] Bulitko, V., et al. Adaptive image interpretation: A 

spectrum of machine learning problems. in Proceedings 

of the ICML Workshop on The Continuum from Labeled  

         to Unlabeled Data in Machine Learning and Data 

Mining. 2003. Citeseer. 

[6] Draper, B.A., U. Ahlrichs, and D. Paulus. Adapting 

object recognition across domains: A demonstration. in  

 

         International Conference on Computer Vision Systems. 

2001. Springer. 

[7] Lin, Y. and B. Bhanu, Evolutionary feature synthesis for 

object recognition. IEEE Transactions on Systems, 

Man, and Cybernetics, Part C (Applications and 

Reviews), 2005. 35(2): p. 156-171. 

[8] Krawiec, K. and B. Bhanu. Coevolution and linear 

genetic programming for visual learning. in Genetic and 

Evolutionary Computation—GECCO 2003. 2003. 

Springer. 

[9] Krawiec, K. and B. Bhanu. Coevolutionary computation 

for synthesis of recognition systems. in Computer Vision 

and Pattern Recognition Workshop, 2003. CVPRW'03. 

Conference on. 2003. IEEE. 

[10] Krawiec, K. and B. Bhanu, Visual learning by 

coevolutionary feature synthesis. Systems, Man, and 

Cybernetics, Part B: Cybernetics, IEEE Transactions on, 

2005. 35(3): p. 409-425. 

[11] Krawiec, K. and B. Bhanu, Visual learning by 

evolutionary and coevolutionary feature synthesis. 

Evolutionary Computation, IEEE Transactions on, 2007. 

11(5): p. 635-650. 

[12] Krawiec, K. and B. Bhanu, Visual Learning by 

Evolutionary Feature Synthesis. IEEE Transactions on 

Evolutionary Computation, 2007. 11(5): p. 635 - 650  

[13] Lin, Y. and B. Bhanu. Learning features for object 

recognition. in Genetic and Evolutionary 

Computation—GECCO 2003. 2003. Springer. 

[14] Schapire, R.E., Explaining adaboost, in Empirical 

inference. 2013, Springer. p. 37-52. 

[15] Breiman, L., Random forests. Machine learning, 2001. 

45(1): p. 5-32. 

[16] Emgu. Emgu CV is a cross platform .Net wrapper to the 

OpenCV. April 2016; Available from: 

http://www.emgu.com/wiki/index.php/Main_Page. 

[17] Fei-Fei, L., R. Fergus, and P. Perona, Learning 

generative visual models from few training examples: 

An incremental bayesian approach tested on 101 object 

categories. Computer vision and Image understanding, 

2007. 106(1): p. 59-70. 

[18] Hong, Y., et al., Unsupervised learning of compositional 

sparse code for natural image representation. Quarterly 

of Applied Mathematics, 2013. 72: p. 373-406. 

 

Table 4: Performance measurements at various thresholds of pooling and Random Forest on "Laptop" dataset 
T

h
re

sh
o

l

d
 

T
ru

e 

P
o

si
ti

v
e 

F
a

ls
e 

N
eg

a
ti

v
e 

T
ru

e 

N
eg

a
ti

v
e 

F
a

ls
e 

P
o

si
ti

v
e 

R
ec

a
ll

 

S
p

ec
if

ic
it

y
 

P
re

ci
si

o
n

 

N
eg

a
ti

v
e 

P
re

d
ic

ti
v

e 
V

a
lu

e 

F
a

ls
e 

P
o

si
ti

v
e 

R
a

te
 

F
a

ls
e 

N
eg

a
ti

v
e 

R
a

te
 

A
cc

u
ra

cy
 

0.61 23 7 30 0 0.77 1.00 1.00 0.81 0.00 0.23 0.883 

0.57 25 5 30 0 0.83 1.00 1.00 0.86 0.00 0.17 0.917 

0.54 26 4 30 0 0.87 1.00 1.00 0.88 0.00 0.13 0.933 

0.50 28 2 30 0 0.93 1.00 1.00 0.94 0.00 0.07 0.967 

0.45 28 2 29 1 0.93 0.97 0.97 0.94 0.03 0.07 0.950 

0.36 30 0 26 4 1.00 0.87 0.88 1.00 0.13 0.00 0.933 

Table 4: Performance measurements at various thresholds of pooling and Random Forest on "Laptop" dataset 
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0.61 23 7 30 0 0.77 1.00 1.00 0.81 0.00 0.23 0.883 

0.57 25 5 30 0 0.83 1.00 1.00 0.86 0.00 0.17 0.917 

0.54 26 4 30 0 0.87 1.00 1.00 0.88 0.00 0.13 0.933 

0.50 28 2 30 0 0.93 1.00 1.00 0.94 0.00 0.07 0.967 

0.45 28 2 29 1 0.93 0.97 0.97 0.94 0.03 0.07 0.950 

0.36 30 0 26 4 1.00 0.87 0.88 1.00 0.13 0.00 0.933 


