
 MJCIS Vol.14 No.2 Dec 2018

Mansoura Journal of Computers and Information Sciences

39

A Hybrid Approach for Automatic Morphological

Diacritization of Arabic Text

Hatem M Noaman
Computer Science Department,

Mansoura University, Egypt

hatemnoaman@yahoo.com

Shahenda S. Sarhan
Computer Science Department,

Mansoura University, Egypt
shahenda_sarhan@yahoo.com

M. A. A. Rashwan
Electronics and

Communications Department,
Cairo University, Egypt

mrashwan@RDI-eg.com

ABSTRACT

Arabic Modern texts are commonly written without

diacritization, which is a critical task for other Arabic

processing tasks as word sense disambiguation, automatic

speech recognition, and text to speech, where word meaning

or pronunciation is decided based on the diacritic signs

assigned to each letter.

This paper presents a novel approach for automatic Arabic

text diacritization using deep encode-decode recurrent neural

networks that is followed by several text correction

techniques, to improve the overall system output accuracy.

Experimental results of the proposed system on Wikinews test

set show superior performance and are competitive with those

of the-state-of-the-art diacritization methods. Namely, our

method achieves morphological diacritization Word Error

Rate (WER) 3.85% and Diacritic Error Rate (DER) 1.12%.

Keywords

Arabic Natural Language Processing ; Automatic

Morphological Diacritization; deep encode-decode recurrent

neural networks.

1. INTRODUCTION
The Arabic language and other languages based on Arabic

letters have diacritics signs which are small characters that are

placed over other basic characters. They play a crucial role in

indicating how each letter in the word will be pronounced.

The Arabic language has 8 different signs that can be used to

diacritize any given character as summarized in Table 1. It

shows the different diacritic signs associated with Arabic

letter Taa ('ت'), besides this list, combination of "Shadda"

with "Fatha", "Kasra" or "Damma" can be used to emphasis

more stress pronunciation over a given character.

Most modern standard Arabic texts are written without using

the diacritic signs. This adds ambiguity especially in syntax

and semantic analysis levels, where single word can have

more than one interpretation. For example: the word Elm

 can have more than 13 forms with different meanings ("علم")

according to its position in the text [1]. Arabic diacritic signs

are derived by native speakers easily with their prior

knowledge of language rules and their ability to infer word

meaning from its context. On the other side, texts without

diacritic signs add more challenge for Arabic language

processing for many tasks like Text-To-Speech (TTS),

machine translation, language analysis... etc. Diacritic signs

restoration is a process of automatically converting text

without or with partially diacritic signs to a fully diacritized

text.

Table 1: Different diacritic forms of the Arabic letter Taa

 ('ت')

Diacritic Diacritized

Letter(Taa

)

Transliteratio

n

Unicode

Fatha َت A U+064E

Kasra َت U U+0650

Dumma َت I U+064F

TanweenFathatan َت F U+064B

TanweenKasratan َت K U+064

D

TanweenDammata

n

 N U+064C تَ

Shadda َت ~ U+0651

Sukon َت O U+0652

In this work, we propose a novel diacritization model, based

on sequence to sequence neural networks [2]. This type of

neural networks architecture adds decoder and encoder layers

on top of language model, as shown in Figure 1. This

architecture gives the ability to map two different sequences:

input and target sequences. In literature, this model is widely

used in machine translation between two different languages.

In this paper, we adopt this model to solve the automatic

Arabic text diacritization. In the encoder step, the model

converts an input sequence, which is the input word without

diacritization into a fixed representation. In the decoder step,

the language model is trained on both the output sequence

(words with diacritization) as well as the fixed representation

from the encoder.

 MJCIS Vol.14 No.2 Dec 2018

40

Figure 1: The Basic sequence to sequence neural networks model [2]

The rest of this paper is organized as follows. Section 2

summarizes the related work while Section 3 presents the

proposed model. Sections 4 and 5 are, respectively, dedicated

to the technical implementation details of the proposed

approach and the experimental results. Finally, conclusions

and future work are given in Section 6.

2. Related work
Different methods have been investigated to handle Arabic

text diacritization problem. The previous work can be divided

into 3 common approaches: rule-based, statistical, and hybrid

approaches [3]. Rule-based approach tries to solve the

problem of Arabic diacritization by applying a set of rules

derived from Arabic language morphology and grammar

systems. This approach was introduced by El-Sadany and

Hashish (1988) [4]. Their work uses morphophonemic and

morphographemic rules extracted from vocabulary,

morphological analyzer, and grammar module. Later, El-

Imam (2004) [5] and Shaalan (2010) [6] used the same

approach to restore Arabic diacritization signs. However,

Shaalan (2010) [6] only predicts the missing diacritics.

Another approach was investigated to handle automatic

Arabic diacritization problem based on statistical models.

Hidden Markov model (HMM) combined with Viterbi search

algorithm were proposed by Gal (2002) [8]. Gal's model

archives 86% accuracy and most errors are Out-Of-

Vocabulary (OOV) words. Another work related to Arabic

speech recognition is done by Kirchhoff et al. (2002) [9].

They tried to improve the diacritization accuracy using

maximum likelihood unigram prediction. Their results are

28% word error rate, and 9% if last character diacritization is

ignored. Another statistical model based on trigram language

model and dynamic programming was proposed by Hifny

(2012) [10], where each sequence is assigned a probability by

the language model and the most probable sequence is

selected by dynamic programming algorithm. Smoothing

techniques are used to handle Out-Of-Vocabulary (OOV)

words. The reported results of this work were 3.4% and 8.9%

for diacritic error rate and word error rate, respectively. Azim

et al. (2012) [11] combined hidden Markov model (HMM)

and acoustic data model with conditional random fields text-

based model. They achieved 1.6 and 5.2%, respectively which

is considered a very high accuracy. Nevertheless, we cannot

use it as acoustic data is not always available for text.

Abandah, et al. (2015) [12] used bidirectional long short-term

memory (b-LSTM) deep neural networks to restore missed

Arabic diacritic signs. They achieved 2.72% and 9.07%

diacritic and word error rates respectively, on LDC ATB3

dataset. Adding "Tashkeela" corpus data, their model's results

was improved to 2.09% and 5.82% for diacritic and word

error rates, respectively.

Hybrid approaches try to combine several knowledge

resources and merge rule-based and statistical-based

techniques to handle Arabic diacritization problem. Vergyri

and Kirchhoff (2004) [13] proposed the earliest trial to use

hybrid sources of knowledge. They combined acoustic,

morphological, and contextual data. They tagged each word

with one of the different tags provided by BAMA

(Buckwalter, 2004 [14]). They achieved a word error rate and

diacritic error rate 27.3% and 11.5%, respectively, without

counting shadda diacritic. Zitouni et al. (2006) [15] combined

maximum entropy with lexical, segment-based and part-of-

speech features. Their results are 18% word error rate and

5.5% diacritic error rate for full word, and 7.9% and 2.5%,

respectively, for words without case endings. Depending on

morphological analysis and disambiguation of Arabic

(MADA) system Habash and Rambow (2007)[16] combined

word features with support vector machine (SVM) classifier.

They achieved 14.9% word error rate and 4.8% diacritic error

rate for full word and 5.5% and 2.2%, respectively, for words

without case endings. Rashwan and Al-Badrashiny (2011)

[17] introduced a two-layer stochastic system. In the first

layer, they proposed A* lattice search and n-gram probability

to predict the most likely diacritics. If a word is not found, the

second layer will factorize the full word into its prefix, root,

pattern ,and suffix features, then use A* lattice search and n-

gram probability to predict the most likely diacritics sequence.

Their work achieved 12.5% word error rate and 3.8% diacritic

error rate with case endings, and 3.1% word error rate and

1.2% diacritic error rate without case endings. Said et al.

(2013) [18] achieved diacritic and word error rates of 3.6 and

11.4%, respectively, based on morphological analysis using

Hidden Markov Models (HMMs). They restore the syntactic

diacritic by resolving the syntactic ambiguity. Rashwan et al.

(2015)[19] proposed a deep neural network (DNN) based

framework to restore the Arabic diacritics. Morphological,

syntactic, and context features are used as input to the

proposed DNN framework. Then, a post-processing step is

applied to DNN output, using contention sub-set resolution

network to improve syntactic diacritization performance.

They reported 11.6% complete word error rate and 3%

morphological word error rate. Darwish et al (2017) [23]

applied bigram word-level language model search and back-

off stem. If no proper sequence can be found, morphological

 MJCIS Vol.14 No.2 Dec 2018

41

patterns is used. For the named entities, they proposed

transliteration and sequence labeling based diacritization. To

restore last letter diacritization sign, they train Support Vector

Machine (SVM) model coupled with morphological patterns

and linguistic rules. Another hybrid approach was proposed

by Fashwan and Alansary (2017) [24] called SHAKKIL

system. In this system, the diacritization is restored with two

levels, morphological level which has four layers: uni-

morphological, rule-based morphological disambiguation,

statistical-based disambiguation, and Out Of Vocabulary

(OOV) layers. They use syntactic level to add the word last

diacritization sign based on shallow parsing technique. Al-

Badrashiny et al (2017) [25] proposed three-layered approach

to get full word diacritization. In the first layer they use

surface form language model (LM) , followed by the

morphological level in the second layer, and then finally they

back-off to the character level language model (LM).

Khorsheed (2018) proposed diacritization using Hidden

Markov models (HMM), the proposed system performance is

measured using 3 different test sets. The first one isDS1which

was built at King Abdulaziz City for Science and Technology

[28]. It includes 231 files of proof read Arabic text. The

second is DS2 that includes the fully diacritized text from the

Holy Quran, and the third is DS3 which consists of 54,463

Arabic names, best diacritic error rate results reported by this

work are: 26.09% for DS1, 29.07% for DS2 and 19.43% for

DS3. However, these system results are very poor compared

to the-state-of-the-art results.

In this paper we handle Arabic diacritics restoration as a

machine translation problem. This approach has been adopted

by researchers based on different machine translation

techniques. Elshafei et al. (2006) [20] uses hidden Markov

models (HMM) based machine translation approach. They

reported accuracy improvement by 2.5% by using

preprocessing stage and trigram for selected number of words.

Another machine translation based approach proposed by

Schlippe et al. (2008) [21] combines the rule-based

diacritization system with conditional random fields.

3. Proposed Model

3.1 Arabic Unicode diacritic signs

preprocessing and data preparation:
To make our data more suitable to sequence to sequence

model, a different code is assigned to each Arabic diacritic

signs, as shown in Table 2. Codes vary from 1 to 9 for

different diacritic signs, with 1 byte Unicode representation,

from 12 to 15 for 2 bytes Unicode representation and zero

value indicates a letter without diacritic sign. At the stage of

data preprocessing and preparation, input text is buffered

character by character. In Arabic Unicode system, each

character is represented by two bytes and diacritic signs are

represented as separated Unicode. As shown in Table 2, most

signs are represented by two bytes except signs that include

shadda sign combined with another sign will represented by 4

bytes.

Figure 2 illustrates data preparation flowchart. The given

input raw is in the form of s = {c1,c2,... cn} where s is the

input diacritezedword , ci is two bytes Unicode ith character

representation and n is the input word length. The final code

value of the current character is based on whether this

character has a diacritic sign attached to it or not. If exists, we

have to make difference between signs with two and four

bytes representation. As shown in the flowchart, the first

character is read. Based on its Unicode value, it is decided

whether it is an Arabic character or not. By default, we get rid

off any non-Arabic characters or diacritic signs in the input

text. In general, there are three common cases:

1- If the current character (ci) is an Arabic letter and

the next character (ci+1) is another Arabic letter.

This means that this character has no diacritic sign

and its diacritic code will be zero and the current

character position (i) is incremented by 1.

2- If the current character (ci) is an Arabic letter and

the next character (ci+1) is an Arabic diacritic sign,

and the character (ci+2) is an Arabic letter. This

means that the current letter is diactertized by a

diacritic sign that has 2 bytes Unicode

representation. Its value, denoted by (dx), is

assigned from one value between 1 and 9 from

Table 2. The current character position (i) is then

incremented by 2.

3- If the current character (ci) is an Arabic letter and

the next two characters (ci+1, ci+2) are Arabic

diacritic signs and the character (ci+3) is an Arabic

letter. This means that the current letter is

diactertized by a diacritic sign that has 4 bytes

Unicode representation. Its value, denoted by (dy),

is assigned from one values between 12 and 15 from

table 2. The current character position (i) is then

incremented by 3.

Table 2: The proposed codes and Unicode bytes number

of the Arabic diacritic signs

Arabic diacritic code Unicode bytes

without diacritic 0 0

TanweenFathatan 1 2

TanweenDammatan 2 2

TanweenKasratan 3 2

Fatha 4 2

Dumma 5 2

Kasra 6 2

Shadda 8 2

Sukon 9 2

Shaddah + Fataha 12 4

Shaddah + Damma 13 4

Shaddah + Kasra 14 4

Shaddah + Dammatan 16 4

Shaddah + Fatahtan 15 4

 MJCIS Vol.14 No.2 Dec 2018

42

Figure 2: Proposed data preparation flowchart.

After applying the encoding flowchart shown in Figure 2, the

output character sequence s'={c1',c2',…..cn'} where s' is the

input word numeric representation, ci' is a numeric encoding

that represents a given ith Arabic character with its diacritic

sign as a single value and n is the input word length. Table 3

illustrates an example of the undiacertized word (علم Elm)

and 4 of its different diacrtization styles. Table 3 also shows

the corresponding Buckwalter transliteration, Unicode values

and proposed single character encoding.

3.2 Proposed Model Architecture:
This work suggests using deep encoder-decoder neural

networks to handle Arabic diacritization signs restoration

problem, both input and output sequence may not be equal in

size. Therefore, encoder part of the proposed model will

convert the input sequence into context vector, then the

context vector will be used as input to the proposed model

decoder, both of the proposed encoder and decoder modules

are deep LSTM neural network with 4 layers each layer

 MJCIS Vol.14 No.2 Dec 2018

43

consists of 1000 neuron. Network weights are randomly

initialized to values between -1 and 1, and the starting

learning rate is 0.01.

Table 3: The different diacrtization styles for undiacertized word (علم Elm), Buckwalter transliteration, Unicode values and

proposed single character encoding representations.

Arabic word Buckwalter

transliteration

Unicode decimal two

byterepresentation

Single char code

representation

ل مَ Ealima [657, 678], [668, 680], [669, 678] [457, 668, 469] ع

ل مَ Eulima [657, 679], [668, 680], [669, 678] [557, 668, 469] ع

ل مَ Eilomu [657, 680], [668, 682], [669, 679] [657, 968, 569] ع

لَّمَ Eal~ama [657, 678],[668, 681,678] , [669, 678] [457 1268 469] ع

3.3 Encoder-Decoder Deep Neural

Network training module:
After preparing the fixed length encoding scheme, presented

in previous Section, two parallel files are created. The first

one for the undiacrtized input word codes. The second file

contains the diacritized output word codes. The encoder-

decoder module first reads the source words using an encoder

to build an encoder context vector. Based on this vector, the

decoder will take it as an input and outputs diacritized word

character sequence as illustrated in Figure 1. This iterates

several epochs for the dataset. After completing a predefined

number of epochs, the output of this module will be saved as

the trained model. The general training framework is shown in

Figure 3.

Figure 3: Training module flowchart.

3.4 Encoder-Decoder Deep Neural

Network testing module:
After building the training model, word diacrtization sequence

can be inferred by converting input test text into its one-to-one

encoding as given in Section 3.1. Based on the trained model

and decoder neural network, we will get the system output in

the form of sequence of characters one-to-one codes. This

code will have different diacritic values based on the proposed

system selection for each character. Sometimes the character

codes produced by the proposed system are replaced. In this

case, we restore the modified characters to its original form.

This step will not affect the diacrtization accuracy, because

our concern will be the final diacrtization signs accuracy.

Figure 4 Test Model flowchart

Some postprocessing text correction operations are

also applied on the final output text based on some

well-known fixed Arabic diacrtization rules.

Although the system output may be true without

applying this set of rules, we include them for

reliability and robustness of our method. It is

noticed that the system performance and final

output are enhanced after applying these rules as

shown in the results section. These operations are:

1- Sukun correction: There are two writing styles for

sukundiacritic. One adds sukun and the other omits

 MJCIS Vol.14 No.2 Dec 2018

44

it. Both styles are correct and give the same

meaning [12]. If there is sukun in the proposed

model output, we omit it from the test set and output

sequences to unify dealing with this case.

2- Missing diacritic sign before Madd letters (Alef,

Waw, and Yaa): If the output letter is madd letter

(Alef, Waw, or Yaa) , we change diacritic for the

letter before this letter to the suitable diacritic with

this madd letter, Fatha for Alef, Damma for Waw

and Kasra for Yaa.

3- Alef+Lam Type correction: In the Arabic language

there are two types of Alef+Lam letters combination

in the start of words: Alef+LamShamsia and

Alef+LamQamria. With Alef+LamShamsia, the

next letter must have Shadda diacritic sign

combined with this letter diacritic sign. Alef letter

must have Fatha and Lam is left without any sign.

In the case of Alef+LamQamria, the next letter

cannot have Shadda diacritic sign.

4- Latin Words Ambiguity:

5- Some words which are arabized from other

languages may have more than one correct

diacritization form as (ان ز ير ان,َح ز ير ح). We choose

to consider that both forms are true diacritization for

such words. Some Arabic words have the same

case. In this work, a list of 83 words was prepared

that appear in the test set and have more than one

possible correct diacritization from.

4. Implementation
The proposed System was implemented using two different

languages. C# 3.5 was used for text encoding/decoding and

postprocessing modules. Python 3 was used to build encoder-

decoder neural network model based on TensorFlow 1.4.1®

deep learning framework. Model training and testing were

carried out on Intel(R) Xeon(R) CPU X5650 2.67GHz with

64GB RAM installed with GeForce GTX 980 Ti GPU card.

Input and output sequences are presented as plain text file.

5. Experimental Results

5.1 Accuracy measures
In this paper, we present the performance using two

measures: Diacritization Error Rate (DER) and Word Error

Rate (WER). The DER represents how many letters diacritics

are incorrectly restored. The WER represents the rate of

words that have any incorrect diacritization error. These two

measures are reported for morphological (core word) where

the diacritic assigned to the last character of the core of the

word (the stem) is not considered.

5.2 Experiment’s Data Set
Reported results in this paper were obtained by training the

proposed approach using fully diacritized Arabic corpus that

contains about 1 million words from "Aljazeera" news

annotated by RDI company in Egypt. In next subsections

results were obtained based on test data proposed by Darwish

et al. (2017) [23] which contains about 18300 words extracted

from the Wikinews articles, published between 2013 and 2014

and covers 7 different themes (politics, economics, health,

science and technology, sports, arts, and culture).

5.3 Performance Enhancement
To improve our proposed system Diacritization Error Rate

(DER), some postprocessing and correction rules are applied

to the output. Table 4 summarizes the Word Error Rate

(WER) and Diacritic-Error-Rate (DER) with error reduction

ratio through each correction step and finally after applying

all the steps as the final system results in the final row

From results in Table 4, the proposed system Word Error Rate

(WER) results are improved by 5.88 % and Diacritic Error

Rate (DER) about 1.99 for morphological diacritization. Latin

words correction steps improves Word Error Rate (WER)

results from 8.12% to 3.85% which shows that words with

original Arabic origins can be handled with good accuracy by

the proposed system. Other words that have ambiguity in their

diacritization because they are not original Arabic words and

words that have more than correct diacritization confuse the

proposed algorithm about how to decide the correct

diacritization. Hence, we list these words out and consider

both the words diacritizations are true.

Table 4. Diacritic-Error-Rate (DER) reduction based on

post-processing and correction rules

Error

Reduction

DER(

%)

Error

Reduction

WER

(%)

------- 3.11 ----- 9.73 Without Correction

0.13 2.98 0.16 9.57 + Sukun Correction

0. 42 2.69 1.11 8.62 + Missing diac

before Madd letters

correction

0.66 2.45 1.61 8.12 + Alef+Lam Type

correction

1.99 1.12 5.88 3.85 +Latin words

correction

5.4 Final Results and comparisons
Table 5 shows the comparison between our proposed

approach and the state-of-the-art systems, on Wikinews test

set, in terms of morphological diacritization Word Error Rate

(WER) and Diacritic Error Rate (DER).

Table 5: Baseline, related work, and proposed system

Word-Error-Rate (WER) and Diacritic-Error-Rate (DER)

for core word diacritization results.

DER WER

1.91 6.73 MADAMIRA (2014) [7][23]

1.38 4.34 Abandah et al. (2015) [26]

0.95 3.04 Rashwan et al. (2015) [19][23]

3.89 14.87 Belinkov and Glass (2015) [1][23]

1.06 3.29 Darwish et al. (2017) [23]

1.12 3.85 Proposed Approach

 MJCIS Vol.14 No.2 Dec 2018

45

From the listed results in Table 5, it can be observed that the

proposed approach results are better than MADAMIRA [7]

and Belinkov and Glass [1] results according to Diacritic

Error Rate(DER) morphological diacritization while they are

very close to Rashwan et al. [19] (2015) and Darwish et al.

(2017) [23] in the case of morphological diacritization Word

Error Rate(WER) and Diacritic Error Rate (DER) using

WikiNews test set. It was noticed that the proposed system

results are improved remarkably compared to Belinkov and

Glass [1] which is very similar to the proposed approach.

However, their work is based on the recurrent neural networks

without adding any morphological or syntactical features for

input text. Also, the proposed approach outperformed

MADAMIRA [7] where diacritic signs are restored based on

the morphological interpretation of the word. Abandah et al.

(2015) [26] tried to use deep bidirectional long short-term

memory (LSTM) network to handle Arabic language

diacrtization problem, comparing their results to the proposed

model results shows that results of the proposed model

achieves about 0.5% for Word Error Rate (WER) and 0.26%

Diacritic Error Rate (DER) enhancement. Although Rashwan

et al. [19] and Darwish et al. (2017) [23] results slightly

outperform our proposed model results, it is worth noting that

their models were designed to contain different levels of word

features to help in deciding the appropriate word diacrtization

form.

6. Conclusion
In this paper, we propose a deep encoder-decoder neural

networks based model, followed by text post-processing steps

that handle the problem of Arabic text diacritization. The

proposed approach can restore the missing morphological

diacritics at high accuracy without any additional resource of

data except the fully diacritized dataset. The Proposed

approach achieves full coverage of Arabic words with no need

to handle the Out Of Vocabulary (OOV) problem. The WER

of the core word diacritization is 3.85% and DER is 1.12%

which are very competitive to the state-of-the-art techniques.

As a future work, we will try to handle syntactic diacritization

(full word). Also we intend to add word context features to

improve diacritization accuracy.

ACKNOWLEDGMENTS

We would like to thank Kareem Darwish, Hamdy Mubarak,

and Ahmed Abdelali for providing us with Wikinews test set.

7. REFERENCES
[1] Belinkov, Y., & Glass, J. (2015). Arabic diacritization

with recurrent neural networks. In Proceedings of the

2015 Conference on Empirical Methods in Natural

Language Processing (pp. 2281-2285).ََ

[2] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence

to sequence learning with neural networks. In Advances

in neural information processing systems (pp. 3104-

3112).ََ

[3] Azmi, A. M., &Almajed, R. S. (2015). A survey of

automatic Arabic diacritization techniques. Natural

Language Engineering, 21(3), 477-495. َ

[4] El-Sadany, T., & Hashish, M. (1988, April). Semi-

automatic vowelization of Arabic verbs. In 10th NC

Conference, Jeddah, Saudi Arabia. َ

[5] El-Imam, Y. A. (2004). Phonetization of Arabic: rules

and algorithms. Computer Speech & Language, 18(4),

339-373. َ

[6] Shaalan, K. (2010). Rule-based approach in Arabic

natural language processing. The International Journal on

Information and Communication Technologies (IJICT),

3(3), 11-19. َ

[7] Pasha, A., Al-Badrashiny, M., Diab, M. T., El Kholy, A.,

Eskander, R., Habash, N., ...& Roth, R. (2014, May).

MADAMIRA: A Fast, Comprehensive Tool for

Morphological Analysis and Disambiguation of Arabic.

In LREC (Vol. 14, pp. 1094-1101). َ

[8] Gal, Y. A. (2002, July). An HMM approach to vowel

restoration in Arabic and Hebrew. In Proceedings of the

ACL-02 workshop on Computational approaches to

semitic languages (pp. 1-7). Association for

Computational Linguistics. َ

[9] Kirchhoff, K., Bilmes, J., Das, S., Duta, N., Egan, M., Ji,

G. &Schone, P. (2003, April). Novel approaches to

Arabic speech recognition: report from the 2002 Johns-

Hopkins summer workshop. In Acoustics, Speech, and

Signal Processing, 2003. Proceedings.(ICASSP'03). 2003

IEEE International Conference on (Vol. 1, pp. I-I). IEEE. َ

[10] Hifny, Y. (2012). Smoothing techniques for Arabic

diacritics restoration. In Proceedings of the 12th

Conference Lang. Eng.(ESOLEC’12) (No. 1, pp. 6-12). َ

[11] Azim, A. S., Wang, X., & Chai, S. K. (2012). A

weighted combination of speech with text-based models

for Arabic diacritization. In Thirteenth Annual

Conference of the International Speech Communication

Association. َ

[12] Abandah, G. A., Graves, A., Al-Shagoor, B., Arabiyat,

A., Jamour, F., & Al-Taee, M. (2015). Automatic

diacritization of Arabic text using recurrent neural

networks. International Journal on Document Analysis

and Recognition (IJDAR), 18(2), 183-197. َ

[13] Vergyri, D., & Kirchhoff, K. (2004, August). Automatic

diacritization of Arabic for acoustic modeling in speech

recognition. In Proceedings of the workshop on

computational approaches to Arabic script-based

languages (pp. 66-73). Association for Computational

Linguistics. َ

[14] Buckwalter, T. (2004). Buckwalter Arabic

Morphological Analyzer, v2. 0 edn. Linguistic Data

Consortium, Philadelphia. َ

[15] Zitouni, I., Sorensen, J. S., &Sarikaya, R. (2006, July).

Maximum entropy based restoration of Arabic diacritics.

In Proceedings of the 21st International Conference on

Computational Linguistics and the 44th annual meeting

of the Association for Computational Linguistics (pp.

577-584). Association for Computational Linguistics. َ

[16] Habash, N., &Rambow, O. (2007, April). Arabic

diacritization through full morphological tagging. In

Human Language Technologies 2007: The Conference of

the North American Chapter of the Association for

Computational Linguistics; Companion Volume, Short

Papers (pp. 53-56). Association for Computational

Linguistics. َ

[17] Rashwan, M. A., Al-Badrashiny, M. A., Attia, M.,

Abdou, S. M., &Rafea, A. (2011). A stochastic Arabic

 MJCIS Vol.14 No.2 Dec 2018

46

diacritizer based on a hybrid of factorized and

unfactorized textual features. IEEE Transactions on

Audio, Speech, and Language Processing, 19(1), 166-

175. َ

[18] Said, A., El-Sharqwi, M., Chalabi, A., & Kamal, E.

(2013, June). A hybrid approach for Arabic

diacritization. In International Conference on Application

of Natural Language to Information Systems (pp. 53-64).

Springer, Berlin, Heidelberg. َ

[19] Rashwan, M. A., Al Sallab, A. A., Raafat, H. M.,

&Rafea, A. (2015). Deep learning framework with

confused sub-set resolution architecture for automatic

Arabic diacritization. IEEE/ACM Transactions on

Audio, Speech and Language Processing (TASLP),

23(3), 505-516. َ

[20] Elshafei, M., Al-Muhtaseb, H., &Alghamdi, M. (2006).

Statistical methods for automatic diacritization of Arabic

text. In The Saudi 18th National Computer Conference.

Riyadh (Vol. 18, pp. 301-306). َ

[21] Schlippe, T., Nguyen, T., & Vogel, S. (2008, October).

Diacritization as a machine translation problem and as a

sequence labeling problem. In AMTA-2008. MT at

work: In Proceedings of the Eighth Conference of the

Association for Machine Translation in the Americas

(pp. 270-278). َ

[22] Aya S. M. Hussein, Mohsen A. A. Rashwanand Amir F.

Atiya (2016), Arabic Full Text Diacritization using Light

Layered Approach. Artificial Intelligence and Machine

Learning Journal, ISSN: 1687-4846, Vo. 16, No. 1,

Delaware, USA, December 2016

[23] Darwish, K., Mubarak, H., &Abdelali, A. (2017). Arabic

Diacritization: Stats, Rules, and Hacks. In Proceedings of

the Third Arabic Natural Language Processing

Workshop (pp. 9-17). َ

[24] Fashwan, A. &Alansary, S. (2017). SHAKKIL: An

Automatic Diacritization System for Modern Standard.

In Proceedings of the Third Arabic Natural Language

Processing Workshop (pp. 84-93).

[25] Al-Badrashiny, M., Hawwari, A., &Diab, M. (2017). A

Layered Language Model based Hybrid Approach to

Automatic Full Diacritization of Arabic. In Proceedings

of the Third Arabic Natural Language Processing

Workshop (pp. 177-184).

[26] Abandah, G. A., Graves, A., Al-Shagoor, B., Arabiyat,

A., Jamour, F., & Al-Taee, M. (2015). Automatic

diacritization of Arabic text using recurrent neural

networks. International Journal on Document Analysis

and Recognition (IJDAR), 18(2), 183-197. َ

[27] Khorsheed, M. S. (2018). Diacritizing Arabic Text Using

a Single Hidden Markov Model. IEEE Access, 6. َ

