
MJCIS Vol.14.No.1 Jun 2018

Mansoura Journal of Computers and Information Scinces

61

Enhanced Algorithms for Counting Rectangles in Large

Bipartite Graphs using MapReduce

Ahmed T. Sharafeldeen
Faculty of computers and

information systems, C.S dep.
Mansoura University, Egypt

ahmed.taher@mans.edu.eg

Mohammed F. Alrahmawy
Faculty of computers and

information systems, C.S dep.
Mansoura University, Egypt

mrahmawy@mans.edu.eg

Samir Elmougy
Faculty of computers and

information systems, C.S dep.
Mansoura University, Egypt

mougy@mans.edu.eg

ABSTRACT

Rectangles for bipartite graphs are like triangles for unipartite

graphs as both represent the smallest cycles in such graphs.

Rectangle Counting is considered an important task in many

bipartite network analysis metrics and is considered the core

of computing such metrics, especially in cluster coefficient,

bitruss, etc. However, there are few efficient algorithms to

deal with this problem, especially in a large bipartite graph. In

this work, we use MapReduce to enhance an algorithm to

count rectangles in a large bipartite graph. The results show

that our proposed MapReduce-based algorithm gives a better

execution time than the existing algorithms, especially when it

is applied in very large bipartite graphs.

Keywords

Rectangle Counting; Bipartite Graph; MapReduce; Large-

Scale Graph Analysis.

1. INTRODUCTION
In the last few years, the amount of bipartite graphs has

increased noticeably. A bipartite graph is two disjoint sets of

nodes where the nodes in the first set are connected only to

the nodes in the second set. Because of the huge amount of

computations required to process such graphs, sequential

algorithms can’t be used to deal with such graphs due to the

memory and CPU restrictions. Hence, developing parallel

algorithms can be used to overcome this problem. Therefore,

there is a need for new or enhanced algorithms based on

parallel execution models such as MapReduce [1]. A bipartite

network analysis uses rectangles counting as the core of

computing such metrics; for example, computing cluster

coefficient, bitruss, etc.

In this paper, we first present an enhanced version of the

sequential algorithm presented in [2] to count the number of

rectangles in bipartite graphs. Then, we use a parallelized

version of this enhanced algorithm to develop a novel

MapReduce-based algorithm in the case of large bipartite

graphs. This proposed MapReduce-based algorithm divides a

bipartite graph into sub-graphs following by counting

rectangles in each sub-graph, where the rectangles in the sub-

graphs are categorized into two different categories.

We evaluate our proposed MapReduce-based algorithm on a

local machine then on a cluster of seventeen machines using

several datasets of different sizes.

Section 2 discusses the related work. Section 3 explains how

MapReduce model works. Section 4 defines the problem of

rectangle counting. Section 5 presents our proposed

algorithms. Section 6 shows and discusses experimental

results. Finally, Section 7 discusses the conclusions of the

paper and future work.

2. Related Work
The problem of counting the number of rectangles contained

in bipartite graphs is somehow similar to the famous problem

of counting triangles in unipartite graphs, as both problems

aim to get the smallest cycles in such graphs. However, there

are a relatively few research works for counting rectangles in

a bipartite graph. Wang et al. [2] developed four algorithms in

which two of them are sequential algorithms (In-Memory

Rectangle Counting (IM-Rect) and I/O-Efficient Rectangle

Counting (I/O-Rect)) and the others are parallel based

algorithms (MapReduce Rectangle Counting (MR-Rect) and

Partition-based parallel algorithm (PAR-Rect) based on

Messaging Passing Interface (MPI)). Their experimental

results showed that PAR-Rect is most efficient among the

other three algorithms to count rectangles in a huge amount of

bipartite graph. Some other works searches for rectangles in

large graphs to solve bitruss decomposition problem, e.g. Peel

algorithm proposed by Zou [3] in which it is similar to truss

decomposition problem, with the difference that bitruss is

based on rectangle while truss is based on triangle. This

means that k-bitruss is a sub-graph of a bipartite graph in

which each edge in the sub-graph contains rectangles.

3. MapReduce Model
MapReduce is considered one of the most popular parallel and

distributed models in the recent years [1]. Hadoop is an open

source framework, and it is the most common framework for

implementing MapReduce model [4]. MapReduce consists of

three steps: map, shuffle and reduce. Map step is scripted by

the programmer, and it is responsible for reading the input

file, where each map reads only one line from the file to

process the read data. This read data is divided into small

chunks and these chunks are sent to the next step. The input

and the output of the map step is represented as .
The shuffle step aggregates the output chunks of the map step

into groups, where each group contains the values that have

the same key, then the results of aggregation step are sorted

MJCIS Vol.14 No.1 Jun 2018

62

by their keys and the results are sent to reduce step. The

shuffle step is usually done automatically by the framework

implementing the MapReduce model. In the reduce step, each

reduce instance takes one group of the shuffle as input and

apply the required processing on it, and finally the results are

saved. Figure 1 shows how MapReduce model works.

4. Problem Definition
Table 1 shows the main terms used in this paper. Suppose that

 () is an undirected bipartite graph where is a set of

its left vertices, is a set of its right vertices (i.e.),

 is a set of edges between the left and the right vertices,

 | |, and | |. Also, let () * () + is a set

of the neighbors of a vertex , and let () | ()| is the

degree of vertex .

A rectangle can be defined as the smallest cycle exists in

bipartite graph, denoted by () such that and

 , and it contains the following edges: () ()
() () . An example of bipartite graph is shown in

Figure 2. In this example * +,
* +, and *() () () ()
() () () () () () ()
() () () () () ()}. The number

of the rectangles founded in is five: (),

 (),() () ()

We focus in this paper on the problem of identifying and

counting rectangles in a bipartite graph.

5. The Proposed Algorithms
We proposed two algorithms to count the number of

rectangles in a bipartite graph. The first one is a modified

version of a sequential algorithm called In-Memory algorithm,

denoted by IM-Rect [2]. The second algorithm is based on a

MapReduce model which counts the number of rectangles in a

large bipartite graph. The two algorithms are presented in

Section 5.1 and Section 5.2, respectively.

5.1 The First Algorithm
In IM-Rect [2], each rectangle has two left vertices in , so it

counts the same rectangle twice from those two left vertices of

the rectangle. For example, when applying IM-Rect on the

graph in Figure 2, the two rectangles () and

 () are identified by IM-Rect, although they refer

to the same rectangle. To overcome this problem, we present

In-Memory++ algorithm (IM++RECT) which is an enhanced

version of the IM-Rect in [2] and its pseudocode is in listing

Algorithm 1.

Table 1. Notations used in this paper

Notation Description

 () Undirected bipartite graph

 A set of left vertices in bipartite graph

 A set of Right vertices in bipartite graph

A set of edges between left and right vertices in

bipartite graph

 Number of left vertices

 Number of edges

() Is an edge, where and

 () Set of neighbors of a vertex

 () () ()

 ()
Number of neighbors of a vertex i.e. ()

| ()|

 () | ()|

 () Set of left vertices away two edges from

 Number of partitions

 () Partition number of left vertex

 () Rectangle; () () () ()

 ()
1-partition bipartite sub-graph with left

vertices, right vertices and edges

 ()
2-partition bipartite sub-graph with ,

 and , where

 Is a set of key and value

Fig 1: MapReduce Example

Input Output/Input Output/Input

Map

Map

Map

Shuffle

 , -

 , -

 , -

Reduce

Reduce

Reduce

Output

Output

Fig 2: Graph input

MJCIS Vol.14 No.1 Jun 2018

63

The proposed algorithm assumes that each vertex in the graph

has a unique id based on its category (left vertices or right

vertices). Let be a total order of vertices, i.e. means

that ’s id is greater than ’s id. IM++RECT avoids IM-Rect

problem by using the total ordering to count each rectangle

only once. The algorithm uses two sets () and (),

where () is the set of the left vertices , where is

two edges away from vertex and () is the set of all

common neighbors for both vertex and . For example, in

Figure 2, () * + and () ()
 () * +.

IM++RECT consists of two parts. The first part finds

both () and (), for each and * + as

shown in Lines 5-8. Then, in the second part, the number of

rectangles is counted by iterating on () as shown in

Lines 9-13.

Algorithm 1: IM++RECT algorithm

1
2 for do
3 () ;
4 () , * +;

5 for () do
6 for () * + and do

7 () () * +

8 () () * +;

9 for () do
10 for , ()- do
11 for , ()- do
12
13 Print ((), - (), -);

5.1.1 Analysis
Lemma 1. IM++RECT algorithm counts rectangles in a

bipartite graph correctly and only once.

Proof. For each left vertex , IM++RECT computes

 () only when , for each . Thus, it is

guarantee that each rectangle in bipartite graph is seen only

once.

Lemma 2. IM++RECT algorithm takes (() ())

Proof. Line 1 takes (), Lines 2-4 take () (Line 4 is

defined as list of keyValue pairs), Line 7-8 takes (())

(i.e. in total, number of all possible two paths which equals to

.
()

/ (())), Line 9 takes (()) (i.e. in total, the

number of all possible two paths), Lines 12-14 takes

 (() ()). Therefore, IM++RECT takes:

 () () () ()

 () () ()

 () () (), for

Equation (1)

Since () , then using Equation (1),

 () () () ()

 (() ())

5.2 The Second Algorithm
Our second proposed algorithm is called Rectangle counting

in Bipartite graphs using Partitioning (RBP) algorithm based

on MapReduce model to count rectangles in a large bipartite

graph. The main idea of RBP is to divide a large bipartite

graph into sub-graphs with equal number of left vertices.

The algorithm is shown in listing Algorithm 2. Before we

present the algorithm, we define some terms required to

understand the algorithm. In our work, any rectangle can be

categorized either as Type-1 or Type-2, where:

Type-1: two left vertices of the rectangle exist in the same

partition, e.g. () shown in Figure 3.

Type-2: two left vertices of the rectangle exist in different

partitions, e.g. () shown in Figure 3.

Also, the partitioning of a bipartite graph can be one of two

types: 1-partition or 2-partition. These two types are defined

as follow:

1-partition: 1-partition graph is a sub-graph of bipartite graph

denoted by () for , -; where the partition

number of left vertex, (), of each edge in such graph equals

to (i.e. ()). For example, for , 1-partition sub-

graphs of the bipartite graph shown in Figure 3 are
() as shown in Figure 4.

2-partition: 2-partition graph is denoted by

() for , which is a sub-graph of a

bipartite graph, with the partition number of left vertex, (),

of each edge in such graph equals to or (i.e. () * +).
For example, for , 2-parition sub-graphs of bipartite

graph shown in Figure 3 are ()

which are shown in Figure 5. In general, it is easily proofed

that for any bipartite graph divided into sub-graphs, there

are .

/ 2-partition sub-graphs.

When a bipartite graph is divided, Type-1 rectangles can be

deduced from both 1-partition and 2-partition graphs, while

type-2 rectangles can be deduced only from 2-partition

graphs. Therefore, RBP divides a bipartite graph only in 2-

partition graphs as shown in the Map function in Lines 1-4.

After finishing the Map step, MapReduce model combines

each group of outputs of the map step that have the same key

Fig 3: Partitioning of the graph presented in Figure 2

for the RBP algorithm,

Partition 1 Partition 2

Partition 3 Partition 4

MJCIS Vol.14 No.1 Jun 2018

64

(i.e. combines edges in the same sub-graph) as mention before

in section 3, then the reduce step counts the rectangles in the

combined edges (i.e. 2-partition sub- graphs) as shown in

Lines 5-24.

Algorithm 2: The proposed RBP algorithm

 Map : input ()
1 for , - do
2 for , - do

3 if () * + then

4 emit () () ;
 Reduce : input ()

5 Parallel for do
6 () ;

7 () , * +;

8 for () do
9 for () * + and do

10 () () * +

11 () () * +;

12 Parallel for () do
13 for , ()- do
14 for , ()- do
15 (), -, (), -;
16 if () () then
17 // Type-1

18
 if (() ())

 and () then
19 lock
20 emit () ;
21 else
22 // Type-2

23 lock

24 emit () ;

The function in the Reduce step parallelizes the IM++RECT

algorithm to increase the performance of the algorithm. We

notice that Type-1 rectangles are duplicated in all 2-partition

graphs, due to partition number of two left vertices (i.e. ())

belong to one site of 2-partition graph. For example,

 () in Figure 3 is a Type-1 rectangle, ()
 () , which appears in shown in Figure 5.

So, to overcome the duplication problem, Lines 16-20 deal

with this problem by only seeing Type-1 rectangle once in

 , where equals to the partition number of left vertex of the

rectangles (i.e. ()) and is assigned to (first

condition) if a rectangle doesn't exist in the last partition. For

example, () is identified only in show in

Figure 5. If a rectangle exists in the last partition (i.e. ()
), then the rectangle is identified only in the last sub-graph

(i.e.). For example, () is identified only

in the last 2-partition graph . Lock mechanism is used in

Line 19 and Line 23 to deal with the critical section and to

overcome race condition that occurs when multiple iterations

write their results to the same file at the same time.

5.2.1 Analysis
Lemma 3. Type-1 and Type-2 rectangles are counted only

once in a bipartite graph by RBP.

Proof. RBP sees Type-1 rectangles only in the first 2-partition

graph (() and), or in the last 2-partition

graph; if Type-1 rectangle is existed in the last partition

(() and). So, Type-1 rectangles are counted

only once by RBP.

On the other hand, Type-2 rectangles appear only one time in

2-partition graphs. Therefore, RBP counts the rectangles

correctly and only once in a bipartite graph.

Lemma 4. Output of all map instances is () ().

Proof. Each map instance takes an edge () as input and

classifies it to 2-partition graph , when the partition

number of a left vertex belongs to any of two site of sub-

graph (i.e. () * +). Hence, any edge in a bipartite graph

appears in sub-graphs. For example, an edge () in

Figure 3 is shown in , , and as shown in Figure 5.

Therefore, for edges, they appear () . So, the output

of all map instances is:

() ()

Lemma 5. Input of each reduce instance is .

/.

Proof. The probability that each edge belongs to a specific

partition is

. Therefore, probability of the existence of an

edge in 2-partition is

. The probability of edges in

2-partition is

; so the input of each reduce instance is

 .

/.

Lemma 6. Reduce instance takes (()), where is

the maximum degree.

Proof. Line 5 takes (running times of Lines 6-24),

Lines 6-7 take (), Lines 10-11 take () ()

(Assume is the maximum degree, and in the worst case

 () and ()), Line 12 takes (running

time of Lines 13-24), Lines 15-24 take (()).

Therefore, reduce instances takes:

 ()

 (), for

i.e. ()

 ()

 (())

Fig 4: 1-Partition sub-graphs of the graph presented in Figure 3

MJCIS Vol.14 No.1 Jun 2018

65

6. Experimental Results
In this section, we describe the set of experimental results

conducted to evaluate our proposed algorithm with comparing

it with PAR-Rect algorithm [2]. The experiment is divided

into two sets. The first set is used to run the two algorithms on

one machine, while the second set is used to run the two

algorithms on multi machines. The characteristics of the

datasets used in the experiments are shown in Table 2 [5].

6.1 Evaluation on a Single Machine
In the first set of experiments, our proposed algorithm and the

PAR-Rect were run and tested on a single machine with Intel

Core i5 2.67GHz, 5.8 GB RAM and running Ubuntu. Apache

Hadoop and MPJ Express (i.e. Messaging Passing Interface

library for java) framework are running on this machine. The

two algorithms were run on this machine with . Table

3 shows the results, where it shows that the performance of

our proposed algorithm beats PAR-Rect algorithm. PAR-Rect

can’t output the result of Youtube dataset, and gives an error

(i.e. insufficient memory), when running in MPJ Express

cluster configuration with one machine. On the other hand,

RBP gives result for this dataset (12.35 minutes) as shown in

this table. Therefore, it is clear that our proposed MapReduce-

based algorithm has a better performance than PAR-Rect and

it can handle large graphs with a good performance even in

small clusters.

We also evaluated the effect of number of partitions on the

running times of RBP and PAR-Rect algorithms on a single

machine from to partitions using Writer dataset, as

shown in Figure 8 in which it shows that RBP is more

efficient than PAR-Rect.

Table 2. Characteristics of the datasets used in the

experiments

Dataset
Left

Nodes

Right

Nodes
Edges

Rectangles

Collaboration

Writer

Producer

Starring

YouTube

Table 3: Running times of all algorithms on a single

machine (min)

Dataset PAR-Rect RBP

Collaboration

Writer

Producer

Starring

YouTube -

Fig 5: 2-Partition sub-graphs of the graph presented in Figure 3

MJCIS Vol.14 No.1 Jun 2018

66

6.2 Evaluation on Multiple Machines
In the second set of experiments, the proposed algorithm and

PAR-Rect were run and tested on a cluster of 17 machines

(one master, sixteen slaves); each one of these machines has

Intel core 2 Quad 2.83GHz, 3.7 RAM, and running Ubuntu.

Also, each machine runs Apache Hadoop and MPJ Express.

We tested the two algorithms on those machines with the

mentioned datasets. The results of experiments are show in

Table 4. We applied PAR-Rect only on four datasets because

it takes too long time to partition and distribute large graph to

slave’s machines. As shown in Table 4, RBP beats PAR-Rect

in counting the number of rectangles in large bipartite graphs.

We also evaluated the effect of number of partitions on the

running times of RBP and PAR-Rect on multi machines using

Writer dataset with several values of up to , as

shown in Figure 9. The figure shows clearly that RBP beats

PAR-Rect in the performance. Also, the running time of RBP

is almost constant when using different values of .

Table 4: Running times of all algorithms on a multi node

(min)

Dataset PAR-Rect RBP RB2PL

Collaboration

Writer

Producer

Starring

7. CONCLUSIONS and Future Works
Since, rectangle counting is a fundamental problem in

analyzing large bipartite graphs, we enhanced an existing

sequential algorithm and proposed a MapReduce-based

algorithm. Our experimental results showed that the proposed

MapReduce-based algorithm gave better execution time in

most cases than the existing algorithms especially for very

large graphs. In the future work, we plan to implement a

MapReduce model that uses MPI and develop more enhanced

and efficient algorithms for extracting and counting shapes

from very large scale bipartite and general graphs.

8. REFERENCES
[1] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce:

Simplified Data Processing on Large Clusters. In

OSDI'04: Sixth Symposium on Operating System Design

and Implementation.

[2] Jia Wang, Ada Wai-Chee Fu, James Cheng. 2014.

Rectangle counting in large bipartite graphs. In

Proceedings of the 2014 IEEE International Congress on

Big Data, 17–24.

[3] Zhaonian Zou. 2016. Bitruss Decomposition of Bipartite

Graphs. In Proceedings, Part II, of the 21st International

Conference on Database Systems for Advanced

Applications, 218-233.

[4] Apache Hadoop. http://hadoop.apache.org/.

[5] Graph datasets. http://konect.uni-koblenz.de/ (September

19, 2017).

0.1

1

10

5 10 15 20 25 30 35 40 45 50 55 60

R
u

n
n

in
g

Ti
m

e
(m

in
)

𝜌

RBP

PAR-Rect

Fig 8: Running times of PAR-Rect and RBP on a single machine using
Writer dataset with different sizes

Fig 9: Running times of PAR-Rect and RBP on multi machines

using Writer dataset with different sizes

