
 MJCIS  Vol.14  No.2   Dec 2018   

 

Mansoura  Journal of Computers and Information Sciences 

 

 

39 

A Hybrid Approach for Automatic Morphological 

Diacritization of Arabic Text 

Hatem M Noaman 
Computer Science Department, 

Mansoura University, Egypt 

hatemnoaman@yahoo.com 

Shahenda S. Sarhan 
Computer Science Department, 

Mansoura University, Egypt 
shahenda_sarhan@yahoo.com 

M. A. A. Rashwan 
Electronics and 

Communications Department, 
Cairo University, Egypt 

mrashwan@RDI-eg.com 

ABSTRACT 

Arabic Modern texts are commonly written without 

diacritization, which is a critical task for other Arabic 

processing tasks as word sense disambiguation, automatic 

speech recognition, and text to speech, where word meaning 

or pronunciation is decided based on the diacritic signs 

assigned to each letter.  

This paper presents a novel approach for automatic Arabic 

text diacritization using deep encode-decode recurrent neural 

networks that is followed by several text correction 

techniques, to improve the overall system output accuracy. 

Experimental results of the proposed system on Wikinews test 

set show superior performance and are competitive with those 

of the-state-of-the-art diacritization methods. Namely, our 

method achieves morphological diacritization Word Error 

Rate (WER) 3.85% and Diacritic Error Rate (DER) 1.12%. 

Keywords 
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1. INTRODUCTION 
The Arabic language and other languages based on Arabic 

letters have diacritics signs which are small characters that are 

placed over other basic characters. They play a crucial role in 

indicating how each letter in the word will be pronounced. 

The Arabic language has 8 different signs that can be used to 

diacritize any given character as summarized in Table 1. It 

shows the different diacritic signs associated with Arabic 

letter Taa ('ت'), besides this list, combination of "Shadda" 

with "Fatha", "Kasra" or "Damma" can be used to emphasis 

more stress pronunciation over a given character. 

Most modern standard Arabic texts are written without using 

the diacritic signs. This adds ambiguity especially in syntax 

and semantic analysis levels, where single word can have 

more than one interpretation. For example: the word Elm 

 can have more than 13 forms with different meanings ("علم")

according to its position in the text [1]. Arabic diacritic signs 

are derived by native speakers easily with their prior 

knowledge of language rules and their ability to infer word 

meaning from its context. On the other side, texts without 

diacritic signs add more challenge for Arabic language 

processing for many tasks like Text-To-Speech (TTS), 

machine translation, language analysis... etc. Diacritic signs 

restoration is a process of automatically converting text 

without or with partially diacritic signs to a fully diacritized 

text. 

Table 1: Different diacritic forms of the Arabic letter Taa 

 ('ت')

Diacritic Diacritized 

Letter(Taa

) 

Transliteratio

n 

Unicode 

Fatha  َت A U+064E 

Kasra  َت U U+0650 

Dumma  َت I U+064F 

TanweenFathatan  َت F U+064B 

TanweenKasratan  َت K U+064

D 

TanweenDammata

n 

 N U+064C تَ 

Shadda  َت ~ U+0651 

Sukon  َت O U+0652 

 

In this work, we propose a novel diacritization model, based 

on sequence to sequence neural networks [2]. This type of 

neural networks architecture adds decoder and encoder layers 

on top of language model, as shown in Figure 1. This 

architecture gives the ability to map two different sequences: 

input and target sequences. In literature, this model is widely 

used in machine translation between two different languages. 

In this paper, we adopt this model to solve the automatic 

Arabic text diacritization. In the encoder step, the model 

converts an input sequence, which is the input word without 

diacritization into a fixed representation. In the decoder step, 

the language model is trained on both the output sequence 

(words with diacritization) as well as the fixed representation 

from the encoder. 
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Figure 1: The Basic sequence to sequence neural networks model [2] 

 

The rest of this paper is organized as follows. Section 2 

summarizes the related work while Section 3 presents the 

proposed model. Sections 4 and 5 are, respectively, dedicated 

to the technical implementation details of the proposed 

approach and the experimental results. Finally, conclusions 

and future work are given in Section 6. 

2. Related work 
Different methods have been investigated to handle Arabic 

text diacritization problem. The previous work can be divided 

into 3 common approaches: rule-based, statistical, and hybrid 

approaches [3]. Rule-based approach tries to solve the 

problem of Arabic diacritization by applying a set of rules 

derived from Arabic language morphology and grammar 

systems. This approach was introduced by El-Sadany and 

Hashish (1988) [4]. Their work uses morphophonemic and 

morphographemic rules extracted from vocabulary, 

morphological analyzer, and grammar module. Later, El-

Imam (2004) [5] and Shaalan (2010) [6] used the same 

approach to restore Arabic diacritization signs. However, 

Shaalan (2010) [6] only predicts the missing diacritics. 

Another approach was investigated to handle automatic 

Arabic diacritization problem based on statistical models. 

Hidden Markov model (HMM) combined with Viterbi search 

algorithm were proposed by Gal (2002) [8]. Gal's model 

archives 86% accuracy and most errors are Out-Of-

Vocabulary (OOV) words. Another work related to Arabic 

speech recognition is done by Kirchhoff et al. (2002) [9]. 

They tried to improve the diacritization accuracy using 

maximum likelihood unigram prediction. Their results are 

28% word error rate, and 9% if last character diacritization is 

ignored. Another statistical model based on trigram language 

model and dynamic programming was proposed by Hifny 

(2012) [10], where each sequence is assigned a probability by 

the language model and the most probable sequence is 

selected by dynamic programming algorithm. Smoothing 

techniques are used to handle Out-Of-Vocabulary (OOV)  

words. The reported results of this work were 3.4% and 8.9% 

for diacritic error rate and word error rate, respectively. Azim 

et al. (2012) [11] combined hidden Markov model (HMM) 

and acoustic data model with conditional random fields text-

based model. They achieved 1.6 and 5.2%, respectively which 

is considered a very high accuracy. Nevertheless, we cannot 

use it as acoustic data is not always available for text. 

Abandah, et al. (2015) [12] used bidirectional long short-term 

memory (b-LSTM) deep neural networks to restore missed 

Arabic diacritic signs. They achieved 2.72% and 9.07% 

diacritic and word error rates respectively, on LDC ATB3 

dataset. Adding "Tashkeela" corpus data, their model's results 

was improved to 2.09% and 5.82% for diacritic and word 

error rates, respectively. 

Hybrid approaches try to combine several knowledge 

resources and merge rule-based and statistical-based 

techniques to handle Arabic diacritization problem. Vergyri 

and Kirchhoff (2004) [13] proposed the earliest trial to use 

hybrid sources of knowledge. They combined acoustic, 

morphological, and contextual data. They tagged each word 

with one of the different tags provided by BAMA 

(Buckwalter, 2004 [14]). They achieved a word error rate and 

diacritic error rate 27.3% and 11.5%, respectively, without 

counting shadda diacritic. Zitouni et al. (2006) [15] combined 

maximum entropy with lexical, segment-based and part-of-

speech features. Their results are 18% word error rate and 

5.5% diacritic error rate for full word, and 7.9% and 2.5%, 

respectively, for words without case endings. Depending on 

morphological analysis and disambiguation of Arabic 

(MADA) system Habash and Rambow (2007)[16] combined 

word features with support vector machine (SVM) classifier. 

They achieved 14.9% word error rate and 4.8% diacritic error 

rate for full word and 5.5% and 2.2%, respectively, for words 

without case endings. Rashwan and Al-Badrashiny (2011) 

[17] introduced a two-layer stochastic system. In the first 

layer, they proposed A* lattice search and n-gram probability 

to predict the most likely diacritics. If a word is not found, the 

second layer will factorize the full word into its prefix, root, 

pattern ,and suffix features, then use A* lattice search and n-

gram probability to predict the most likely diacritics sequence. 

Their work achieved 12.5% word error rate and 3.8% diacritic 

error rate with case endings, and 3.1% word error rate and 

1.2% diacritic error rate without case endings. Said et al. 

(2013) [18] achieved diacritic and word error rates of 3.6 and 

11.4%, respectively, based on morphological analysis using 

Hidden Markov Models (HMMs). They restore the syntactic 

diacritic by resolving the syntactic ambiguity. Rashwan et al. 

(2015)[19] proposed a deep neural network (DNN) based 

framework to restore the Arabic diacritics. Morphological, 

syntactic, and context features are used as input to the 

proposed DNN framework. Then, a post-processing step is 

applied to DNN output, using contention sub-set resolution 

network to improve syntactic diacritization performance. 

They reported 11.6% complete word error rate and 3% 

morphological word error rate. Darwish et al (2017) [23] 

applied bigram word-level language model search and back-

off stem. If no proper sequence can be found, morphological 
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patterns is used. For the named entities, they proposed 

transliteration and sequence labeling based diacritization. To 

restore last letter diacritization sign, they train Support Vector 

Machine (SVM) model coupled with morphological patterns 

and linguistic rules. Another hybrid approach was proposed 

by Fashwan and Alansary (2017) [24] called SHAKKIL 

system.  In this system, the diacritization is restored with two 

levels, morphological level which has four layers: uni-

morphological, rule-based morphological disambiguation, 

statistical-based disambiguation, and Out Of Vocabulary 

(OOV) layers. They use syntactic level to add the word last 

diacritization sign based on shallow parsing technique. Al-

Badrashiny et al (2017) [25] proposed three-layered approach 

to get full word diacritization. In the first layer they use 

surface form language model ( LM) , followed by the 

morphological level in the second layer, and then finally they 

back-off to the character level language model (LM). 

Khorsheed (2018) proposed diacritization using Hidden 

Markov models (HMM), the proposed system performance is 

measured using 3 different test sets. The first one isDS1which 

was built at King Abdulaziz City for Science and Technology 

[28]. It includes 231 files of proof read Arabic text. The 

second is DS2 that includes the fully diacritized text from the 

Holy Quran, and the third is DS3 which consists of 54,463 

Arabic names, best diacritic error rate results reported by this 

work are: 26.09% for DS1, 29.07% for DS2 and 19.43% for 

DS3. However, these system results are very poor compared 

to the-state-of-the-art results. 

In this paper we handle Arabic diacritics restoration as a 

machine translation problem. This approach has been adopted 

by researchers based on different machine translation 

techniques. Elshafei et al. (2006) [20] uses hidden Markov 

models (HMM) based machine translation approach. They 

reported accuracy improvement by 2.5% by using 

preprocessing stage and trigram for selected number of words. 

Another machine translation based approach proposed by 

Schlippe et al. (2008) [21] combines the rule-based 

diacritization system with conditional random fields. 

3. Proposed Model 

3.1 Arabic Unicode diacritic signs 

preprocessing and data preparation: 
To make our data more suitable to sequence to sequence 

model, a different code is assigned to each Arabic diacritic 

signs, as shown in Table 2. Codes vary from 1 to 9 for 

different diacritic signs, with 1 byte Unicode representation, 

from 12 to 15 for 2 bytes Unicode representation and zero 

value indicates a letter without diacritic sign. At the stage of 

data preprocessing and preparation, input text is buffered 

character by character. In  Arabic Unicode system, each 

character is represented by two bytes and diacritic signs are 

represented as separated Unicode. As shown in Table 2, most 

signs are represented by two bytes except signs that include 

shadda sign combined with another sign will represented by 4 

bytes. 

Figure 2 illustrates data preparation flowchart. The given 

input raw is in the form of  s = {c1,c2,... cn} where s is the 

input diacritezedword , ci is two bytes Unicode ith character 

representation and n is the input word length. The final code 

value of the current character is based on whether this 

character has a diacritic sign attached to it or not. If exists, we 

have to make difference between signs with two and four 

bytes representation. As shown in the flowchart, the first 

character is read. Based on its Unicode value, it is decided 

whether it is an Arabic character or not. By default, we get rid 

off any non-Arabic characters or diacritic signs in the input 

text. In general, there are three common cases: 

1- If the current character (ci) is an Arabic letter and 

the next character (ci+1) is another Arabic letter. 

This means that this character has no diacritic sign 

and its diacritic code will be zero and the current 

character position (i) is incremented by 1. 

2- If the current character (ci) is an Arabic letter and 

the next character (ci+1) is an Arabic diacritic sign, 

and the character (ci+2) is an Arabic letter. This 

means that the current letter is diactertized by a 

diacritic sign that has 2 bytes Unicode 

representation. Its value, denoted by (dx), is 

assigned from one value between 1 and 9 from 

Table 2. The current character position (i) is then 

incremented by 2. 

3- If the current character (ci) is an Arabic letter and 

the next two characters (ci+1, ci+2) are Arabic 

diacritic signs and the character (ci+3) is an Arabic 

letter. This means that the current letter is 

diactertized by a diacritic sign that has 4 bytes 

Unicode representation. Its value, denoted by (dy), 

is assigned from one values between 12 and 15 from 

table 2. The current character position (i) is then 

incremented by 3. 

Table 2: The proposed codes and Unicode bytes number 

of the Arabic diacritic signs 

Arabic diacritic code Unicode bytes 

without diacritic 0 0 

TanweenFathatan 1 2 

TanweenDammatan 2 2 

TanweenKasratan 3 2 

Fatha 4 2 

Dumma 5 2 

Kasra 6 2 

Shadda 8 2 

Sukon 9 2 

Shaddah + Fataha 12 4 

Shaddah + Damma 13 4 

Shaddah + Kasra 14 4 

Shaddah + Dammatan 16 4 

Shaddah + Fatahtan 15 4 
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Figure 2: Proposed data preparation flowchart.

After applying the encoding flowchart shown in Figure 2, the 

output character sequence s'={c1',c2',…..cn'}  where s' is the 

input word numeric representation, ci' is a numeric encoding 

that represents a given ith Arabic character with its diacritic 

sign as a single value and n is the input word length. Table 3 

illustrates an example of the undiacertized word (علم  Elm ) 

and 4 of its different diacrtization styles. Table 3 also shows 

the corresponding Buckwalter transliteration, Unicode values 

and proposed single character encoding. 

3.2 Proposed Model Architecture: 
This work suggests using deep encoder-decoder neural 

networks to handle Arabic diacritization signs restoration 

problem, both input and output sequence may not be equal in 

size. Therefore, encoder part of the proposed model will 

convert the input sequence into context vector, then the 

context vector will be used as input to the proposed model 

decoder, both of the proposed encoder and decoder modules 

are deep LSTM neural network with 4 layers each layer 
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consists of 1000 neuron. Network weights are randomly 

initialized to values between -1 and 1, and the starting 

learning rate is 0.01. 

 

 

Table 3: The different diacrtization styles for undiacertized word (علم  Elm), Buckwalter transliteration, Unicode values and 

proposed single character encoding representations.

Arabic word Buckwalter 

transliteration 

Unicode decimal two 

byterepresentation 

Single char code 

representation 

ل مَ   Ealima [657, 678], [668, 680], [669, 678] [457, 668, 469] ع 

ل مَ   Eulima [657, 679], [668, 680], [669, 678] [557, 668, 469] ع 

ل مَ   Eilomu [657, 680], [668, 682], [669, 679] [657, 968, 569] ع 

لَّمَ   Eal~ama [657, 678],[ 668, 681,678] , [669, 678] [457 1268 469] ع 

3.3 Encoder-Decoder Deep Neural 

Network training module: 
After preparing the fixed length encoding scheme, presented 

in previous Section, two parallel files are created. The first 

one for the undiacrtized input word codes. The second file 

contains the diacritized output word codes. The encoder-

decoder module first reads the source words using an encoder 

to build an encoder context vector. Based on this vector, the 

decoder will take it as an input and outputs diacritized word 

character sequence as illustrated in Figure 1. This iterates 

several epochs for the dataset. After completing a predefined 

number of epochs, the output of this module will be saved as 

the trained model. The general training framework is shown in 

Figure 3. 

 

 

Figure 3: Training module flowchart. 

3.4 Encoder-Decoder Deep Neural 

Network testing module: 
After building the training model, word diacrtization sequence 

can be inferred by converting input test text into its one-to-one 

encoding as given in Section 3.1. Based on the trained model 

and decoder neural network, we will get the system output in 

the form of sequence of characters one-to-one  codes. This 

code will have different diacritic values based on the proposed 

system selection for each character. Sometimes the character 

codes produced by the proposed system are replaced. In this 

case, we restore the modified characters to its original form. 

This step will not affect the diacrtization accuracy, because 

our concern will be the final diacrtization signs accuracy. 

Figure 4 Test Model flowchart 

Some postprocessing text correction operations are 

also applied on the final output text based on some 

well-known fixed Arabic diacrtization rules. 

Although the system output may be true without 

applying this set of rules, we include them for 

reliability and robustness of our method. It is 

noticed that the system performance and final 

output are enhanced after applying these rules as 

shown in the results section. These operations are: 

1- Sukun correction: There are two writing styles for 

sukundiacritic. One adds sukun and the other omits 
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it. Both styles are correct and give the same 

meaning [12]. If there is sukun in the proposed 

model output, we omit it from the test set and output 

sequences to unify dealing with this case. 

2- Missing diacritic sign before Madd letters (Alef, 

Waw, and Yaa): If the output letter is madd letter 

(Alef, Waw, or Yaa) , we change diacritic for the 

letter before this letter to the suitable diacritic with 

this madd letter, Fatha for Alef, Damma for Waw 

and Kasra for Yaa. 

3- Alef+Lam Type correction: In the Arabic language 

there are two types of Alef+Lam letters combination 

in the start of words: Alef+LamShamsia and 

Alef+LamQamria. With Alef+LamShamsia, the 

next letter must have Shadda diacritic sign 

combined with this letter diacritic sign. Alef letter 

must have Fatha and Lam is left without any sign. 

In the case of Alef+LamQamria, the next letter  

cannot have Shadda diacritic sign. 

4- Latin Words Ambiguity: 

5- Some words which are arabized from other 

languages may have more than one correct 

diacritization form as ( ان ز ير  ان,َح  ز ير  ح   ). We choose 

to consider that both forms are true diacritization for 

such words. Some Arabic words have the same 

case. In this work, a list of 83 words was prepared 

that appear in the test set and have more than one 

possible correct diacritization from. 

4. Implementation 
The proposed System was implemented using two different 

languages. C# 3.5 was used for text encoding/decoding and 

postprocessing modules. Python 3 was used to build encoder-

decoder neural network model based on TensorFlow 1.4.1® 

deep learning framework. Model training and testing were 

carried out on Intel(R) Xeon(R) CPU X5650 2.67GHz with 

64GB RAM installed with GeForce GTX 980 Ti GPU card. 

Input and output sequences are presented as plain text file. 

5. Experimental Results 

5.1 Accuracy measures 
In this paper, we present the performance using two 

measures: Diacritization Error Rate (DER) and Word Error 

Rate (WER). The DER represents how many letters diacritics 

are incorrectly restored. The WER represents the rate of 

words that have any incorrect diacritization error. These two 

measures are reported for morphological (core word) where 

the diacritic assigned to the last character of the core of the 

word (the stem) is not considered. 

5.2 Experiment’s Data Set 
Reported results in this paper were obtained by training the 

proposed approach using fully diacritized Arabic corpus that 

contains about 1 million words from  "Aljazeera" news 

annotated by RDI company in Egypt. In next subsections 

results were obtained based on test data proposed by Darwish 

et al. (2017) [23] which contains about 18300 words extracted 

from the Wikinews articles, published between 2013 and 2014 

and covers 7 different themes (politics, economics, health, 

science and technology, sports, arts, and culture). 

5.3 Performance Enhancement 
To improve our proposed system Diacritization Error Rate 

(DER), some postprocessing and correction rules are applied 

to the output. Table 4 summarizes the Word Error Rate 

(WER) and Diacritic-Error-Rate (DER) with error reduction 

ratio through each correction step and finally after applying 

all the steps as the final system results in the final row 

From results in Table 4, the proposed system Word Error Rate 

(WER) results are improved by 5.88 % and Diacritic Error 

Rate (DER) about 1.99 for morphological diacritization. Latin 

words correction steps improves Word Error Rate (WER) 

results from 8.12% to 3.85% which shows that words with 

original Arabic origins can be handled with good accuracy by 

the proposed system. Other words that have ambiguity in their 

diacritization because they are not original Arabic words and 

words that have more than correct diacritization confuse the 

proposed algorithm about how to decide the correct 

diacritization. Hence, we list these words out and consider 

both the words diacritizations are true. 

Table 4. Diacritic-Error-Rate (DER) reduction based on 

post-processing and correction rules 

Error 

Reduction  

DER(

%) 

Error 

Reduction  

WER 

(%) 

 

------- 3.11 ----- 9.73 Without Correction 

0.13 2.98 0.16 9.57 + Sukun Correction 

0. 42 2.69 1.11 8.62 + Missing diac 

before Madd letters 

correction 

0.66 2.45 1.61 8.12 + Alef+Lam Type 

correction 

1.99 1.12 5.88 3.85 +Latin words 

correction 

 

5.4 Final Results and comparisons 
Table 5 shows the comparison between our proposed 

approach and the state-of-the-art systems, on Wikinews test 

set, in terms of morphological diacritization Word Error Rate 

(WER) and Diacritic Error Rate (DER). 

Table 5: Baseline, related work, and proposed system 

Word-Error-Rate (WER) and Diacritic-Error-Rate (DER) 

for core word diacritization results. 

DER WER  

1.91 6.73  MADAMIRA (2014) [7][23] 

1.38 4.34 Abandah et al. (2015) [26] 

0.95 3.04 Rashwan et al. (2015) [19][23] 

3.89 14.87 Belinkov and Glass (2015) [1][23]    

1.06 3.29 Darwish et al. (2017) [23] 

1.12 3.85 Proposed Approach 
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From the listed results in Table 5, it can be observed that the 

proposed approach results are better than MADAMIRA [7] 

and Belinkov and Glass [1] results according to Diacritic 

Error Rate(DER) morphological diacritization while they are 

very close to Rashwan et al. [19] (2015) and Darwish et al. 

(2017) [23] in the case of morphological diacritization Word 

Error Rate(WER) and Diacritic Error Rate (DER) using 

WikiNews test set. It was noticed that the proposed system 

results are improved remarkably compared to Belinkov and 

Glass [1] which is very similar to the proposed approach. 

However, their work is based on the recurrent neural networks 

without adding any morphological or syntactical features for 

input text. Also, the proposed approach outperformed 

MADAMIRA [7] where diacritic signs are restored based on 

the morphological interpretation of the word. Abandah et al. 

(2015) [26] tried to use deep bidirectional long short-term 

memory (LSTM) network to handle Arabic language 

diacrtization problem, comparing their results to the proposed 

model results shows that results of the proposed model 

achieves about 0.5% for Word Error Rate (WER) and 0.26% 

Diacritic Error Rate (DER) enhancement. Although Rashwan 

et al. [19] and Darwish et al. (2017) [23] results slightly 

outperform our proposed model results, it is worth noting that 

their models were designed to contain different levels of word 

features to help in deciding the appropriate word diacrtization 

form. 

6. Conclusion 
In this paper, we propose a deep encoder-decoder neural 

networks based model, followed by text post-processing steps 

that handle the problem of Arabic text diacritization. The 

proposed approach can restore the missing morphological 

diacritics at high accuracy without any additional resource of 

data except the fully diacritized dataset. The Proposed 

approach achieves full coverage of Arabic words with no need 

to handle the Out Of Vocabulary (OOV) problem. The WER 

of the core word diacritization is 3.85% and DER is 1.12% 

which are very competitive to the state-of-the-art techniques. 

As a future work, we will try to handle syntactic diacritization 

(full word). Also we intend to add word context features to 

improve diacritization accuracy.  
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