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Abstract 

In an attempt to improve and develop biologically potential anticancer agents, a novel set of indeno[2,1-e][1,3,4]oxadiazinone 

2a-f was designed and constructed via a reaction of ninhydrine, hydrazine hydrate and the appropriate isothiocyanate. The 

anticancer impact of the newly prepared compounds 2a-f was assessed in vitro against A549, MCF-7 and HepG2 cell lines. 

The cyclohexylmethylaminoindenooxadiazinone derivative 2f was the most active candidate towards A549 and HepG2 with 

IC50 (64.88 and 39.18 µg/ml), respectively. A molecular docking study was done within EGFR active site to predict the 

binding mode of the novel compounds. Both compounds 2b and 2f recorded high binding energy scores with the excellent 

fitting with the active site. ADME study results displayed compounds 2b and 2f registered positive values showing good 

drug-likeness behaviour. Multiple linear regression analysis was used to construct consistent QSAR models based on quantum 

mechanics-derived chemical descriptors. Hence, it is possible to speculate that the novel compound 2f could be considered an 

anticancer lead compound.  
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1. Introduction 

Small compounds are frequently employed in 

chemical biology to disrupt intricate biological 

processes as both therapeutic agents and research 

tools [1-3]. The initial plan for a mild and effective 

synthesis of indene derivatives focused on the base-

promoted tandem Michael addition-intramolecular 5-

exo cyclization reaction of starting materials. In the 

Michael addition procedure, several nucleophiles 

were employed, such as indole, imidazoles, or 2-

isocyanoacetates[2]. 

Many pharmacological properties, including 

antitumor, anticoagulant, anti-inflammatory, 

neuroprotective, and antibacterial, are present in 

indan-1,3-dione derivatives [4]. In addition, 

molecules with the indan-1,3-dione core have been 

identified from the natural world [5,6]. For instance, 

the natural spiro indan-1,3-dione fredericamycin A 

exhibits antitumor antibiotic action [7,8]. Indane-1,3-

dione and its derivatives play important roles in 

biological processes and are essential in synthesizing 

chemical molecules. Numerous compounds of 

leishmanicidal and cytotoxic 2arylidene indane 1,3 

diones [9]. 
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Indanone derivatives have received a great deal of 

attention since many synthetically bioactive 

compounds incorporating the indanone scaffold were 

reported to reveal a wide range of biological potential 

as anti-inflammatory [10-12], antimicrobial [13-15], 

antioxidant [16], monoamine oxidase inhibitors 

[17,18], antiviral [19-22] and anticancer [23-28]. 

Novel indanones were constructed and assessed for 

their anticancer potential against breast carcinoma 

cell line MCF-7 and cervical carcinoma cell line 

(HELA) [29]. Oxadiazine heterocycle drawn 

chemists' attention due to its potential 

pharmacological activities as an antioxidant [30,31], 

anti-hepatotoxic [32], insecticide [33,34], 

antimicrobial [35,36], monoamine oxidase inhibitor 

[37], anticancer [38-40]. New derivatives of 

oxadiazines had been synthesized and screened for 

their anticancer activity against breast 

adenocarcinoma (MCF-7), CNS cancer (SF-268) and 

non-small cell lung cancer (NCI-H460) [41].  

One of the most significant classes of insecticides 

was the oxadiazine pesticides. The DuPont Company 

created the revolutionary broad-spectrum oxadiazine 

insecticide Indoxacarb, which was a well-known 

inhibitor of sodium channels and has shown 

exceptional field activity, high efficiency, 

mammalian safety, low toxicity, environmental 

compatibility, no cross-resistance, and a novel 

method of action with great crop protection and 

minimal mammalian toxicity [42-44]. 

Continuing our efforts to construct novel heterocycles 

with potent pharmacological potential [45-54], we 

record here a modification of indanone into 

condensed Oxadiazine derivatives incorporating the 

indanone moiety. The molecular mechanisms of 

anticancer drug interactions are currently poorly 

understood. This tremendously complex subject 

would benefit greatly from the alternative, the more 

adaptable viewpoint that computational tools like 

Quantitative Structure-Activity Relationship (QSAR) 

can provide. AA credible predictive QSAR model 

may provide fresh insights into the medications' 

action mode while guiding molecular screening and 

design [55-57]. The underlying premise of all QSAR 

research is that structurally related compounds have 

similar physicochemical properties and are expected 

to have a similar biological effect. In general, 

molecular features such as electronic, hydrophobic, 

steric, hydrogen bonding, and dispersion properties 

may all be useful in characterizing the many working 

processes of drug action [58,59]. In certain 

circumstances, all molecular descriptors are crucial, 

but in others, just a handful are, and the remainders 

play only a minor role. [60]. This is true in the 

current work, as we discovered that electronic 

characteristics, specifically frontier-orbital energies 

and hydrophobicity, can effectively correlate 

pharmacological activity.  

Cancer is a rapidly mutated disease. There are more 

than a hundred different varieties of cancer, each with 

a unique behaviour and response to therapy [61]. The 

abnormal multiplication of any cell may cause 

cancer. CCancer recurrence in the same organ or 

other organs occurs in a process called metastasis 

even after surgery or radiotherapy [62]. The 

advancement of cancer biology research and the 

advent of new paradigms in the study of metastasis 

have helped shed light on some of the molecular 

underpinnings of this spreading process. Due to the 

escalating prevalence of cancer, additional research 

and the development of new treatments are required. 

Cancer treatment resistance develops upon cell 

mutation, genetic variations and even radiation [63]. 

Patients suffering from more than one type of cancer 

simultaneously are in desprite need of systemic 

medications to control all the types, so a strategy 

envolved synthesis of new multitarget anticancer 

compounds is critical.  

Quantitative structure-activity relationship (QSAR) 

models are frequently used to search sizable 

databases of chemicals and identify the biological 

characteristics of chemical molecules based on their 

chemical structure. As time goes on, the data on 

known and synthesized chemicals will continue to 

rise exponentially, necessitating automated QSAR 

modeling methods that are computationally efficient 

and accessible to academics that may not have a deep 

understanding of machine learning modeling. So, the 

QSAR community may benefit from having a 

completely automated and sophisticated modeling 

platform [64]. 

The goal of QSAR modeling is to discover the 

relationship between anticancer activity and 

molecular structure. A multi-linear equation that 

relates molecular structural features to the desired 

activity is most often used to express the relationship 

[65]. 

 

 

 

 

Where x stands for the molecular descriptor and α 

are the parameters to be optimized using a known 

data set, and b is constant.  

Two processes must occur when a chemical 

molecule is delivered to an organism to elicit a 

biological reaction. First, the substance must be 

delivered to the site of action (receptor), and then it 

must interact appropriately with the target. 

The molecular descriptors are numerical 

representation of molecules that describe the 

interaction effects of molecules such as Homo, 

Lumo, ionization potential, dipole moments, or drug 

𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚 =∑𝒙𝒊𝒂𝒊 + 𝒃

𝒊
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delivery and size effects such as 

hydrophobic/hydrophilic solvent-surface areas, 

octanol-water partition coefficient, solvation energy 

power, and molecular weight. After that, all 

descriptors were considered potential predictor 

variables in multiple linear regressions for the 

outcome measure log (IC50).  

In the current study, we aim to synthesize new 

heterocycle indenooxadiazinones and evaluate their 

in vitro anticancer potentials towards three cell lines; 

breast cancer cell line (MCF-7), lung cancer cell line 

(A549) and liver cancer cell line (HepG2). In 

addition, molecular modeling studies were carried out 

to predict the mode of action of the novel 

indenooxadiazinone derivatives. Molecular docking 

and QSAR study were performed on the new 

synthetic compounds as a tool of computational drug 

design to discover novel anticancer agents. 

 

2. Results and discussion 

2.1. Chemistry 

Synthesis of novel indenooxadiazinones 2a-f was 

established. The synthetic route for the construction 

of 4a-hydroxy-3-mercapto-3-(substitutedamino)-2,3-

dihydroindeno[2,1-e][1,3,4]oxadiazin-9(4aH)-ones 

2a-f was outlined in Scheme 1. The reaction of 

ninhydrin, hydrazine hydrate and the appropriate 

isothiocyanate in methanol under reflux for 6-7 hr. 

produced the target compounds 2a-f in high yield. 

The proposed mechanism for forming the 

indenooxadiazinones 2a-f is explained (Figure 1). 

 

 

 
Fig. 1: Chemical structures of indanones I-III, oxadiazines 

IV and the novel candidates 2a-f with anticancer activity. 

The chemical structures of indenooxadiazinones 2a-f 

were elucidated by elemental and spectral tools. IR 

spectra disclosed the appearance of stretching bands 

at 2745-2740, 3122-3125 and 3425-3421 cm-1, which 

attributed to SH, NH and OH, respectively. In 

addition, the existence of five singlet signals at 3.65, 

7.36, 8.5, 9.02 and 10.20 ppm attributed to CH2, SH, 

2NH and OH protons in the chart of 1HNMR of 

compound 2f proved the structure. Moreover, the 

appearance of methoxy protons of 2d at 3.46 ppm 

also confirmed the structure (Figures S1-S6). Each 

compound's mass spectrum displayed a molecular ion 

peak attributed to its molecular formula.  

 
 

Scheme 1: Construction of compound 2a-f.  

 

 

 
 

 
Fig. 2: Proposed mechanism for the formation of the target 

compounds 2a-f 

 
2.2. Anticancer potential  

The cytotoxic potential of the newly constructed 

indeno[2,1-e][1,3,4]oxadiazin-9-one was estimated 

against three human cancer cell lines, including 

breast cancer cell line (MCF-7), lung cancer cell line 

(A549) and liver cancer cell line (HepG2) applying 

MTT assay in comparison to doxorubicin as a 

standard. The parameter IC50 represents the 

concentration required to inhibit cell viability by 50% 

(Figure 3). Towards the three tested cell lines, MCF-

7, A549 and HepG2, the 
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benzylaminoindenooxadiazinone derivative (2b) 

(IC50 = 95.02, 99.57 and 110 µg/ml, respectively) and 

cyclohexylmethylaminoindenooxadiazinone 

derivative (2f) (IC50 = 87.11, 64.88 and 39.18 µg/ml, 

respectively) exhibited high efficacies compared to 

doxorubicin (IC50 = 70, 50.47 and 67.59 µg/ml, 

respectively). On the other hand, other 

indenooxadiazinone derivatives 2a, 2c, 2d and 2e 

revealed weak anticancer potential with IC50 of 419.0, 

227.87, 307.01, 317.22 µg/ml, sequentially against 

MCF-7, IC50 of 164.46, 129.93, 134.01, 222.2 µg/ml 

towards A549 and IC50 of 217.82, 165.92, 154.83, 

211.36 towards HepG2. Furthermore, the 

cyclohexylmethylamino derivative (2f) depicted 

comparable anticancer activity towards MCF7 (IC50 = 

87.11 µg/ml) and A549 (IC50 = 64.88 µg/ml) to that 

exhibited by doxorubicin (IC50 = 70 and 50.47 µg/ml, 

respectively). Finally, compound 2f was more potent 

against hepatic cancer cell line (HepG2) (IC50 = 

39.18 µg/ml) than the standard drug doxorubicin 

(IC50 = 67.59 µg/ml). These results show the high 

anticancer effect of 2f on A549 and HepG2 cell lines. 

 
Figure 3: In vitro cytotoxicity for indenoxadiazole 

derivatives 2a-2f and doxorubicin (Dox.) against MCF-7, 

A549 and HepG2 cell lines 

2.3. Docking study 

Epidermal growth factor receptor (EGFR) is a trans-

membrane growth factor protein tyrosine kinase 

[54,66]. EGFR significantly impacts signal 

transduction and cell survival [67]. Figure 4: Binding 

energy score (kcal/mol) for all constructed 

compounds 2a-f and erlotinib. To predict the 

mechanism of the anticancer potential of the newly 

constructed candidates 2a-f, a docking study was 

conducted into ATP binding region of EGFR. The X-

ray crystal of EGFR with the cocrystallized ligand 

erlotinib was obtained from a protein data bank 

(PDB: 1M17). Erlotinib was redocked to validate the 

docking protocol utilizing the MMFF94 force field. 

The binding energy for the newly constructed 

compounds (2a-f) docked within EGFR active region 

shows the best compounds obtained in docking 

analyses (Figure 4). 

The larger the peak, the lower binding energy and so 

better binding within the active site with predictable 

higher anticancer potential. 

 

 
Figure 4: Binding energy score (kcal/mol) for all 

constructed compounds 2a-f and erlotinib. 

 

The docking outcomes, including binding energy ∆G 

and types of interaction, are listed (Table 1). The 

benzylaminoindeno[2,1-e][1,3,4]oxadiazinone (2b) 

(∆G = -8.9 kcal/mol) and 

cyclohexylmethylaminoindeno [2,1-e][1,3,4] 

oxadiazinone derivatives (2f) (∆G = -9.2 kcal/mol) 

recorded higher binding energy than registered by the 

cocrystallized ligand erlotinib (-6.5 kcal/mol). The 

cyclohexylmethylamino derivative formed three H-

bonds within the active region with GLU738 and 

LYS721 via binding with SH and OH groups, in 

addition to the formation of alkyl binding with 

ALA731 (Figure 5). 

 
 
Figure 5: The suggested binding mode of compound 2f 

within the binding region of EGFR A) 3D form B) 2D 

form. 
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The benzylamino derivative 2b displayed excellent 

fitting within the active site forming several types of 

binding: I) Hydrogen bonds with ASP831 and 

THR830, II) Pi-Alkyl binding with LYS721, 

ALA719 and LEU764, III) Pi-donor Hydrogen bond 

with THR766, IV) Pi-anion binding with ASP831 

and V) Pi-Pi stacked interaction with PHE699 

(Figure 6). 

 

 

   
 
Figure 6:  The suggested binding mode of compound 2b within the binding region of EGFR A) 3D form B) 2D form. 

 

 
Table 1.  
Docking outcomes of the newly constructed dihydroindeno[2,1-e][1,3,4]oxadiazin-9(4aH)-one derivatives (2a-f)

 

 

 

 

 

2.4. ADME study and drug-likeness  

Lipinski rule was utilized to predict the biochemical 

properties of the novel candidates 2a-f. This rule 

states that an orally potential drug has no more than 5 

HBD, no more than 10 HBA, Logp should be less 

than 5, and molecular mass should be less than 500 

g/mol. All compounds' molecular mass was within 

the range (327.37-361.81 g/mol). All compounds 

scored 3 HBD and 6-7 HBA regarding HBD and 

HBA. Logp for all the constructed candidates 

NO. Docking score 

Kcal/mol 

No. of bonds Type of interactions Amino acids Function group 

 

2a -5.1 2 H-bod 

Pi-Pi staked 

ASP831 

PHE699 

NH 

Phenyl moiety 

2b -8.9 4 H-bond 

H-bond 

H-bond 

Alkyl binding 

GLU738 

GLU738 

LYS721 

ALA731 

OH 

SH 

OH 

Cyclohexyl  

2c -4.8 1 H-bond GLU738 OH 

2d -4.3 1 Pi-alkyl 

 

ALA674 Phenyl 

2e -4.7 2 Pi-alkyl 

 

ALA719 

LYS721 

Phenyl ring 

Phenyl ring 

2f -9.2 8 H-bond 

H-bond 

Pi-donor H bond 

Pi-alkyl 

Pi-alkyl 

Pi-alkyl 

Pi-anion 

Pi-Pi stacked  

Thr830 

Asp831 

Thr766 

LYS721 

ALA719 

Leu764 

Asp831 

PHE699 

C=O 

C=O 

Phenyl ring 

Phenyl ring 

Phenyl ring 

Phenyl ring 

Benzyl ring 

Benzyl ring 

Doxo. -6.5 2 H-bond 

H-bond 

MET769 

LYS721 

OCH3 

Quinazoline N-3 
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fulfilled the standard value (< 5). Moreover, 

topological surface area (TPSA) ranged from 82.15-

92.19 A2 which justified the standard value (< 140 

A2) (Figure 7 & Table 2).  

Drug-likeness describes many molecular properties 

such as hydrophobicity, electronic distribution, and 

molecular size, and hydrophobicity. The results 

displayed good scores, especially compounds 2b and 

2f registered positive values showing good drug-

likeness behavior. 

  

2.5. QSAR Module 

QSAR was made for several previously published 

indene derivatives listed in table 3 [70,71], with IC50 

values. To calculate the QSAR, firstly, calculation of 

the molecular descriptors for all compounds then fits 

these compounds with a new synthesized indene 

compounds to calculate the predicted IC50 according 

to the following multiple linear regression equation: 

-Log IC50= -2.517 - 0.036 dipole moment -0.038 

EHomo+ 0.022 ELumo+ 0.001 ASA+ 0.135 Acc- 0.289 

don+ 0.017 Esol- 0.113 log P(o/w)+ 0.003Weight 

 

Table 4 and Figure 8 correlate the expected and 

actual IC50 values. The theoretical and empirical 

values show a strong connection and convergence, 

suggesting that this method can be used to forecast 

anticancer efficacy. However, compound 2f is closer 

to the harmony between the theoretical value 

estimated from QSAR and laboratory values from 

attached cancer cells. There is a considerable 

variation in the values of the compounds prepared 

from 2a -f. QSAR studies have generally 

demonstrated their ability to forecast the 

effectiveness of medicinal organic molecules against 

cancer 

 . 
 

 

 

Table 2. Predicted Lipinski parameters for the newly constructed compounds 2a-f 

Candidate 

number 

M. wt. HBD HBA CLogP TPSA n violation Rotatable 

bonds 

DLS 

2a 327.37 3 6 2.02 82.95 0 2 -0.64 

2b 341.39 3 6 1.72 82.95 0 3 0.11 

2c 361.81 3 6 2.70 82.95 0 2 0.06 

2d 357.39 3 7 2.08 92.19 0 3 -0.33 

2e 333.41 3 6 2.23 82.95 0 2 -0.15 

2f 347.44 3 6 2.61 82.95 0 3 0.59 
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                              2b                                                                            2f 

 
            Fig.7. Drug likeness of compounds 2b and 2f 

 

Table 3: QSAR descriptors for some indene derivatives 

 

 

 

Molecules IC50 -logIC50 
AM1_ 

dipole 

AaM1_ 

HOM

O 

AM1_ 

IP 

AM1_ 

LUMO 
ASA 

a_ac

c 
a_don E_sol 

logP(o/

w) 
Weight 

 

100 -2 1.3535 -8.852 8.8519 -1.1767 494.83 1 0 -14.68 2.393 266.13 

 

27 -1.431 2.2372 -8.205 8.2054 -1.3085 614.48 4 1 -15.31 4.788 405.25 
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Molecules IC50 -logIC50 
AM1_ 

dipole 

AaM1_ 

HOM

O 

AM1_ 

IP 

AM1_ 

LUMO 
ASA 

a_ac

c 
a_don E_sol 

logP(o/

w) 
Weight 

 

37 -1.568 6.8462 -7.840 7.8406 -1.5534 773.95 4 1 -28.92 5.38 439.70 

 

40 -1.602 2.1116 -8.351 8.3512 -1.3368 754.30 4 1 -33.14 5.417 439.70 

 

100 -2 4.9332 -9.247 9.2472 -1.2341 711.40 4 1 -42.01 4.721 450.25 

 

38 -1.579 2.5256 -8.987 8.9871 -1.4273 756.82 4 1 -27.97 5.848 440.68 

 

100 -2 5.1808 -9.883 9.8836 -2.9039 723.43 4 1 -40.70 5.191 451.24 

 

62 -1.792 3.6007 -9.359 9.3591 -1.837 516.99 3 0 -21.68 1.904 287.12 

 

76 -1.880 4.3785 -8.569 8.5699 -1.4037 486.46 2 0 -11.35 4.81 336.19 

 

33 -1.518 3.6287 -9.388 9.3881 -0.2571 548.21 2 0 -11.48 2.508 304.18 
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Molecules IC50 -logIC50 
AM1_ 

dipole 

AaM1_ 

HOM

O 

AM1_ 

IP 

AM1_ 

LUMO 
ASA 

a_ac

c 
a_don E_sol 

logP(o/

w) 
Weight 

 

100 -2 3.5706 -9.683 9.6834 -0.5814 548.01 2 1 -18.87 2.332 336.18 

 

22 -1.342 5.5205 -8.834 8.8341 -0.7676 886.26 3 1 -27.17 7.738 612.38 

 

39 -1.591 1.0037 -8.880 8.8807 -0.1853 718.04 3 1 -16.73 5.3 474.60 

 

20 -1.301 3.6979 -8.576 8.5768 -0.6804 763.55 3 1 -23.90 6.97 632.39 

 

19 -1.278 9.3126 -8.553 8.5535 -1.0402 911.00 3 1 -31.55 6.896 632.39 

 

30 -1.477 27.252 -4.502 4.5026 -3.151 998.97 5 1 -14.35 5.212 534.65 

 

43 -1.633 8.5574 -6.207 6.2076 -3.8692 886.28 3 1 -37.30 7.66 612.38 

 

24 -1.380 7.2249 -8.299 8.2997 -1.6297 708.61 3 1 -27.02 4.36 486.66 
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Table 4: Correlation between actual and predicted IC50 of the Synthesized molecules 

 

 

n Molecule 
Predicted -Log IC50 Actually 

-Log IC50 Mcf-7 A549 HepG2 

2a 

 

-1.94266 -2.62256 -2.21606 -2.3381 

2b 

 

-1.90867 -1.97772 -1.99813 -2.04395 

2c 

 

-1.85891 -2.35769 -2.11371 -2.2199 

2d 

 

-1.88621 -2.48824 -2.12714 -2.18986 

2e 

 

-1.92597 -2.50136 -2.34688 -2.32502 

2f 

 

-1.89829 -1.94007 -1.81211 -1.59306 
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Figure 8:  Relationship between synthesized 

compounds' actual and predicted -log IC50. 
 

3. Experimental  

3.1. Chemistry 

All solvents and reagents are purchased from Sigma-

Aldrich and used without purification. Thin-layer 

chromatography (TLC)  on silica gel pre-coated 

F254 Merck plates was utilized to monitor the 

reaction progress. Melting points of all constructed 

compounds were measured without correction 

utilizing Gallenkam electrothermal (Weiss 

Gallenkam, Loughborough, UK). Infrared spectra 

were obtained on a Perkin Elmer Lambda 40 

spectrometer using KBR pellets. Nuclear magnetic 

resonance (1H-NMR and 13C-NMR) were recorded 

on Varian VXR300/5 FT NMR spectrometer at 300 

MHz in DMSO-d6. Electron ionization mass 

spectrometry (EIMS) was done with the use of 

Finnegan Trace Gas Chromatography Polaris Q-

spectrometer. Elemental analysis was measured by 

PerkinElmer elemental analyzer at Micro analytical 

Center, Cairo University.      

General synthetic procedure for 2a-f: A mixture of 

2 mmol of hydrazine hydrate, 2 mmol isothiocyanate 

derivatives, and 2 mmol of ninhydrin in 10 mL of 

MeOH was heated under reflux at 6-7 hours 

monitored by TLC, the solvent was evaporated and 

the precipitate collected and recrystallized from 

ethanol  

4a-Hydroxy-3-mercapto-3-(phenylamino)-2,3-

dihydroindeno[2,1-e][1,3,4]oxadiazin-9(4aH)-one 

(2a) 

 (80% yield) as green solid, mp 216-218°C, IR (KBr): 

ν (cm−1) 1649 (C=O), 3223-3339 (2NH & OH); 1H 

NMR (DMSO-d6): δ 7.22- 7.64 (m, 9H, Aromatic 

proton), 9.46 (s, 1H, NH), 9.72 (s, 1H, NH), 9.81 (s, 

1H, OH), 11.27 (s, 1H, SH); 13C NMR (DMSO-d6): 

88.17, 130.80, 131.13, 131.39, 132.47, 132.98, 

137.75, 142.49, 144.25, 145.82, 172.10; ms (m/z, %): 

327.0 (M+, 50%).Anal. Calcd for C16H13N3O3S 

(327.36): C, 58.70; H, 4.00; N, 12.84; S, 9.80 

%.Found: C, 58.75; H, 4.09; N, 12.88; S, 9.86. 

3-(Benzylamino)-4a-hydroxy-3-mercapto-2,3-

dihydroindeno[2,1-e][1,3,4]oxadiazin-9(4aH)-one 

(2b) 

(75% yield) as Orange solid, mp 233-235°C, IR 

(KBr): ν (cm−1) 1723 (C=O), 3115-3340 (2NH & 

OH); 1H NMR (DMSO-d6): δ 4.10 (s, 2H, CH2), 

7.65- 7.86 (m, 9H, Aromatic proton), 10.18 (s, 1H, 

NH), 10.27 (s, 1H, NH), 10.34 (s, 1H, OH), 12.68 (s, 

1H, SH); 13C NMR (DMSO−d6): 51.18, 117.49, 

121.44, 123.94, 128.69, 129.89, 131.22, 131.67, 

145.83, 153.53, 193.00; ms (m/z, %): 341.0 (M+, 

45%).Anal. Calcd for C17H15N3O3S (341.38): C, 

59.81; H, 4.43; N, 12.31; S, 9.39%.Found: C, 59.86; 

H, 4.47; N, 12.36; S, 9.42. 

3-((4-Chlorophenyl)amino)-4a-hydroxy-3-

mercapto-2,3-dihydroindeno[2,1-

e][1,3,4]oxadiazin-9(4aH)-one (2c) 

(74% yield) as yellow solid, mp 245-247°C, IR 

(KBr): ν (cm−1) 1667 (C=O), 3127-3313 (2NH & 

OH); 1H NMR (DMSO-d6): δ 7.61- 7.98 (m, 8H, 

Aromatic proton), 9.80 (s, 1H, NH), 10.45 (s, 1H, 

NH), 10.50 (s, 1H, OH), 12.00 (s, 1H, SH); 13C NMR 

(DMSO-d6): 130.57, 130.95, 131.05, 131.84, 135.37, 

142.10, 143.16, 144.30, 147.10, 187.31; ms (m/z, %): 

361.0 (M+, 45%).Anal. Calcd for C16H12ClN3O3S 

(361.80): C, 53.11; H, 3.34; Cl, 9.80; N, 11.61; S, 

8.86%.Found: C, 53.15; H, 3.36; Cl, 9.85; N, 11.66; 

S, 8.89. 

4a-Hydroxy-3-mercapto-3-((4-

methoxyphenyl)amino)-2,3-dihydroindeno[2,1-

e][1,3,4]oxadiazin-9(4aH)-one (2d) 

(80% yield) as red solid, mp 226-228°C, IR (KBr): ν 

(cm−1) 1668 (C=O), 3122-3319 (2NH & OH); 1H 

NMR (DMSO-d6): δ 3.78 (s, 3H, CH3), 7.44- 8.21 

(m, 8H, Aromatic proton), 10.19 (s, 1H, NH), 11.01 

(s, 1H, NH), 12.74 (s, 1H, OH), 13.31 (s, 1H, SH). 
13C NMR (DMSO-d6): 63.38, 128.73, 129.38, 130.75, 

130.93, 131.06, 131.84, 134.28, 143.16, 150.81, 

188.96; ms (m/z, %): 357.0 (M+, 30%).Anal. Calcd 

for C17H15N3O4S (357.38): C, 57.13; H, 4.23; N, 

11.76; S, 8.97%.Found: C, 57.17; H, 4.26; N, 11.78; 

S, 8.99. 

3-(Cyclohexylamino)-4a-hydroxy-3-mercapto-2,3-

dihydroindeno[2,1-e][1,3,4]oxadiazin-9(4aH)-one 

(2e) 

(68% yield) as reddish brown solid, mp 252-254°C, 

IR (KBr): ν (cm−1) 1690 (C=O),  3194-3452 (2NH & 

OH); 1H NMR (DMSO-d6): 1.07 (t, 2H, CH2), 1.91 

(m, 2H, CH2), 3.29 (s, 1H, CH), 7.24-7.40 (m, 4H, 

Aromatic proton),  10.25 (s, 1H, NH), 10.54 (s, 1H, 

NH),  12.06 (s, 1H, OH), 12.18 (s, 1H, SH); 13C 

NMR (DMSO-d6): 23.36 (CH2), 24.43 (CH2), 25.61 

(CH2), 115.54 (CH), 97.41 (C-OH), 123.13, 124.14, 

125.26, 127.27, 129.09, 131.09, 133.29, 137.38 (ArC), 

150.65 (C=N), 185.56 (C=O); ms (m/z, %): 333.0 

(M+, 30%).Anal. Calcd for C16H19N3O3S (333.41): C, 

57.64; H, 5.74; N, 12.60; S, 9.62%.Found: C, 57.67; 

H, 5.79; N, 12.64; S, 9.65. 
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3-((Cyclohexylmethyl) amino)-4a-hydroxy-3-

mercapto-2,3-dihydroindeno[2,1-

e][1,3,4]oxadiazin-9(4aH)-one (2f) 

(65% yield) as pale yellow solid, mp 238-240°C, IR 

(KBr): ν (cm−1) 1719 (C=O), 3179-3435 (2NH & 

OH); 1H NMR (DMSO-d6): 1.07 (t, 2H, CH2), 2.45 

(m, 2H, CH2), 3.45 (s, 2H, CH2), 4.30 (s, 1H, CH), 

7.46-7.93 (m, 4H, Aromatic proton), 10.19 (s, 1H, 

NH), 10.27 (s, 1H, NH), 11.33 (s, 1H, OH), 12.78 (s, 

1H, SH); 13C NMR (DMSO-d6): 23.36 (CH2), 24.43 

(CH2), 25.61 (CH2), 43.02(CH2), 115.54 (CH), 

97.41(C-OH), 123.13, 124.14, 125.26, 127.27, 

129.09, 131.09, 133.29, 137.38(ArC), 150.65 (C=N), 

185.56 (C=O); ms (m/z, %): 347.0 (M+, 25%).Anal. 

Calcd for C17H21N3O3S (347.43): C, 58.77; H, 6.09; 

N, 12.09; S, 9.23%.Found: C, 58.79; H, 6.17; N, 

12.15; S, 9.28. 

 

3.2. Anticancer potential 

The cytotoxic assay was determined in vitro towards 

breast carcinoma cell line (MCF-7), liver cancer cell 

line (HepG-2) and lung cancer cell lung (A549) 

adapting MTT assay using doxorubicin as a standard 

[72]. 

3.3. Docking study 

The crystal structure of the epidermal growth factor 

receptor (EGFR) (PDB: 1M17) was downloaded 

from Protein Data Bank. A docking study was carried 

out by CB-DOCK2 applying the reported procedure 

[73]. The profiles of binding and visualization were 

carried out for the best-docked complexes using 

Discovery Studio software.  

 3.4. ADME study and drug-likeness 

Molsoft and Molinspiration were utilized to predict 

the Lipinski rule for five and drug-likeness.  

3.5. QSAR model 

It should be noted that such combinations may 

undermine the model's linear approximation 

assumption. The QSAR descriptors for all 

molecules were calculated using MOE molecular 

descriptors and the multiple linear regression 

analysis was studied using IBM SPSS statistic 26. 

The predictor factors utilized in this study are 

summarized and defined in Table 5. 

 

Table 5: Some symbols for the QSAR descriptors 

and their definition 

Symbol Definition 

ELUMO energy of the lowest unoccupied 

molecular orbital 

EHOMO energy of the highest occupied 

molecular orbital 

µ dipole moment 

logP(o/w) log of the octanol/water partition 

coefficientc 

Mr molecular weight 

Esolv Energy of solvation power 

acc Number of acceptor groups 

don Number of donating groups 

AM1_IP Ionization potential 

 

4. Conclusion  

Compound 2f showed the best fit within EGFR active 

regions, and because of its potent anti-cancer activity 

against A549 and HepG2 cell lines, it may be pursued 

as a lead potential anti-cancer candidate. Further 

optimisation and development are required to 

evaluate the possibility of introducing this compound 

in cancer managment. 
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