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ABSTRACT 

Since the advent of DNA computing field; there’s debate 

about its ability to solve hard computational problems. A way 

to deal with the debate is to design a computational model for 

DNA computing and then studying its complexity power. The 

main contribution of this paper is to propose a DNA 

computing model that presents a usage of CRISPR in DNA 

computing field. The model has three basic operations which 

are merge, CRISPR and detect. The model is argued to be 

robust, as the three operations are robust, and to be the 

minimum model for DNA computing in terms of the number 

of operations. The proposed model has corresponded with a 

model inspired from the evolution of DNA sequences called 

Accepting Hybrid Network of Evolutionary Processors 

(AHNEPs). Based on that correspondence, the proposed 

model can be used to solve NP problems in polynomial time 

and PSPACE problems in polynomial space. The model is 

used to solve, the NP problem, the Hamiltonian Path Problem 

(HPP) in linear time. The limitations of DNA computing area 

could be avoided within the model. Also, the study presents 

“Visual DNA” which is a software that can simulate 

biochemical operations in DNA computing. Also, the 

software can make analysis for DNA sequences. So this 

simulation software will offer a useful tool for the DNA 

computing implementation because it will help in the analysis 

of input DNA sequences and in the prediction of output DNA 

sequences which would be helpful to avoid errors during the 

experimental process. 

General Terms 

DNA Computing, Theoretical Computer Science, 

Computability Theory 

Keywords 

Accepting Hybrid Network of Evolutionary Processors, 

CRISPR, DNA Computing, NP, PSPACE, Visual DNA, HPP. 

1. INTRODUCTION 
Silicon chips have been the core of the computers for 

over 50 years. As per Moore's Law, the number of electronic 

gadgets put on a chip has doubled every 18 months. 

Numerous have anticipated that Moore's Law will soon 

achieve its end, in light of the physical speed and scaling 

down restrictions of silicon chips so there's “No more of 

Moore's Law” [43]. 

DNA Computing is the execution of calculations 

utilizing natural particles, and DNA particularly, rather than 

silicon. DNA computing is a new and attractive improvement 

as interdisciplinary between molecular biology and computer 

science. It has developed lately, not just as an attractive 

innovation for information processing, yet additionally as a 

catalyst for learning exchange between biology, 

nanotechnology, and information processing. This region of 

research can possibly change our comprehension of the 

hypothesis and developments in computing. 

The upsides of DNA over silicon consist of the following 

reasons [44]:  

 Huge parallelism: calculations can be achieved 

simultaneously, instead of sequentially in silicon.  

 Size: DNA Computers are much smaller than 

silicon ones.  

 Storage density: a whole lot more data can be put 

away in a similar space quantity. 
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The fundamental part of information processing and the 

capability to address it on labs at the atomic level was first 

tended to by Adleman's experiment [1], which exhibited that 

the devices of lab molecular biology can be utilized to 

develop programs with DNA in vitro.  

DNA computing methodologies can be achieved either in 

vivo (i.e. inside cell living things) or in vitro (inside test 

tubes). Tubes contain a finite number of DNA strands; where 

each strand is composed of a set of DNA bases which are 

adenine (A), cytosine (C), guanine (G), and thymine (T). 

Biologically, C attaches only to G and A attaches only to T on 

an complement strand of the DNA molecule. C is called the 

complement of G and vice versa. A is called the complement 

of T and vice versa [44]. 

DNA computing field first appeared for solving 

Hamiltonian Path Problem (HPP), as a famous example for an 

NP-complete problem, utilizing techniques of recombinant 

DNA [1]. Later, NP-complete problems solutions using DNA 

computing have been proposed, e.g. satisfiability (SAT) [2], 3 

–SAT [3], maximal clique [4].  The influence of high-density, 

parallel computation using molecules in solutions permits 

computing based on DNA molecules to solve problems, 

considered hard in computation like NP-complete problems, 

in polynomial time whereas a traditional Turing Machine 

(TM) needs exponential time [5, 6]. 

Nevertheless, besides the error susceptibility of 

biochemical operations, DNA computing suffers from 

exponential space problem [7]. The algorithm in [1] touches 

its space limit with an instance of the problem of size around 

60 and of size 70 in the algorithm explained in [2], and that 

size of instances could be quickly solved by traditional 

computers. This raises the debate about whether DNA 

computing will take us to another place where a solution to all 

cases of hard problems that cannot be solved in traditional TM 

can be found. 

A way to deal with the debate is to design a 

computational model for DNA computing, then analyzing the 

model by studying its power. The current models are built on 

several mixtures of some basic biochemical operations shown 

in the following list [8]. 

 Synthesize: Synthesizing the desired strand. 

 Annealing: The solution is cooled to attach two 

complementary single strands together. 

 Marking: Using hybridization to mark single 

strands, where complementary sequences transform 

them double-stranded by attaching to them. 

 Melting: The solution is heated to have two 

complementary single strands from a double-

stranded DNA. 

 Merge: Mix test tubes contents in another one to 

realize unification of DNA bases. 

 Amplifying: Utilizing Polymerase Chain Reaction 

(PCR) to Copy strands. 

 Cutting: Utilizing restriction enzymes to cut strands 

at cutting sites. 

 Substitution: Utilizing using PCR site-specific 

oligonucleotide mutagenesis to substitute, insert or 

delete sequences of DNA. 

 Ligation: Utilizing ligase to attach strands that have 

compatible sticky ends.  

 Extraction: Utilizing affinity purification to extract 

strands of the matched pattern. 

 Length: Utilizing gel electrophoresis to use strands 

length as a way to separate them.  

 Destroying: Destroying strands by exonucleases. 

 Detecting: Reading out the tube contents. 

The time complexity for each of the above operations is 

O(1) because they can be implemented in a constant number 

of biochemical steps [45]. 

The main contribution of this paper is to propose a DNA 

computing model that presents a usage of CRISPR [9] in 

DNA computing field. The model has three operations which 

are merge, CRISPR and detect. The model is argued to be 

robust, as the three operations are robust, and to be the 

minimum model for DNA computing. The proposed model 

has corresponded with a model inspired from the evolution of 

DNA sequences called Accepting Hybrid Network of 

Evolutionary Processors (AHNEPs). Thus, the proposed 

model can solve NP problems in polynomial time and 

PSPACE problems in polynomial space. The model is used to 

solve, the NP problem, the Hamiltonian Path Problem (HPP) 

in linear time 

Also, this study presents “Visual DNA” which is a 

software that can simulate biochemical operations in DNA 

computing.  It can be used to make sure of the results of the 

biochemical operations before doing in vitro experiments. 

Also, the software can make analysis for DNA sequences. So 

this simulation software will offer a useful tool for the DNA 

computing implementation because it will help in the analysis 

of input DNA sequences and in the prediction of output DNA 

sequences which would be helpful to avoid errors during the 

experimental process. 

The following parts of the paper are arranged as follows. 

Section 2 reviews the work done before in designing models 

for DNA computing and studying its power, it also provides 

an overview on AHNEP, and also presents the related work 

for the simulation software. Section 3 defines the proposed 

model and discusses the power of it. Section 4 explains Visual 

DNA tool. Section 5 concludes the paper.  
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2. Previous Work 

2.1 DNA computing models 
The following related studies demonstrate that the choice 

of possible biochemical operations, which are real or unreal, 

in the models affects the power and the robustness of the 

model. 

In [10], a model named restricted model is proposed 

that’s based on method explained in [1] where the model has 

only three operations that are merge, detect and extract using 

affinity purification. Also [10] studies another model named 

unrestricted model that’s based on the three operations in the 

restricted model plus the operation of amplify using PCR. The 

study studies the complexity power of the models to be 

branching programs (BP) for the restricted model and to be 

nondeterministic branching programs (NBP) for the 

unrestricted model. 

In [11], a model is proposed that have the operations of 

extraction, ligation, annealing, merge, length and detect and 

the model is characterized to have the complexity power of   
  

or equivalently    .  

In [12], a model called DNA-PASCAL model has twelve 

instructions depending on several operations where the reality 

of these operations have not been argued. They characterized 

their DNA-PASCAL model computational power to be one of 

the complexity classes P,   
  or   

 . Furthermore, in [13], a 

model called DNA-EC depending on equality checking 

principle. The model is similar to DNA-PASCAL model but 

the operations in it are more feasible. DNA-EC model has 

been characterized to simulate Universal Turing Machine. 

In [14], a model based on the method used in [1] where 

the model has operations of anneal, amplify, length, detect 

and replaces the extract operation with substitution. The 

model is characterized to have the power of PSPACE.  

In [15], the study presented two models of computation 

the first is called Parallel Association Memory (PAM) model 

and the other is called Recombinant DNA (RDNA) model. 

The latter is based on six recombinant DNA operations that’s 

length, extract, anneal, melt, amplify, cut plus the operations 

of merge and detect. The models are characterized to have the 

power of PSPACE.   

In [16, 17], a model that have five operations of the 

merge, detect, synthesize, anneal and length. The power of the 

computational model is between     and        for    . 

Furthermore, In [18], an expanded model of that in [16, 17] is 

presented to have eight operations that are synthesize, merge, 

length, detect, ligation, cut, ASM (Anneal, Separate by length, 

Melt) and PM (Polymerase, Melt). That model expands the 

power of the model in [16, 17] from NC to PSPACE. 

There are other models of DNA computation of different 

types such as self-assembly computational models [19, 20], 

hairpin formation systems [21], sticker systems [22, 23], the 

DNA L systems [24] and splicing systems [25]. 

Of all the models studied, the model in [10] named the 

restricted model is the smallest in terms of the number of 

operations. A possible question is there smaller models for 

DNA computing, i.e., may one or more of the three operations 

be excluded or be changed by a more robust and powerful 

operation. Detect is the most efficient possible way for 

reading information from strands of DNA, and Merge is the 

only way for combining information. Extract is very 

susceptible to error, especially with large sequences. Then we 

ask; could we replace extract with another operation that’s 

more robust and studying the effect of that change on the 

computational power.  

CRISPR [9] is reliable and expands the proposed model 

to a higher computational power as shown in the subsequent 

section. So we argue that the model proposed by the paper is 

robust. Also, we argue that it’s the minimum DNA 

computational model. 

2.2 AHNEP 
Network of Evolutionary processors (NEPs) [26] is an 

inspired model from the cell evolution via the evolution of the 

sequences of their DNA. It’s inspired also from the 

fundamental design for distributed and parallel processing in 

logic flow diagrams [27] and connection machines [28]. The 

model comprises of many processors, where each one is 

located in a complete graph node and deals with data in that 

node. Also, each processor is evolutionary meaning that it can 

do point mutation operations in a sequence of DNA 

(substitution, insertion, deletion). The date in every node of 

the model is organized in sets of words that have many copies 

that are all parallel processed [29]. 

Hybrid networks of evolutionary processors (HNEPs), 

wherever every processor makes only single operation on a 

specific site in the words of the node. HNEPs can be language 

accepting devices (AHNEPs) [29] or language generating 

devices (GHNEPs) [30]. 

The configuration of AHNEP can be changed either by 

evolutionary step using point mutation operations or by 

communication step by sending strings to the connected node. 

The computation in AHNEP halts if the output node contains 

strings and is not empty and this case is called “accepting 

computation”.   

Following the literature on AHNEPs, many useful 

theoretical results appear that’s shown below: 

 For any TM recognizing a language   there’s an AHNEP 

  accepting the same language   [31]. 

 For any nondeterministic TM   , recognizing a 

language   there’s an AHNEP   accepting the same 

language  . Moreover, if   works within time      then 

                  [29]. 

                     [32]. 

                            [32]. 



MJCIS   Vol.14   No.2    Dec 2018   

 

50 

                            [32]. 

                      [32]. 

                      [29, 31, 32]. 

                           [32]. 

2.3 DNA Computing Tools 
Several studies tried to simulate DNA Computing 

operations. In [35] a simulation software for the DNA 

computing algorithm in [1] is proposed. In [36] a simulation 

software for the DNA computing solution of the elevator 

scheduling problem is proposed. 

In [37, 38] a programming language for DNA 

computation is proposed based on the concept of strand 

displacement. In [39] a programming language for DNA 

computation is proposed based on the concept of chemical 

reaction networks. In [40] a query language for DNA 

computing called DNAQL is proposed. In [41] a software 

called Cello is proposed where you write a Verilog code that’s 

automatically transformed for DNA sequences used for 

computation. In [42], the authors proposed a cloud-based tool 

called Genetic Constructor that can be used for designing and 

manipulating DNA fragments.   

3. CRISPR Based Model 

3.1 There Proposed Model Operations 
There are three basic operations in the model. Merge and 

detect which are mentioned before and the third is CRISPR. 

Merge: pour the contents of test tubes           

which are taken as input into another one which would be the 

output to realize unification of bases T. The operation is 

robust [18]. It can be written as                  

CRISPR: the operation targets and edits DNA robustly 

[9], deletes and appends sequences [33] and has been shown 

to be used in vitro efficiently [34]. The operation can be used 

in three ways to insert, delete or substitute DNA sequences. 

CRISPR can be used to implement other DNA 

computing operations rather than the substitute operation thus 

assuring the universality of the proposed CRISPR based 

model. 

It can be used as an extraction operation listed before. 

Arguing that designing that is possible, just add a tag to the 

Cas9 and pull the tag out. This use is named CRISPR-E. 

Also, it can be used as length operation listed before. 

Arguing that designing that is possible by enumerating all the 

possible patterns of the length needed and using them as a 

parameter for the substitute operation. This use is named 

CRISPR-L. 

Another usage it to operate as cut operation listed before. 

Arguing that designing that is possible just by making use of 

the Cas9 endonuclease enzyme for cutting. This use is named 

CRISPR-C. 

CRISPR instructions can be formally defined as the 

following where T1 or T are given test tubes, T2 is the output 

test tube, x, y, u, v are strings in a DNA strand, N is an 

integer, S are given set of strings, and β0β1 are two signs. 

 Substitute (T, u, v): Given a tube T, for all strands 

that have string u; substitute the string u by string v 

and the output still in the same tube. 

 Insert (T, x, y, u): Given a tube T, for all strands that 

have string x followed by string y; insert string u 

between x and y and the output still in the same 

tube. 

 Insert (T, x, y, u): Given a tube T, for all strands that 

have string x followed by string y; delete string u 

between x and y and the output still in the same 

tube. 

 CRISPR-E (T1, S, T2): eliminates all strands having 

a string in S from T1, and produces a test tube T2 

with the eliminated strands; 

 CRISPR-L(T1, N, T2): eliminates all strands with 

length N from T1, and produces a tube T2 with the 

eliminated strands; 

 CRISPR-C(T, β0β1): slices every strand having 

[β0β1] in T into diverse strands: 

[…δβ0β1γβ0β1α…] → […δβ0], [β1γβ0], [β1α…]; 

Detect: the operation takes a tube as input and outputs 

true or false. It returns true if T has one or more 5’→3’ 

strings; otherwise false is returned. The operation is robust 

[16]. It can be written as            

The instructions of the proposed model are listed below. 

 

Table 1 Proposed Model Instructions 

Instruction Symbol  Meaning  

T 
 

A tube 

that’s empty 

or 

containing 

DNA 

sequences. 

 

 

 

 

 

Operations 

Merge 
 

Mix test 

tubes 

contents in 

another one 

to realize 

unification 

of DNA 

bases. 

 

 

 

Substitute 
 

Substitute a 

DNA 

sequence 

with 

another. 

T 

 

S 
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CRISPR Insert 
 

Insert DNA 

sequence. 

Delete 
 

Delete DNA 

sequence. 

CRISPR-

E 

 

Extract 

strands of 

the matched 

pattern. 

CRISPR-

L 

 

Separate 

strands with 

a specific 

length. 

CRISPR-

C 

 

Cut strands 

at cutting 

sites. 

Detect 
 

Read out the 

tube 

contents. 

 

A program using the model is statements that have the 

following format: 
〈                              〉, that means one 

or more CRISPR operations (insert, delete, CRISPR-E, 

CRISPR-L, CRISPR-C or substitute) on tubes and then merge 

tubes. Note that tube   can be empty prior to the merging 

operation. Also with this form of statements we can make 

more changes or test more variables once by making parallel 

CRISPR operations on different test tubes. If in the end 

there’s a tube has sequences satisfying problem   we say that 

the program solved  . 

3.2 Solving HPP using CRISPR Based 

Model 
The Hamiltonian Path Problem (HPP) in which there’s a 

graph of vertices connected by edges and the problem is to 

find a path the visits every vertex in the graph exactly once. 

It’s a famous example of NP problems. The standard solution 

is shown in the following figure. 

 

 

Fig. 1 Standard algorithm for solving HPP. 

 

The proposed model can be used to solve the HPP as 

follows: 

 Step 1: Generate random paths answer pool 

We use the same encoding way used in [1] and shown in 

figure 2. The algorithm represented every city isolated, single-

stranded DNA molecules, twenty bases in length, and every 

single conceivable way among cities as DNA molecules made 

out of the last ten bases of the leaving city and the initial ten 

bases of the arrival city. Merging the DNA strands with DNA 

ligase brought about all the conceivable arbitrary ways 

through the cities. This step can be performed as the 

following: 

(1-1) encoding 20-mer oligonucleotides representing 

cities in tube T1; 

(1-2) encoding 20-mer oligonucleotides representing 

edges in tube T2; 

(1-3) Merge (T1, T2); 

After merging the random paths answer pool would be in 

T1. Finishing step 1 is done in O(1) time steps since each 

operation have O(1) time steps. 

 Step 2: Eliminate paths that don't start and end in 

the start and end vertex respectively 

The second step can be done by implementing CRISPR-

E instruction two times; the first to eliminate strands that 

don’t start with the start vertex, and the other to eliminate 

strands that don’t end in the end vertex. This step can be 

performed in the proposed model as the following where S1 is 

the string of the start vertex and S2 is the string of the end 

vertex: 

(2-1) CRISPR-E (T1, S1, T3); 

(2-2) CRISPR-E (T3, S2, T4); 

After these two steps; only paths that start in the start 

vertex and end in the end vertex would be in T4. Finishing 

step 2 is done in O(1) time steps since each operation have 

O(1) time steps. 

 

Step 5: Detect if ther is a solution or not 

Step 4: Elimination of paths that have repeated vertices 

Step 3: Keep only paths that visit each vertex at least 
once 

Step 2: Eliminate paths that don't start and end in the 
start and end vertex respectively 

Step 1: Generate random paths answer pool 

C 

I 

D 

E 

L 

L 

C 
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Fig. 2 Random Paths Generation [1]. 

 Step 3: Keep only paths that visit each vertex at 

least once 

The third step can be done by implementing CRISPR-E 

instruction n-2 times (where n is the number of vertices in the 

graph); where strands that don’t have any of the vertices are 

eliminated. This step can be performed in the proposed model 

as the following where Sk is the string of the kth vertex: 

For k=2 to k=n-1. 

(3-1) CRISPR-E (Tk+2, Sk, Tk+3); 

After these three steps; the output would be in Tn+2. 

Finishing step 3 is done in O(n) time steps since each 

operation have O(1) time steps but the “For” clause makes 

this step takes O(n) time steps. 

 Step 4: Elimination of paths that have repeated 

vertices 

 The fourth step can be implemented through CRISPR-L 

by eliminating the strands that don’t have the length of the 

desired solution; that length is calculated depending on the 

encoding method of vertices and paths. In our encoding 

method, we encoded vertices and edges with twenty bases 

strands. If we have n vertices so the length of the desired 

solution would be 40n. This step can be performed in the 

proposed model like the following: 

(4-1) CRISPR-L (Tn+2, 40n, Tn+3); 

After these four steps; the output solution would be in 

Tn+3.  Finishing step 4 is done in O(1) time steps since each 

operation have O(1) time steps. 

 

 Step 5: Detect if there is a solution or not. 

The fifth step is done using detection operation which 

reads out the solution and it is implemented as follows:  

(5-1) Detect (Tn+3); 

After these five steps; the solution would be found in this 

step if it exists. Finishing step 5 is done in O(1) time steps 

since each operation have O(1) time steps. 

Also, finishing all the algorithm steps could be done in a 

finite number of operations. Because steps 1, 2, 4, 5 are 

finished in O(1), step 3 is finished in O(n). In conclusion, the 

solution of TSP for a graph with n vertices can be acquired in 

O(n) steps. The proposed algorithm is linear in time. 

The following table compares between the proposed HPP 

algorithm using the CRISPR based model with previous HPP 

algorithms. 

 

Table 2 Comparison between previous HPP solution 

algorithms and the proposed one. 

Algorithm Runtime Deterministic 

Brute Force O(n!) Yes 

Eppstein [46] O(    ) Yes 

Blazinskas and Misevicius 

[47] 

O(  ) No 

Taillard and Helsgaun [48] O(    ) No 

Proposed Algorithm O(n) Yes 

 

The Table clarifies that the proposed algorithm is the 

fastest algorithm and gives the most accurate results. The 

following figure clarifies that. 
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Fig. 3 Comparison between the proposed algorithm and 

previous ones solving HPP. The x-axis is the number of nodes 

in the HPP instance and the y-axis is the runtime. 

 

3.3 Correspondence between proposed 

model and AHNEP  
By reference to the model of AHNEP; the simulation is 

possible between AHNEP and the proposed model if we 

consider the following: 

 Simulating nodes that have processors with test tubes. 

 Simulating words in the processors with DNA sequences 

in the test tubes. 

 Operations that are important for the processor to be 

evolutionary all can be made using CRISPR operation. 

 Communication between nodes can be simulated by the 

Merge operation. 

 Accepting computation in AHNEP is simulated by 

Detect operation. 

The following table shows the correspondence between 

the two models. 

 

Table 3 Correspondence between the proposed model 

and AHNEP 

Proposed Model AHNEP 

 

Processors 

DNA sequences Words 

Parallel processing of DNA 

sequences 

Parallel processing of words 

                                      Operations in AHNEP are the 

same; substitute, insert, 

delete 

 

Edges making communication 

between nodes 

          returns true if  T 

has one or more 5’→3’ 

strings.  

Accepting computation if the 

output node contains strings. 

 

Corollaries 

Let the time complexity of programs in the proposed 

model is denoted by Time(CM) 1  and the space complexity of 

programs in the proposed model is denoted by Space(CM). 

Let P be a program in the proposed model that could be 

simulated by a language in AHNEP as shown before. With a 

return to the theoretical results on AHNEP already presented 

in the previous work section; the following corollaries hold:  

                    

                          

                          

                     

                    

                        

 

3.4 Comparison between CM and Previous 

Models 
The following table shows a comparison between CM 

and previous models in terms of the higher solvable class of 

problems within the model, the number of operations in the 

model, it is practically applicable or not, and to what extent it 

is error-prone.  

 

Table 4 Comparison between CM and Previous Models 

                                                           
1CM as an abbreviation for CRISPR based Model. 

0

50000

100000

150000

200000

250000

300000

350000

400000

100 200 300 400 500 600 

Runtime 

Blazinskas and Misevicius [47]

Taillard and Helsgaun [48]

Proposed Algorithm

I 

T 

S D 
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Model Higher 

solvable 

class of 

problems 

Number 

of 

operations 

Practically 

Applicable 

Error-

Prone 

Restricted Model 

[10] 

BP 3 Yes Extremely 

Unrestricted 

Model [10] 

NBP 3 Yes Extremely 

Boneh et al. 

Model [11] 

    6 Yes Extremely 

DNA-PASCAL 

model [12] 

P 12 No Extremely 

DNA-EC 

model[13] 

P 12 No Extremely 

Beaver Model 

[14] 

PSPACE 5 Yes Extremely 

RDNA model 

[15] 

PSPACE 6 Yes Extremely 

Ogihara and Ray 

model [16, 17] 

NC 5 Yes Extremely 

Dantsin and 

Wolpert model 

[18] 

PSPACE 8 Yes Extremely 

Proposed Model PSPACE 3 Yes Minimal 

 

In terms of the higher solvable class of problems, there 

are models [14, 15, 18] that share the same class with the 

proposed model but they use operations that are error-prone 

and that is an issue that faces DNA computing field in general 

[16]. Figure 4 clarifies that the proposed model is the 

minimum model in the field with PSPACE power complexity. 

 

Fig. 4 The proposed model is the minimum model in the 

field with PSPACE complexity. 

 

 

Fig. 5 The proposed model complexity class versus other 

models with 3 operations. 

 

In terms of the number of operations within the class, 

there are models in [10] that share the minimum number of 

operations with the proposed model but their complexity class 

of problems is too narrow and they also use error prone-

operations [16]. Figure 5 clarifies that. 

The proposed model has minimal error-prone because its 

operations are robust. Merge is robust [18], CRISPR is robust 

[9] and Detect is robust [18]. The proposed model is the 

minimum model in the field (just have three operations) with 

PSPACE complexity class of solvable problems.  

4. Visual DNA 
Visual DNA is a software used to implement operations 

of DNA computing discussed before in the introduction. Fig. 

6 shows the main window of the software that enables the 

user to choose which DNA computing operation to use. 

 

 

Fig. 6 Main window for Visual DNA 

 

When the user chooses to Analyze DNA sequence; a new 

window appears asking him for the sequence to be analyzed. 

The sequence analysis results show each nucleotide 

occurrence number and percentage in the sequence, the GC, 

0
1
2
3
4
5
6
7
8
9

PSPACE PSPACE PSPACE PSPACE

Beaver
Model [14]

RDNA
model [15]

Dantsin and
Wolpert

model [18]

Proposed
Model

Number of operations 
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AT occurrence number, the melting temperature and the 

molecular weight of the sequence (Supplementary Fig. S1). 

When the user chooses “Complement DNA Sequence” 

or “Reverse DNA Sequence”, a new window appears asking 

him to for the DNA sequence to be complemented or reversed 

consecutively. The result then is shown (Supplementary Figs 

S2, S3). 

The other operations require the user to enter the 

contents of a test tube to make the operation on. The software 

takes the test tube as a text file where the new line in the text 

file means a new sequence in the test tube. 

If the user chooses “Merge two Test Tubes” window; a 

new window appears asking for the contents of the two test 

tube contents then displaying the merge result of them 

(Supplementary Fig. S4). 

If the user chose “Sort Test Tube Sequences”, a window 

appears asking for the test tube content then showing the 

shortest, longest and remaining strands in the test tube 

(Supplementary Fig. S5). 

When the user chooses separate or select operation, a 

new window appears asking for the test tube contents and the 

pattern to separate sequences based on it or the length to 

select sequences based on it consecutively. The result then is 

shown (Supplementary Figs S6, S7). 

When the user chooses cut, append head or append tail 

operation, a new window appears asking for the test tube 

contents and the pattern to cut sequences based on it, pattern 

to be added at the head of every sequence or at the tail of 

every sequence in the test tube consecutively. The result then 

is shown (Supplementary Figs S8-S10). 

When the user chooses substitute operation, a window 

appears asking for the test tube contents and the pattern to be 

substitutes and the pattern to be substituted with then the 

result is displayed (Supplementary Fig. S11). 

Visual DNA software is associated with test files for 

DNA sequences and test tube content examples. The software 

is implemented using C# programming language within the 

.net framework 4.5. 

Visual DNA is Source code is freely available at 

(https://github.com/AmrEledkawy/Visual-DNA) under the 

GPL license. 

5. Conclusion and Future Work 
In this paper, a usage for CRISPR in DNA Computing 

have been proposed in the study to propose a DNA 

computational model that can solve NP problems in 

polynomial time and PSPACE problems in polynomial space. 

The proposed model is robust and argued to be the minimum 

DNA computational model. The model is used to solve, the 

NP problem, the Hamiltonian Path Problem (HPP) in linear 

time. 

The study presented “Visual DNA” which is a software 

that can simulate biochemical operations in DNA computing.  

It can be used to make sure of the results of the biochemical 

operations before doing in vitro experiments. Also, the 

software can make analysis for DNA sequences. So this 

simulation software will offer a useful tool for the DNA 

computing implementation because it will help in the analysis 

of input DNA sequences and in the prediction of output DNA 

sequences which would be helpful to avoid errors during the 

experimental process.  

The future work for the simulation tool can be seen in 

three ways. First is by extending the functionality of the 

software to apply new operations. Second is to apply the 

software for complete simulation of different DNA computing 

based algorithms. Finally, trying to make it a standalone full 

programming language for sake of independence. 
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