
MJCIS Vol.14 No.2 Dec 2018

Mansoura Journal of Computers and Information Sciences

47

Improving DNA Computing through CRISPR based
Model and Visual DNA Tool

A.M. El-Edkawy

Computer Science Department,
Faculty of Computers and

Information
Mansoura University

Egypt

amr.eledkawy@mans.edu.eg

M.A. El-Dosuky

Computer Science Department,
Faculty of Computers and

Information
Mansoura University

Egypt

mouh_sal_010@mans.edu.eg

Taher Hamza

Computer Science Department,
Faculty of Computers and

Information
Mansoura University

Egypt

taher_hamza@yahoo.com

ABSTRACT

Since the advent of DNA computing field; there’s debate

about its ability to solve hard computational problems. A way

to deal with the debate is to design a computational model for

DNA computing and then studying its complexity power. The

main contribution of this paper is to propose a DNA

computing model that presents a usage of CRISPR in DNA

computing field. The model has three basic operations which

are merge, CRISPR and detect. The model is argued to be

robust, as the three operations are robust, and to be the

minimum model for DNA computing in terms of the number

of operations. The proposed model has corresponded with a

model inspired from the evolution of DNA sequences called

Accepting Hybrid Network of Evolutionary Processors

(AHNEPs). Based on that correspondence, the proposed

model can be used to solve NP problems in polynomial time

and PSPACE problems in polynomial space. The model is

used to solve, the NP problem, the Hamiltonian Path Problem

(HPP) in linear time. The limitations of DNA computing area

could be avoided within the model. Also, the study presents

“Visual DNA” which is a software that can simulate

biochemical operations in DNA computing. Also, the

software can make analysis for DNA sequences. So this

simulation software will offer a useful tool for the DNA

computing implementation because it will help in the analysis

of input DNA sequences and in the prediction of output DNA

sequences which would be helpful to avoid errors during the

experimental process.

General Terms

DNA Computing, Theoretical Computer Science,

Computability Theory

Keywords

Accepting Hybrid Network of Evolutionary Processors,

CRISPR, DNA Computing, NP, PSPACE, Visual DNA, HPP.

1. INTRODUCTION
Silicon chips have been the core of the computers for

over 50 years. As per Moore's Law, the number of electronic

gadgets put on a chip has doubled every 18 months.

Numerous have anticipated that Moore's Law will soon

achieve its end, in light of the physical speed and scaling

down restrictions of silicon chips so there's “No more of

Moore's Law” [43].

DNA Computing is the execution of calculations

utilizing natural particles, and DNA particularly, rather than

silicon. DNA computing is a new and attractive improvement

as interdisciplinary between molecular biology and computer

science. It has developed lately, not just as an attractive

innovation for information processing, yet additionally as a

catalyst for learning exchange between biology,

nanotechnology, and information processing. This region of

research can possibly change our comprehension of the

hypothesis and developments in computing.

The upsides of DNA over silicon consist of the following

reasons [44]:

 Huge parallelism: calculations can be achieved

simultaneously, instead of sequentially in silicon.

 Size: DNA Computers are much smaller than

silicon ones.

 Storage density: a whole lot more data can be put

away in a similar space quantity.

MJCIS Vol.14 No.2 Dec 2018

48

The fundamental part of information processing and the

capability to address it on labs at the atomic level was first

tended to by Adleman's experiment [1], which exhibited that

the devices of lab molecular biology can be utilized to

develop programs with DNA in vitro.

DNA computing methodologies can be achieved either in

vivo (i.e. inside cell living things) or in vitro (inside test

tubes). Tubes contain a finite number of DNA strands; where

each strand is composed of a set of DNA bases which are

adenine (A), cytosine (C), guanine (G), and thymine (T).

Biologically, C attaches only to G and A attaches only to T on

an complement strand of the DNA molecule. C is called the

complement of G and vice versa. A is called the complement

of T and vice versa [44].

DNA computing field first appeared for solving

Hamiltonian Path Problem (HPP), as a famous example for an

NP-complete problem, utilizing techniques of recombinant

DNA [1]. Later, NP-complete problems solutions using DNA

computing have been proposed, e.g. satisfiability (SAT) [2], 3

–SAT [3], maximal clique [4]. The influence of high-density,

parallel computation using molecules in solutions permits

computing based on DNA molecules to solve problems,

considered hard in computation like NP-complete problems,

in polynomial time whereas a traditional Turing Machine

(TM) needs exponential time [5, 6].

Nevertheless, besides the error susceptibility of

biochemical operations, DNA computing suffers from

exponential space problem [7]. The algorithm in [1] touches

its space limit with an instance of the problem of size around

60 and of size 70 in the algorithm explained in [2], and that

size of instances could be quickly solved by traditional

computers. This raises the debate about whether DNA

computing will take us to another place where a solution to all

cases of hard problems that cannot be solved in traditional TM

can be found.

A way to deal with the debate is to design a

computational model for DNA computing, then analyzing the

model by studying its power. The current models are built on

several mixtures of some basic biochemical operations shown

in the following list [8].

 Synthesize: Synthesizing the desired strand.

 Annealing: The solution is cooled to attach two

complementary single strands together.

 Marking: Using hybridization to mark single

strands, where complementary sequences transform

them double-stranded by attaching to them.

 Melting: The solution is heated to have two

complementary single strands from a double-

stranded DNA.

 Merge: Mix test tubes contents in another one to

realize unification of DNA bases.

 Amplifying: Utilizing Polymerase Chain Reaction

(PCR) to Copy strands.

 Cutting: Utilizing restriction enzymes to cut strands

at cutting sites.

 Substitution: Utilizing using PCR site-specific

oligonucleotide mutagenesis to substitute, insert or

delete sequences of DNA.

 Ligation: Utilizing ligase to attach strands that have

compatible sticky ends.

 Extraction: Utilizing affinity purification to extract

strands of the matched pattern.

 Length: Utilizing gel electrophoresis to use strands

length as a way to separate them.

 Destroying: Destroying strands by exonucleases.

 Detecting: Reading out the tube contents.

The time complexity for each of the above operations is

O(1) because they can be implemented in a constant number

of biochemical steps [45].

The main contribution of this paper is to propose a DNA

computing model that presents a usage of CRISPR [9] in

DNA computing field. The model has three operations which

are merge, CRISPR and detect. The model is argued to be

robust, as the three operations are robust, and to be the

minimum model for DNA computing. The proposed model

has corresponded with a model inspired from the evolution of

DNA sequences called Accepting Hybrid Network of

Evolutionary Processors (AHNEPs). Thus, the proposed

model can solve NP problems in polynomial time and

PSPACE problems in polynomial space. The model is used to

solve, the NP problem, the Hamiltonian Path Problem (HPP)

in linear time

Also, this study presents “Visual DNA” which is a

software that can simulate biochemical operations in DNA

computing. It can be used to make sure of the results of the

biochemical operations before doing in vitro experiments.

Also, the software can make analysis for DNA sequences. So

this simulation software will offer a useful tool for the DNA

computing implementation because it will help in the analysis

of input DNA sequences and in the prediction of output DNA

sequences which would be helpful to avoid errors during the

experimental process.

The following parts of the paper are arranged as follows.

Section 2 reviews the work done before in designing models

for DNA computing and studying its power, it also provides

an overview on AHNEP, and also presents the related work

for the simulation software. Section 3 defines the proposed

model and discusses the power of it. Section 4 explains Visual

DNA tool. Section 5 concludes the paper.

MJCIS Vol.14 No.2 Dec 2018

49

2. Previous Work

2.1 DNA computing models
The following related studies demonstrate that the choice

of possible biochemical operations, which are real or unreal,

in the models affects the power and the robustness of the

model.

In [10], a model named restricted model is proposed

that’s based on method explained in [1] where the model has

only three operations that are merge, detect and extract using

affinity purification. Also [10] studies another model named

unrestricted model that’s based on the three operations in the

restricted model plus the operation of amplify using PCR. The

study studies the complexity power of the models to be

branching programs (BP) for the restricted model and to be

nondeterministic branching programs (NBP) for the

unrestricted model.

In [11], a model is proposed that have the operations of

extraction, ligation, annealing, merge, length and detect and

the model is characterized to have the complexity power of

or equivalently .

In [12], a model called DNA-PASCAL model has twelve

instructions depending on several operations where the reality

of these operations have not been argued. They characterized

their DNA-PASCAL model computational power to be one of

the complexity classes P,
 or

 . Furthermore, in [13], a

model called DNA-EC depending on equality checking

principle. The model is similar to DNA-PASCAL model but

the operations in it are more feasible. DNA-EC model has

been characterized to simulate Universal Turing Machine.

In [14], a model based on the method used in [1] where

the model has operations of anneal, amplify, length, detect

and replaces the extract operation with substitution. The

model is characterized to have the power of PSPACE.

In [15], the study presented two models of computation

the first is called Parallel Association Memory (PAM) model

and the other is called Recombinant DNA (RDNA) model.

The latter is based on six recombinant DNA operations that’s

length, extract, anneal, melt, amplify, cut plus the operations

of merge and detect. The models are characterized to have the

power of PSPACE.

In [16, 17], a model that have five operations of the

merge, detect, synthesize, anneal and length. The power of the

computational model is between and for .

Furthermore, In [18], an expanded model of that in [16, 17] is

presented to have eight operations that are synthesize, merge,

length, detect, ligation, cut, ASM (Anneal, Separate by length,

Melt) and PM (Polymerase, Melt). That model expands the

power of the model in [16, 17] from NC to PSPACE.

There are other models of DNA computation of different

types such as self-assembly computational models [19, 20],

hairpin formation systems [21], sticker systems [22, 23], the

DNA L systems [24] and splicing systems [25].

Of all the models studied, the model in [10] named the

restricted model is the smallest in terms of the number of

operations. A possible question is there smaller models for

DNA computing, i.e., may one or more of the three operations

be excluded or be changed by a more robust and powerful

operation. Detect is the most efficient possible way for

reading information from strands of DNA, and Merge is the

only way for combining information. Extract is very

susceptible to error, especially with large sequences. Then we

ask; could we replace extract with another operation that’s

more robust and studying the effect of that change on the

computational power.

CRISPR [9] is reliable and expands the proposed model

to a higher computational power as shown in the subsequent

section. So we argue that the model proposed by the paper is

robust. Also, we argue that it’s the minimum DNA

computational model.

2.2 AHNEP
Network of Evolutionary processors (NEPs) [26] is an

inspired model from the cell evolution via the evolution of the

sequences of their DNA. It’s inspired also from the

fundamental design for distributed and parallel processing in

logic flow diagrams [27] and connection machines [28]. The

model comprises of many processors, where each one is

located in a complete graph node and deals with data in that

node. Also, each processor is evolutionary meaning that it can

do point mutation operations in a sequence of DNA

(substitution, insertion, deletion). The date in every node of

the model is organized in sets of words that have many copies

that are all parallel processed [29].

Hybrid networks of evolutionary processors (HNEPs),

wherever every processor makes only single operation on a

specific site in the words of the node. HNEPs can be language

accepting devices (AHNEPs) [29] or language generating

devices (GHNEPs) [30].

The configuration of AHNEP can be changed either by

evolutionary step using point mutation operations or by

communication step by sending strings to the connected node.

The computation in AHNEP halts if the output node contains

strings and is not empty and this case is called “accepting

computation”.

Following the literature on AHNEPs, many useful

theoretical results appear that’s shown below:

 For any TM recognizing a language there’s an AHNEP

 accepting the same language [31].

 For any nondeterministic TM , recognizing a

language there’s an AHNEP accepting the same

language . Moreover, if works within time then

 [29].

 [32].

 [32].

MJCIS Vol.14 No.2 Dec 2018

50

 [32].

 [32].

 [29, 31, 32].

 [32].

2.3 DNA Computing Tools
Several studies tried to simulate DNA Computing

operations. In [35] a simulation software for the DNA

computing algorithm in [1] is proposed. In [36] a simulation

software for the DNA computing solution of the elevator

scheduling problem is proposed.

In [37, 38] a programming language for DNA

computation is proposed based on the concept of strand

displacement. In [39] a programming language for DNA

computation is proposed based on the concept of chemical

reaction networks. In [40] a query language for DNA

computing called DNAQL is proposed. In [41] a software

called Cello is proposed where you write a Verilog code that’s

automatically transformed for DNA sequences used for

computation. In [42], the authors proposed a cloud-based tool

called Genetic Constructor that can be used for designing and

manipulating DNA fragments.

3. CRISPR Based Model

3.1 There Proposed Model Operations
There are three basic operations in the model. Merge and

detect which are mentioned before and the third is CRISPR.

Merge: pour the contents of test tubes

which are taken as input into another one which would be the

output to realize unification of bases T. The operation is

robust [18]. It can be written as

CRISPR: the operation targets and edits DNA robustly

[9], deletes and appends sequences [33] and has been shown

to be used in vitro efficiently [34]. The operation can be used

in three ways to insert, delete or substitute DNA sequences.

CRISPR can be used to implement other DNA

computing operations rather than the substitute operation thus

assuring the universality of the proposed CRISPR based

model.

It can be used as an extraction operation listed before.

Arguing that designing that is possible, just add a tag to the

Cas9 and pull the tag out. This use is named CRISPR-E.

Also, it can be used as length operation listed before.

Arguing that designing that is possible by enumerating all the

possible patterns of the length needed and using them as a

parameter for the substitute operation. This use is named

CRISPR-L.

Another usage it to operate as cut operation listed before.

Arguing that designing that is possible just by making use of

the Cas9 endonuclease enzyme for cutting. This use is named

CRISPR-C.

CRISPR instructions can be formally defined as the

following where T1 or T are given test tubes, T2 is the output

test tube, x, y, u, v are strings in a DNA strand, N is an

integer, S are given set of strings, and β0β1 are two signs.

 Substitute (T, u, v): Given a tube T, for all strands

that have string u; substitute the string u by string v

and the output still in the same tube.

 Insert (T, x, y, u): Given a tube T, for all strands that

have string x followed by string y; insert string u

between x and y and the output still in the same

tube.

 Insert (T, x, y, u): Given a tube T, for all strands that

have string x followed by string y; delete string u

between x and y and the output still in the same

tube.

 CRISPR-E (T1, S, T2): eliminates all strands having

a string in S from T1, and produces a test tube T2

with the eliminated strands;

 CRISPR-L(T1, N, T2): eliminates all strands with

length N from T1, and produces a tube T2 with the

eliminated strands;

 CRISPR-C(T, β0β1): slices every strand having

[β0β1] in T into diverse strands:

[…δβ0β1γβ0β1α…] → […δβ0], [β1γβ0], [β1α…];

Detect: the operation takes a tube as input and outputs

true or false. It returns true if T has one or more 5’→3’

strings; otherwise false is returned. The operation is robust

[16]. It can be written as

The instructions of the proposed model are listed below.

Table 1 Proposed Model Instructions

Instruction Symbol Meaning

T

A tube

that’s empty

or

containing

DNA

sequences.

Operations

Merge

Mix test

tubes

contents in

another one

to realize

unification

of DNA

bases.

Substitute

Substitute a

DNA

sequence

with

another.

T

S

MJCIS Vol.14 No.2 Dec 2018

51

CRISPR Insert

Insert DNA

sequence.

Delete

Delete DNA

sequence.

CRISPR-

E

Extract

strands of

the matched

pattern.

CRISPR-

L

Separate

strands with

a specific

length.

CRISPR-

C

Cut strands

at cutting

sites.

Detect

Read out the

tube

contents.

A program using the model is statements that have the

following format:
〈 〉, that means one

or more CRISPR operations (insert, delete, CRISPR-E,

CRISPR-L, CRISPR-C or substitute) on tubes and then merge

tubes. Note that tube can be empty prior to the merging

operation. Also with this form of statements we can make

more changes or test more variables once by making parallel

CRISPR operations on different test tubes. If in the end

there’s a tube has sequences satisfying problem we say that

the program solved .

3.2 Solving HPP using CRISPR Based

Model
The Hamiltonian Path Problem (HPP) in which there’s a

graph of vertices connected by edges and the problem is to

find a path the visits every vertex in the graph exactly once.

It’s a famous example of NP problems. The standard solution

is shown in the following figure.

Fig. 1 Standard algorithm for solving HPP.

The proposed model can be used to solve the HPP as

follows:

 Step 1: Generate random paths answer pool

We use the same encoding way used in [1] and shown in

figure 2. The algorithm represented every city isolated, single-

stranded DNA molecules, twenty bases in length, and every

single conceivable way among cities as DNA molecules made

out of the last ten bases of the leaving city and the initial ten

bases of the arrival city. Merging the DNA strands with DNA

ligase brought about all the conceivable arbitrary ways

through the cities. This step can be performed as the

following:

(1-1) encoding 20-mer oligonucleotides representing

cities in tube T1;

(1-2) encoding 20-mer oligonucleotides representing

edges in tube T2;

(1-3) Merge (T1, T2);

After merging the random paths answer pool would be in

T1. Finishing step 1 is done in O(1) time steps since each

operation have O(1) time steps.

 Step 2: Eliminate paths that don't start and end in

the start and end vertex respectively

The second step can be done by implementing CRISPR-

E instruction two times; the first to eliminate strands that

don’t start with the start vertex, and the other to eliminate

strands that don’t end in the end vertex. This step can be

performed in the proposed model as the following where S1 is

the string of the start vertex and S2 is the string of the end

vertex:

(2-1) CRISPR-E (T1, S1, T3);

(2-2) CRISPR-E (T3, S2, T4);

After these two steps; only paths that start in the start

vertex and end in the end vertex would be in T4. Finishing

step 2 is done in O(1) time steps since each operation have

O(1) time steps.

Step 5: Detect if ther is a solution or not

Step 4: Elimination of paths that have repeated vertices

Step 3: Keep only paths that visit each vertex at least
once

Step 2: Eliminate paths that don't start and end in the
start and end vertex respectively

Step 1: Generate random paths answer pool

C

I

D

E

L

L

C

MJCIS Vol.14 No.2 Dec 2018

52

Fig. 2 Random Paths Generation [1].

 Step 3: Keep only paths that visit each vertex at

least once

The third step can be done by implementing CRISPR-E

instruction n-2 times (where n is the number of vertices in the

graph); where strands that don’t have any of the vertices are

eliminated. This step can be performed in the proposed model

as the following where Sk is the string of the kth vertex:

For k=2 to k=n-1.

(3-1) CRISPR-E (Tk+2, Sk, Tk+3);

After these three steps; the output would be in Tn+2.

Finishing step 3 is done in O(n) time steps since each

operation have O(1) time steps but the “For” clause makes

this step takes O(n) time steps.

 Step 4: Elimination of paths that have repeated

vertices

 The fourth step can be implemented through CRISPR-L

by eliminating the strands that don’t have the length of the

desired solution; that length is calculated depending on the

encoding method of vertices and paths. In our encoding

method, we encoded vertices and edges with twenty bases

strands. If we have n vertices so the length of the desired

solution would be 40n. This step can be performed in the

proposed model like the following:

(4-1) CRISPR-L (Tn+2, 40n, Tn+3);

After these four steps; the output solution would be in

Tn+3. Finishing step 4 is done in O(1) time steps since each

operation have O(1) time steps.

 Step 5: Detect if there is a solution or not.

The fifth step is done using detection operation which

reads out the solution and it is implemented as follows:

(5-1) Detect (Tn+3);

After these five steps; the solution would be found in this

step if it exists. Finishing step 5 is done in O(1) time steps

since each operation have O(1) time steps.

Also, finishing all the algorithm steps could be done in a

finite number of operations. Because steps 1, 2, 4, 5 are

finished in O(1), step 3 is finished in O(n). In conclusion, the

solution of TSP for a graph with n vertices can be acquired in

O(n) steps. The proposed algorithm is linear in time.

The following table compares between the proposed HPP

algorithm using the CRISPR based model with previous HPP

algorithms.

Table 2 Comparison between previous HPP solution

algorithms and the proposed one.

Algorithm Runtime Deterministic

Brute Force O(n!) Yes

Eppstein [46] O() Yes

Blazinskas and Misevicius

[47]

O() No

Taillard and Helsgaun [48] O() No

Proposed Algorithm O(n) Yes

The Table clarifies that the proposed algorithm is the

fastest algorithm and gives the most accurate results. The

following figure clarifies that.

MJCIS Vol.14 No.2 Dec 2018

53

Fig. 3 Comparison between the proposed algorithm and

previous ones solving HPP. The x-axis is the number of nodes

in the HPP instance and the y-axis is the runtime.

3.3 Correspondence between proposed

model and AHNEP
By reference to the model of AHNEP; the simulation is

possible between AHNEP and the proposed model if we

consider the following:

 Simulating nodes that have processors with test tubes.

 Simulating words in the processors with DNA sequences

in the test tubes.

 Operations that are important for the processor to be

evolutionary all can be made using CRISPR operation.

 Communication between nodes can be simulated by the

Merge operation.

 Accepting computation in AHNEP is simulated by

Detect operation.

The following table shows the correspondence between

the two models.

Table 3 Correspondence between the proposed model

and AHNEP

Proposed Model AHNEP

Processors

DNA sequences Words

Parallel processing of DNA

sequences

Parallel processing of words

 Operations in AHNEP are the

same; substitute, insert,

delete

Edges making communication

between nodes

 returns true if T

has one or more 5’→3’

strings.

Accepting computation if the

output node contains strings.

Corollaries

Let the time complexity of programs in the proposed

model is denoted by Time(CM) 1 and the space complexity of

programs in the proposed model is denoted by Space(CM).

Let P be a program in the proposed model that could be

simulated by a language in AHNEP as shown before. With a

return to the theoretical results on AHNEP already presented

in the previous work section; the following corollaries hold:

3.4 Comparison between CM and Previous

Models
The following table shows a comparison between CM

and previous models in terms of the higher solvable class of

problems within the model, the number of operations in the

model, it is practically applicable or not, and to what extent it

is error-prone.

Table 4 Comparison between CM and Previous Models

1CM as an abbreviation for CRISPR based Model.

0

50000

100000

150000

200000

250000

300000

350000

400000

100 200 300 400 500 600

Runtime

Blazinskas and Misevicius [47]

Taillard and Helsgaun [48]

Proposed Algorithm

I

T

S D

MJCIS Vol.14 No.2 Dec 2018

54

Model Higher

solvable

class of

problems

Number

of

operations

Practically

Applicable

Error-

Prone

Restricted Model

[10]

BP 3 Yes Extremely

Unrestricted

Model [10]

NBP 3 Yes Extremely

Boneh et al.

Model [11]

 6 Yes Extremely

DNA-PASCAL

model [12]

P 12 No Extremely

DNA-EC

model[13]

P 12 No Extremely

Beaver Model

[14]

PSPACE 5 Yes Extremely

RDNA model

[15]

PSPACE 6 Yes Extremely

Ogihara and Ray

model [16, 17]

NC 5 Yes Extremely

Dantsin and

Wolpert model

[18]

PSPACE 8 Yes Extremely

Proposed Model PSPACE 3 Yes Minimal

In terms of the higher solvable class of problems, there

are models [14, 15, 18] that share the same class with the

proposed model but they use operations that are error-prone

and that is an issue that faces DNA computing field in general

[16]. Figure 4 clarifies that the proposed model is the

minimum model in the field with PSPACE power complexity.

Fig. 4 The proposed model is the minimum model in the

field with PSPACE complexity.

Fig. 5 The proposed model complexity class versus other

models with 3 operations.

In terms of the number of operations within the class,

there are models in [10] that share the minimum number of

operations with the proposed model but their complexity class

of problems is too narrow and they also use error prone-

operations [16]. Figure 5 clarifies that.

The proposed model has minimal error-prone because its

operations are robust. Merge is robust [18], CRISPR is robust

[9] and Detect is robust [18]. The proposed model is the

minimum model in the field (just have three operations) with

PSPACE complexity class of solvable problems.

4. Visual DNA
Visual DNA is a software used to implement operations

of DNA computing discussed before in the introduction. Fig.

6 shows the main window of the software that enables the

user to choose which DNA computing operation to use.

Fig. 6 Main window for Visual DNA

When the user chooses to Analyze DNA sequence; a new

window appears asking him for the sequence to be analyzed.

The sequence analysis results show each nucleotide

occurrence number and percentage in the sequence, the GC,

0
1
2
3
4
5
6
7
8
9

PSPACE PSPACE PSPACE PSPACE

Beaver
Model [14]

RDNA
model [15]

Dantsin and
Wolpert

model [18]

Proposed
Model

Number of operations

MJCIS Vol.14 No.2 Dec 2018

55

AT occurrence number, the melting temperature and the

molecular weight of the sequence (Supplementary Fig. S1).

When the user chooses “Complement DNA Sequence”

or “Reverse DNA Sequence”, a new window appears asking

him to for the DNA sequence to be complemented or reversed

consecutively. The result then is shown (Supplementary Figs

S2, S3).

The other operations require the user to enter the

contents of a test tube to make the operation on. The software

takes the test tube as a text file where the new line in the text

file means a new sequence in the test tube.

If the user chooses “Merge two Test Tubes” window; a

new window appears asking for the contents of the two test

tube contents then displaying the merge result of them

(Supplementary Fig. S4).

If the user chose “Sort Test Tube Sequences”, a window

appears asking for the test tube content then showing the

shortest, longest and remaining strands in the test tube

(Supplementary Fig. S5).

When the user chooses separate or select operation, a

new window appears asking for the test tube contents and the

pattern to separate sequences based on it or the length to

select sequences based on it consecutively. The result then is

shown (Supplementary Figs S6, S7).

When the user chooses cut, append head or append tail

operation, a new window appears asking for the test tube

contents and the pattern to cut sequences based on it, pattern

to be added at the head of every sequence or at the tail of

every sequence in the test tube consecutively. The result then

is shown (Supplementary Figs S8-S10).

When the user chooses substitute operation, a window

appears asking for the test tube contents and the pattern to be

substitutes and the pattern to be substituted with then the

result is displayed (Supplementary Fig. S11).

Visual DNA software is associated with test files for

DNA sequences and test tube content examples. The software

is implemented using C# programming language within the

.net framework 4.5.

Visual DNA is Source code is freely available at

(https://github.com/AmrEledkawy/Visual-DNA) under the

GPL license.

5. Conclusion and Future Work
In this paper, a usage for CRISPR in DNA Computing

have been proposed in the study to propose a DNA

computational model that can solve NP problems in

polynomial time and PSPACE problems in polynomial space.

The proposed model is robust and argued to be the minimum

DNA computational model. The model is used to solve, the

NP problem, the Hamiltonian Path Problem (HPP) in linear

time.

The study presented “Visual DNA” which is a software

that can simulate biochemical operations in DNA computing.

It can be used to make sure of the results of the biochemical

operations before doing in vitro experiments. Also, the

software can make analysis for DNA sequences. So this

simulation software will offer a useful tool for the DNA

computing implementation because it will help in the analysis

of input DNA sequences and in the prediction of output DNA

sequences which would be helpful to avoid errors during the

experimental process.

The future work for the simulation tool can be seen in

three ways. First is by extending the functionality of the

software to apply new operations. Second is to apply the

software for complete simulation of different DNA computing

based algorithms. Finally, trying to make it a standalone full

programming language for sake of independence.

References

[1] L.M. Adleman, Molecular computation of solutions to combinatorial

problems., Science. 266 (1994) 1021–1024.

doi:10.1126/science.7973651.

[2] R.J. Lipton, DNA Solution of Hard Computational Problems,

Science (80-.). 268 (1995) 542–545. doi:10.1126/science.7725098.

[3] R.S. Braich, Solution of a 20-Variable 3-SAT Problem on a DNA

Computer, Science (80-.). 296 (2002) 499–502.

doi:10.1126/science.1069528.

[4] Q. Ouyang, DNA Solution of the Maximal Clique Problem, Science

(80-.). 278 (1997) 446–449. doi:10.1126/science.278.5337.446.

[5] R. Impagliazzo, R. Paturi, F. Zane, Which Problems Have Strongly

Exponential Complexity?, J. Comput. Syst. Sci. 63 (2001) 512–530.

doi:10.1006/jcss.2001.1774.

[6] K. Sakamoto, D. Kiga, K. Komiya, H. Gouzu, S. Yokoyama, S.

Ikeda, H. Sugiyama, M. Hagiya, State transitions by molecules,

BioSystems. 52 (1999) 81–91. doi:10.1016/S0303-2647(99)00035-0.

[7] Hartmanis J. The structural complexity column. Bulletin of the

EATCS (1989) 37:117-26.

[8] Kari L. Laboratory techniques with potential use for computation.

[online] Csd.uwo.ca. Available at:

https://www.csd.uwo.ca/~lila/bioop.html.

[9] Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu

X, Jiang W, Marraffini LA, Zhang F. Multiplex genome engineering

using CRISPR/Cas systems. Science (2013) 339(6121):819-23.

[10] Winfree E. Complexity of restricted and unrestricted models of

molecular computation. DNA Based Computers (1995) 1:187-98.

[11] D. Boneh, C. Dunworth, R.J. Lipton, J. Sgall, On the computational

power of DNA, Discret. Appl. Math. 71 (1996) 79–94.

doi:10.1016/S0166-218X(96)00058-3.

[12] Rooß D, Wagner KW. On the power of DNA-computing.

Information and computation (1996) 131(2):95-109.

[13] Yokomori T, Kobayashi S. DNA-EC: a model of DNA computing

based on equality checking. DNA Based Computers III, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science

(1999) 48:347-60.

[14] Beaver D. Computing with DNA. Journal of Computational Biology

(1995) 2(1):1-7.

[15] Reif JH. Parallel molecular computation. InProceedings of the

seventh annual ACM symposium on Parallel algorithms and

architectures, ACM (1995) pp 213-223.

[16] Ogihara, Ray, The Minimum {DNA} Computation Model and Its

Computational Power, in: Unconv. Model. Comput., 1998.

citeseer.nj.nec.com/ogihara97minimum.html.

[17] Ogihara M. Relating the minimum model for DNA computation and

Boolean circuits. InProceedings of the 1st Annual Conference on

MJCIS Vol.14 No.2 Dec 2018

56

Genetic and Evolutionary Computation, Morgan Kaufmann

Publishers Inc. (1999) Volume 2 pp 1817-1821,

[18] Dantsin E, Wolpert A. A robust DNA computation model that

captures PSPACE. International Journal of Foundations of Computer

Science. (2003) 14(05):933-51.

[19] L. Adleman, Towards a mathematical theory of self-assembly, Univ

South. Calif. Tech Rep. 00–722 (2000) 12.

http://lims.mech.northwestern.edu/students/bernheisel/repository/adl

eman00toward.pdf.

[20] Winfree E, Eng T, Rozenberg G. String tile models for DNA

computing by self-assembly. InInternational Workshop on DNA-

Based Computers, Springer Berlin Heidelberg. (2000) pp 63-8.

[21] K. Sakamoto, Molecular Computation by DNA Hairpin Formation,

Science (80-.). 288 (2000) 1223–1226.

doi:10.1126/science.288.5469.1223.

[22] Pãun G, Rozenberg G, Salomaa A. DNA computing: new computing

paradigms. Springer Science & Business Media. (2005).

[23] S. Roweis, E. Winfree, R. Burgoyne, N. V Chelyapov, M.F.

Goodman, P.W. Rothemund, L.M. Adleman, A sticker-based model

for DNA computation, J. Comput. Biol. 5 (1998) 615–29.

doi:10.1089/cmb.1998.5.615.

[24] Salomaa A. DNA complementarity and paradigms of computing.

InInternational Computing and Combinatorics Conference, Springer

Berlin Heidelberg. (2002) pp 3-17.

[25] Pãun G, Salomaa A. DNA computing based on the splicing

operation. Mathematica Japonica.(1996) 43(3), 607--63.

[26] E. Csuhaj-Varjú, V. Mitrana, Evolutionary systems: A language

generating device inspired by evolving communities of cells, Acta

Inform. 36 (2000) 913–926.

[27] De Errico L, Jesshope C. Towards a new architecture for symbolic

processing. InProceedings of the sixth international conference on

Artificial intelligence and information-control systems of robots,

World Scientific Publishing Co, Inc. (1995) pp 31-40.

[28] W.D. Hillis, The Connection Machine, Sci. Am. 256 (1987) 108–

115.

[29] M. Margenstern, V. Mitrana, M.J. Pérez-Jiménez, Accepting hybrid

networks of evolutionary processors, Lect. Notes Comput. Sci. 3384

(2005) 235–246. doi:10.1007/b136914.

[30] Martín-Vide C, Mitrana V, Pérez-Jiménez MJ, Sancho-Caparrini F.

Hybrid networks of evolutionary processors. InGenetic and

Evolutionary Computation Conference, Springer Berlin Heidelberg.

(2003) pp 401-412.

[31] F. Manea, C. Mart??n-Vide, V. Mitrana, A universal accepting

hybrid network of evolutionary processors, in: Electron. Notes

Theor. Comput. Sci., 2006: pp. 95–105.

doi:10.1016/j.entcs.2005.09.024.

[32] F. Manea, M. Margenstern, V. Mitrana, M.J. P??rez-Jim??nez, A

new characterization of NP, P, and PSPACE with accepting hybrid

networks of evolutionary processors, Theory Comput. Syst. 46

(2010) 174–192. doi:10.1007/s00224-008-9124-z.

[33] Zhang L, Jia R, Palange NJ, Satheka AC, Togo J, An Y, Humphrey

M, Ban L, Ji Y, Jin H, Feng X. Large genomic fragment deletions

and insertions in mouse using CRISPR/Cas9. PLoS One. (2015)

10(3):e0120396.

[34] Liu Y, Tao W, Wen S, Li Z, Yang A, Deng Z, Sun Y. In vitro

CRISPR/Cas9 system for efficient targeted DNA editing. Mbio.

(2015) 6(6):e01714-15.

[35] Baskiyar, Sanjeev. "Simulating DNA computing." International

Conference on High-Performance Computing. Springer, Berlin,

Heidelberg, 2002.

[36] Muhammad, M. S., et al. "A Simulation Software for DNA

Computing Algorithms Implementation." World Academy of

Science, Engineering and Technology, International Journal of

Computer, Electrical, Automation, Control and Information

Engineering 4.12 (2010): 1819-1826.

[37] Phillips, Andrew, and Luca Cardelli. "A programming language for

composable DNA circuits." Journal of the Royal Society Interface

6.Suppl 4 (2009): S419-S436.

[38] Lakin, Matthew R., and Andrew Phillips. "Compiling DNA strand

displacement reactions using a functional programming language."

International Symposium on Practical Aspects of Declarative

Languages. Springer, Cham, 2014.

[39] Chen, Yuan-Jyue, et al. "Programmable chemical controllers made

from DNA." Nature nanotechnology 8.10 (2013): 755.

[40] Brijder, Robert, Joris JM Gillis, and Jan Van den Bussche. "The

DNA query language DNAQL." Proceedings of the 16th

International Conference on Database Theory. ACM, 2013.

[41] Nielsen, Alec AK, et al. "Genetic circuit design automation."

Science 352.6281 (2016): aac7341.

[42] Bates, Maxwell, et al. "Genetic Constructor: An online DNA design

platform." ACS synthetic biology 6.12 (2017): 2362-2365.

[43] Theis, Thomas N., and H-S. Philip Wong. "The End of Moore's

Law: A New Beginning for Information Technology." Computing in

Science & Engineering 19.2 (2017): 41-50.

[44] El-Seoud, Samir Abou, Reham Mohamed, and Samy Ghoneimy.

"DNA Computing: Challenges and Application." International

Journal of Interactive Mobile Technologies 11.2 (2017).

[45] S. Soo-Yong, Z. Byoung-Tak, J. Sung-Soo, Solving traveling

salesman problems using molecular programming, Proc. 1999

Congr. Evol. Comput. (Cat. No. 99TH8406). 2 (1999) 994–1000.

doi:10.1109/CEC.1999.782531.

[46] Eppstein, D. The traveling salesman problem for cubic graphs. In

Proceedings of the 8th Workshop on Algorithms and Data

Structures. Lecture Notes in Computer Science, vol. 2748. Springer-

Verlag, New York, (2003) 307–318.

[47] Blazinskas, A. and Misevicius, A. Generating high quality candidate

sets by tour merging for the traveling salesman problem. In Tomas

Skersys, Rimantas Butleris, and Rita Butkiene, editors, Information

and Software Technologies: 18th International Conference

Proceedings, ICIST 2012, Kaunas, Lithuania, September 13-14,

2012, pages 62–73. Springer, Berlin, Heidelberg, 2012.

[48] Taillard, Éric D., and Keld Helsgaun. "POPMUSIC for the travelling

salesman problem." European Journal of Operational Research 272.2

(2019): 420-429.

