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GLOBAL NONEXISTENCE OF SOLUTION OF A SYSTEM

WAVE EQUATIONS WITH NONLINEAR DAMPING AND

SOURCE TERMS

ABDELAZIZ RAHMOUNE, DJAMEL OUCHENANE

Abstract. In this work, we consider the following system of nonlinear wave
equations with nonlinear damping and source terms acting in both equations:

utt −∆ut − div
(
|∇u|α−2 ∇u

)
− div

(
|∇ut|β1−2 ∇ut

)
+ a1 |ut|m−2 ut = f1 (u, v) ,

vtt −∆vt − div
(
|∇v|α−2 ∇v

)
− div

(
|∇vt|β2−2 ∇vt

)
+ a2 |vt|r−2 vt = f2 (u, v) .

Under an appropriate assumptions on the initial data and under some restric-
tions on the parameter α, β1, β2,m, r and on the nonlinear functions f1 and
f2, we prove a global nonexistence result. Our method relies on the paper [20]

where a different system of wave equations has been discussed.

1. Introduction

The study of the interaction between the source term and the damping term in
the wave equation

utt −∆u+ a |ut|m−2
ut = b |u|p−2

u, in Ω× (0, T ) , (1)

where Ω is a bounded domain of RN , N ≥ 1 with a smooth boundary ∂Ω, has an
exciting history.
It has been shown that the existence and the asymptotic behavior of solutions
depend on a crucial way on the parameters m, p and on the nature of the initial
data. More precisely, it is well known that in the absence of the source term |u|p−2

u
then a uniform estimate of the form

∥ut (t)∥2 + ∥∇u (t)∥2 ≤ C, (2)

holds for any initial data (u0, u1) = (u(0), ut(0)) in the energy space H1
0 (Ω) ×

L2 (Ω) , where C is a positive constant independent of t. The estimate (2) shows
that any local solution u of problem (1) can be continued in time as long as (2) is
verified. This result has been proved by several authors. See for example [5, 8]. On
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the other hand in the absence of the damping term |ut|m−2
ut, the solution of (1)

ceases to exist and there exists a finite value T ∗ such that

lim
t→T∗

∥u (t)∥p = +∞, (3)

the reader is refereed to Ball [2] and Kalantarov & Ladyzhenskaya [7] for more
details.

When both terms are present in equation (1), the situation is more delicate.
This case has been considered by Levine in [11, 12], where he investigated problem
(1) in the linear damping case (m = 2) and showed that any local solution u of
(1) cannot be continued in (0,∞) × Ω whenever the initial data are large enough
(negative initial energy). The main tool used in [11] and [12] is the ”concavity
method”. This method has been a widely applicable tool to prove the blow up of
solutions in finite time of some evolution equations. The basic idea of this method
is to construct a positive functional θ (t) depending on certain norms of the solution
and show that for some γ > 0, the function θ−γ (t) is a positive concave function of
t. Thus there exists T ∗ such that lim

t→T∗
θ−γ (t) = 0. Since then, the concavity method

became a powerful and simple tool to prove blow up in finite time for other related
problems. Unfortunately, this method is limited to the case of a linear damping.
Georgiev and Todorova [4] extended Levine’s result to the nonlinear damping case
(m > 2). In their work, the authors considered the problem (1) and introduced a
method different from the one known as the concavity method. They showed that
solutions with negative energy continue to exist globally ’in time’ if the damping
term dominates the source term (i.e.m ≥ p) and blow up in finite time in the other
case (i.e.p > m) if the initial energy is sufficiently negative. Their method is based
on the construction of an auxiliary function L which is a perturbation of the total
energy of the system and satisfies the differential inequality

dL (t)

dt
≥ ξL1+ν (t) (4)

In [0,∞) , where ν > 0. Inequality (4) leads to a blow up of the solutions in finite

tim t ≥ L (0)
−ν

ξ−1ν−1, provided that L (0) > 0. However the blow up result in
[4] was not optimal in terms of the initial data causing the finite time blow up of
solutions. Thus several improvement have been made to the result in [4] (see for
example [9, 10, 15, 22]. In particular, Vitillaro in [22] combined the arguments in
[4] and [10] to extend the result in [4] to situations where the damping is nonlinear
and the solution has positive initial energy.
In [23], Young, studied the problem

utt −∆ut − div
(
|∇u|α−2 ∇u

)
− div

(
|∇ut|β−2 ∇ut

)
+ a |ut|m−2

ut = b|u|p−2u,

(5)
in (0, T ) × Ω with initial conditions and boundary condition of Dirichlet type.
He showed that solutions blow up in finite time T ∗ under the condition p >
max {α,m} , α > β, and the initial energy is sufficiently negative (see condition
(ii) in [23][Theorem 2.1]). In fact this condition made it clear that there exists a
certain relation between the blow-up time and |Ω|([23][Remark 2]).

Messaoudi and Said-Houari [13] improved the result in [23] and showed that
the blow up of solutions of problem (5) takes place for negative initial data only
regardless of the size of Ω.
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To the best of our knowledge, the system of wave equations is not well studied,
and only few results are available in literature. Let us mention some of them. Milla
Miranda and Medeiros [16] considered the following system{

utt −∆u+ u− |v|ρ+2 |u|ρ u = f1 (x)

vtt −∆v + v − |u|ρ+2 |v|ρ v = f2 (x) ,
(6)

in Ω × (0, T ) . By using the method of potential well, the authors determined the
existence of weak solutions of system (6). Some special cases of system (6) arise in
quantum field theory which describe the motion of charged mesons in an electro-
magnetic field. See [21] and [6]. Agre and Rammaha [1] studied the system{

utt −∆u+ |ut|m−1
ut = f1 (u, v) ,

vtt −∆v + |vt|r−1
vt = f2 (u, v) ,

(7)

in Ω×(0, T ) with initial and boundary conditions of Dirichlet type and the nonlinear
functions f1 (u, v) and f2 (u, v) satisfying

f1(u, v) = b1|u+ v|2(ρ+1)(u+ v) + b2|u|ρu|v|(ρ+2)

f2(u, v) = b1|u+ v|2(ρ+1)(u+ v) + b2|u|(ρ+2)|v|ρv,
(8)

They proved, under some appropriate conditions on f1(u; v) , f1(u; v) and the initial
data, several results on local and global existence, but no rate of decay has been
discussed. They also showed that any weak solution with negative initial energy
blows up in finite time, using the same techniques as in [4]. Recently, the blow
up result in [1] has been improved by Said-Houari [20] by considering certain class
of initial data with positive initial energy. Subsequently, the paper [20] has been
followed by [19], where the author proved that if the initial data are small enough,
then the solution of (7) is global and decays with an exponential rate if m = r = 1
and with a polynomial rate like t−2/(max(m,r)−1) if max (m, r) > 1. Several authors
and many results appeared in the literature see for example [[3],[18] and [17]]

In this paper, we consider the following system of wave equations
utt −∆ut − div

(
|∇u|α−2 ∇u

)
− div

(
|∇ut|β1−2 ∇ut

)
+ a1 |ut|m−2

ut = f1 (u, v) ,

vtt −∆vt − div
(
|∇v|α−2 ∇v

)
− div

(
|∇vt|β2−2 ∇vt

)
+ a2 |vt|r−2

vt = f2 (u, v) ,

(9)
where the functions f1 (u, v) and f2 (u, v) satisfying (8). In (9), u = u (t, x) , v =
v (t, x) , x ∈ Ω, a bounded domain of RN (N ≥ 1) with a smooth boundary ∂Ω,
t > 0 and a1, a2, b1, b2 > 0 and β1, β2, m, r ≥ 2, α > 2. System (9) is supplemented
by the following initial and boundary conditions{

(u(0), v(0)) = (u0, v0), (ut(0), vt(0)) = (u1, v1), x ∈ Ω
u(x) = v(x) = 0 x ∈ ∂Ω,

(10)

Our main interest in this work is to prove a global nonexistence result of solutions
of system (9) - (10) for large initial data. We use the method in [20] with the
necessary modification imposed by the nature of our problem. The core of this
method relies on the use of an auxiliary function L in order to obtain a differential
inequality of the form (4) which leads to the desired result.
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The plan of the paper is as follows. In section 2, we present some material that
we need in the proof of our result. While in section 3, we sate and prove our main
result.

2. Preliminaries

In this section, we introduce some notations and some technical lemmas to be
used throughout this paper. By ∥.∥q, we denote the usual Lq(Ω)-norm. The con-
stants C, c, c1, c2, . . . , used throughout this paper are positive generic constants,
which may be different in various occurrences. We define

F (u, v) =
1

2 (ρ+ 2)

[
b1 |u+ v|2(ρ+2)

+ 2b2 |uv|ρ+2
]
.

Then , it is clear that, from (8),we have

uf1 (u, v) + vf2 (u, v) = 2 (ρ+ 2)F (u, v) . (11)

The following lemma was introduced and proved in [14]
lemma 1 There exist two positive constants c0 and c1 such that

c0
2 (ρ+ 2)

(
|u|2(ρ+2)

+ |v|2(ρ+2)
)
≤ F (u, v) ≤ c1

2 (ρ+ 2)

(
|u|2(ρ+2)

+ |v|2(ρ+2)
)
.

(12)
And the energy functional

E (t) =
1

2

(
∥ut∥22 + ∥vt∥22

)
+

1

α
(∥∇u∥αα + ∥∇v∥αα)−

∫
Ω

F (u, v) dx. (13)

Let us know define a constant rα as follows :

rα =
Nα

N − α
, if N > α, rα > α if N = α, and rα = ∞ if N < α. (14)

The inequality below is a key element in proving the global existence of solution.
A similar version of this lemma was first introduced in [20]

lemma 2 Suppose that α > 2, and 2 < 2(ρ + 2) < rα. Then there exists η > 0
such that the inequality

∥u+ v∥2(ρ+2)
2(ρ+2) + 2∥uv∥ρ+2

ρ+2 ≤ η (∥∇u∥αα + ∥∇v∥αα)
2(ρ+2)

α (15)

holds.

Proof. It is clear that by using the Minkowski inequality, we get

∥u+ v∥22(ρ+2) ≤ 2(∥u∥22(ρ+2) + ∥v∥22(ρ+2)),

the embedding W 1,α
0 ↪→ L2(ρ+2) (Ω) , gives

∥u∥22(ρ+2) ≤ C∥∇u∥2α ≤ C(∥∇u∥αα)
2
α ≤ C(∥∇u∥αα + ∥∇v∥αα)

2
α ,

and similary , we have

∥v∥22(ρ+2) ≤ C∥∇u∥αα + ∥∇v∥αα)
2
α

Thus, we deduce from the above estimates that

∥u+ v∥22(ρ+2) ≤ C(∥∇u∥αα + ∥∇v∥αα)
2
α (16)
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also, Hölder’s and Young’s inequalities give us

∥uv∥(ρ+2) ≤ ∥u∥2(ρ+2)∥v∥2(ρ+2) ≤ C(∥∇u∥22(ρ+2)+∥∇v∥22(ρ+2)) ≤ C(∥∇u∥αα+∥∇v∥αα)
2
α .

(17)
Collecting the estimates (16) and (17), then (15) holds. This completes the proof
of lemma (2) �

lemma 3 Let (u, v) be the solution of system (9) - (10) then the energy functional
is a non-increasing function, that is for all t ≥ 0

dE (t)

dt
= −∥∇ut∥22 − ∥∇vt∥22 − ∥∇ut∥β1

β1
− ∥∇vt∥β2

β2
− a1∥ut∥mm − a2∥vt∥rr(18)

Proof. We multiply the first equation in (9) by ut and second equation by vt and
integrate over Ω, using integration by parts, we obtain (18) �

3. Global nonexistence result

In this section, we prove that, under some restrictions on the initial data and
under som restrictions on the parameter α,β1,β2,m, r then the lifespan of solution
of problem (9)- (10) is finite
theorem 3. Suppose that β1, β2, m, r ≥ 2, α > 2, ρ > −1 such that β1, β2 < α,
and max {m, r} < 2(ρ + 2) < rα, where rα is the Sobolev critical exponent of

W 1,α
0 (Ω) . defined in (14).Assume further that

E (0) < E1, (∥∇u0∥αα + ∥∇v0∥αα)
1
α > ζ1

Then, any weak solution of (9)-(10) cannot exist for all time .Here the constants
E1 and ζ1 are defined in (3).

In ordre to prove our result and for the sake of simplicity , we take b1 = b2 = 1
and introduce the following :

B = η
1

2(ρ+2) , ζ1 = B
−2(ρ+2)
2(ρ+2)−α , E1 =

(
1

α
− 1

2 (ρ+ 2)

)
ζα1 , (19)

where η is the optimal constant in (15).
The following lemma allows us to prove a blow up result for a large class of initial

data. This lemma is similar to the one in [20] and has its origin in [22]
lemma 4 Let (u, v) be a solution of (9)-(10). Assume that α > 2, ρ > −1.

Assume further that E (0) < E1 and

(∥∇u0∥αα + ∥∇v0∥αα)
1
α > ζ1. (20)

Then there exists a constant ζ2 > ζ1 such that

(∥∇u∥αα + ∥∇v∥αα)
1
α > ζ2, (21)

and [
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

] 1
2(ρ+2) ≥ Bζ2, ∀t ≥ 0. (22)
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Proof. We first note that, by (13) and the definition of B, we have

E (t) ≥ 1

α
(∥∇u∥αα + ∥∇v∥αα)−

1

2 (ρ+ 2)

[
|u+ v|2(ρ+2)

+ 2 |uv|ρ+2
]

≥ 1

α
(∥∇u∥αα + ∥∇v∥αα)−

η

2 (ρ+ 2)
(∥∇u∥αα + ∥∇v∥αα)

2(ρ+2)
α

≥ 1

α
ζα − η

2 (ρ+ 2)
ζ2(ρ+2), (23)

where ζ = [∥∇u∥αα + ∥∇v∥αα]
1
α . It is not hard to verify that g is increasing for

0 < ζ < ζ1, decreasing for ζ > ζ1, g (ζ) → −∞ as ζ → +∞, and

g (ζ1) =
1

α
ζα1 − B2(ρ+2)

2 (ρ+ 2)
ζ
2(ρ+2)
1 = E1,

where ζ1 is given in (19). Therefore, since E (0) < E1, there exists ζ2 > ζ1 such
that g (ζ2) = E (0) .

If we set ζ0 = [∥∇u (0) ∥αα + ∥∇v (0) ∥αα]
1
α , then by (23) we have g (ζ0) ≤ E (0) =

g (ζ2) , which implies that ζ0 ≥ ζ2.
Now, establish (21), we suppose by contradiction that

(∥∇u0∥αα + ∥∇v0∥αα)
1
α < ζ2,

for some t0 > 0; by the continuity of ∥∇u (.) ∥αα + ∥∇v (.) ∥αα we can choose t0 such
that

(∥∇u (t0) ∥αα + ∥∇v (t0) ∥αα)
1
α > ζ1.

Again, the use of (23) leads to

E (t0) ≥ g (∥∇u (t0) ∥αα + ∥∇v (t0) ∥αα) > g (ζ2) = E (0) .

This is impossible since E (t) ≤ E (0) , for all t ∈ [0, T ) . Hence, (21) is established.
To prove (22), we make use of (13) to get

1

α
(∥∇u0∥αα + ∥∇v0∥αα) ≤ E (0) +

1

2 (ρ+ 2)

[
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

]
.

Consequently, (21) yields

1

2 (ρ+ 2)

[
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

]
≥ 1

α
(∥∇u∥αα + ∥∇v∥αα)− E (0)

≥ 1

α
ζα2 − E (0)

≥ 1

α
ζα2 − g (ζ2) (24)

=
B2(ρ+2)

2 (ρ+ 2)
ζ
2(ρ+2)
2 .

Therefore, (24) and (19) yield the desired result. �
Proof. Proof of Theorem 3

We suppose that the solution exists for all time and set

H (t) = E1 − E (t) . (25)

By using (13) and (25) we get

H
′
(t) = ∥∇ut∥22 + ∥∇vt∥22 + ∥∇ut∥β1

β1
+ ∥∇vt∥β2

β2
+ a1∥ut∥mm + a2∥vt∥rr.
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From (18) , It is clear that for all t ≥ 0, H
′
(t) > 0. Therefore , we have

0 < H (0) ≤ H (t)

= E1 −
1

2

(
∥ut∥22 + ∥vt∥22

)
− 1

α
(∥∇u∥αα + ∥∇v∥αα)

+
1

2 (ρ+ 2)

[
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

]
. (26)

From (13) and (21), we obtain, for all t ≥ 0,

E1 −
1

2

(
∥ut∥22 + ∥vt∥22

)
− 1

α
(∥∇u∥αα + ∥∇v∥αα) < E1 −

1

α
ζα1 = − 1

2 (ρ+ 2)
ζα1 < 0.

Hence,

0 < H (0) ≤ H (t) ≤ 1

2 (ρ+ 2)

[
∥u+ v∥2(ρ+2)

2(ρ+2) + 2∥uv∥ρ+2
ρ+2

]
, ∀t ≥ 0.

Then by (12), we have

0 < H (0) ≤ H (t) ≤ c1
2 (ρ+ 2)

[
∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2)

]
, ∀t ≥ 0. (27)

We then define

L (t) = H1−σ (t) + ε

∫
Ω

(uut + vvt))dx, (28)

for ε small to be chosen later and

0 < σ ≤ min

{
1

2
,

α−m

2 (ρ+ 2) (m− 1)
,

α− r

2 (ρ+ 2) (r − 1)
,

(α− 2)

2 (ρ+ 2)
,

α− β1

2 (ρ+ 2) (β1 − 1)
,

α− β2

2 (ρ+ 2) (β2 − 1)

}
(29)

Our goal is to show that L (t) satisfies the differential inequality (4). Indeed, taking
the derivative of (28), using (9)and adding subtracting εkH(t), we obtain

L
′
(t) = (1− σ)H−σ (t)H

′
(t) + εkH (t) + ε

(
1 +

k

2

)(
∥ut∥22 + ∥vt∥22

)
+ε (1− k)

∫
Ω

F (u, v)− εkE1 (30)

−ε

∫
Ω

∇u∇utdx− ε

∫
Ω

∇v∇vtdx

+ε

(
k

α
− 1

)
(∥∇u∥αα + ∥∇v∥αα)

−ε

∫
Ω

|∇ut|β1−2 ∇ut∇udx− ε

∫
Ω

|∇vt|β2−2 ∇vt∇vdx

−εa1

∫
Ω

|ut|m−2
utudx− εa2

∫
Ω

|vt|r−2
vtvdx.

We then exploit Young’s inequality to get for µi, λi, δi > 0 i = 1, 2∫
Ω

∇u∇utdx ≤ 1

4µ1
∥∇u∥22 + µ1 ∥∇ut∥22
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∇v∇vtdx ≤ 1

4µ2
∥∇v∥22 + µ2 ∥∇vt∥22 (31)

and ∫
Ω

|∇ut|β1−1 ∇udx ≤ λβ1

1

β1
∥∇u∥β1

β1
+

β1 − 1

β1
λ
−β1/(β1−1)
1 ∥∇ut∥β1

β1∫
Ω

|∇vt|β2−1 ∇vdx ≤ λβ2

2

β2
∥∇v∥β2

β2
+

β2 − 1

β2
λ
−β2/(β2−1)
2 ∥∇vt∥β1

β1
(32)

and also ∫
Ω

|ut|m−2
utudx ≤ δm1

m
∥u∥mm +

m− 1

m
δ
−m/(m−1)
1 ∥ut∥mm∫

Ω

|vt|r−2
vtvdx ≤ δr2

r
∥v∥rr +

r − 1

r
δ
−r/(r−1)
2 ∥vt∥rr (33)

A substitution of (31)-(33)) in (30) and using (12) yields

L
′
(t) ≥ (1− σ)H−σ (t)H

′
(t) + εkH (t) + ε

(
1 +

k

2

)(
∥ut∥22 + ∥vt∥22

)
+ε

(
c0

2 (ρ+ 2)
− kc1

2 (ρ+ 2)

)(
∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2)

)
− εkE1

− ε

4µ1
∥∇u∥22 − µ1ε ∥∇ut∥22 −

ε

4µ2
∥∇v∥22 − εµ2 ∥∇vt∥22

+ε

(
k

α
− 1

)
(∥∇u∥αα + ∥∇v∥αα)− ε

λβ1

1

β1
∥∇u∥β1

β1
− ε

β1 − 1

β1
λ
−β1/(β1−1)
1 ∥∇ut∥β1

β1

−ε
λβ2

2

β2
∥∇v∥β2

β2
− ε

β2 − 1

β2
λ
−β2/(β2−1)
2 ∥∇vt∥β1

β1
− a1ε

δm1
m

∥u∥mm

−a1ε
m− 1

m
δ
−m/(m−1)
1 ∥ut∥mm − a2ε

δr2
r
∥v∥rr − a2ε

r − 1

r
δ
−r/(r−1)
2 ∥vt∥mm . (34)

Let us choose δ1, δ2, µ1, µ2, λ1, and λ2 such that

δ
−m/(m−1)
1 = M1H

−σ (t)

δ
−r/(r−1)
2 = M2H

−σ (t)

µ1 = M3H
−σ (t)

µ2 = M4H
−σ (t)

λ
−β1/(β1−1)
1 = M5H

−σ (t)

λ
−β2/(β2−1)
2 = M6H

−σ (t)

(35)

for M1, M2, M3, M4, M5 and M6 large constants to be fixed later. Thus, by using
(35),and for
M = M3 +M4 + (β1 − 1)M5/β1 + (β2 − 1)M6/β2 + (m− 1)M1/m+ (r − 1)M2/r
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then, inequality (34) takes the form

L
′
(t) ≥ ((1− σ)− εM)H−σ (t)H

′
(t) + εkH (t) + ε

(
1 +

k

2

)(
∥ut∥22 + ∥vt∥22

)
+ε

(
c0

2 (ρ+ 2)
− kc1

2 (ρ+ 2)

)(
∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2)

)
− εkE1

+ε

(
k

α
− 1

)
(∥∇u∥αα + ∥∇v∥αα) (36)

− ε

4M3
Hσ (t) ∥∇u∥22 −

ε

4M4
Hσ (t) ∥∇v∥22

−a1ε

m
M

−(m−1)
1 Hσ(m−1) (t) ∥u∥mm − a2ε

r
M

−(r−1)
2 Hσ(r−1) (t) ∥v∥rr

−ε
M

−(β1−1)
5

β1
Hσ(β1−1) (t) ∥∇u∥β1

β1
− ε

M
−(β2−1)
6

β2
Hσ(β2−1) (t) ∥∇u∥β2

β2
,

We then use the two embedding L2(ρ+2) (Ω) ↪→ Lm (Ω) , W 1,α
0 ↪→ L2(ρ+2) (Ω) and

(27) to get

Hσ(m−1) (t) ∥u∥mm ≤ c2

(
∥u∥2σ(m−1)(ρ+2)+m

2(ρ+2) + ∥v∥2σ(m−1)(ρ+2)
2(ρ+2) ∥u∥m2(ρ+2)

)
≤ c2

(
∥∇u∥2σ(m−1)(ρ+2)+m

α + ∥∇v∥2σ(m−1)(ρ+2)
α ∥∇u∥mα

)
.(37)

Similarly, the embedding L2(ρ+2) (Ω) ↪→ Lr (Ω) , W 1,α
0 ↪→ L2(ρ+2) (Ω) and (27)

give

Hσ(r−1) (t) ∥v∥rr ≤ c3

(
∥v∥2σ(r−1)(ρ+2)+r

2(ρ+2) + ∥u∥2σ(r−1)(ρ+2)
2(ρ+2) ∥v∥r2(ρ+2)

)
≤ c3

(
∥∇v∥2σ(r−1)(ρ+2)+r

α + ∥∇u∥2σ(r−1)(ρ+2)
α ∥∇v∥rα

)
.(38)

Furthermore, the two embedding W 1,α
0 ↪→ L2(ρ+2) (Ω) , Lα(Ω) ↪→ L2(Ω), yields

Hσ (t) ∥∇u∥22 ≤ c4

(
∥u∥2σ(ρ+2)

2(ρ+2) ∥∇u∥22 + ∥v∥2σ(ρ+2)
2(ρ+2) ∥∇u∥22

)
≤ c4

(
∥∇u∥2σ(ρ+2)+2

α + ∥∇v∥2σ(ρ+2)
α ∥∇u∥2α

)
(39)

and

Hσ (t) ∥∇v∥22 ≤ c5

(
∥∇u∥2σ(ρ+2)

α ∥∇v∥2α + ∥∇v∥2σ(ρ+2)
α ∥∇v∥2α

)
(40)

= c5

(
∥∇u∥2σ(ρ+2)

α ∥∇v∥2α + ∥∇v∥2σ(ρ+2)+2
α

)
.

Since max(β1, β2) < α then we have

Hσ(β1−1) (t) ∥∇u∥β1

β1
≤ c6

(
∥∇u∥2σ(β1−1)(ρ+2)

α ∥∇u∥β1

α + ∥∇v∥2σ(β1−1)(ρ+2)
α ∥∇u∥β1

α

)
= c6

(
∥∇u∥2σ(β1−1)(ρ+2)+β1

α + ∥∇v∥2σ(β1−1)(ρ+2)
α ∥∇u∥β1

α

)
.(41)

and

Hσ(β2−1) (t) ∥∇v∥β2

β2
≤ c7

(
∥∇u∥2σ(β2−1)(ρ+2)

α ∥∇v∥β2

α + ∥∇v∥2σ(β2−1)(ρ+2)
α ∥∇v∥β2

α

)
= c7

(
∥∇u∥2σ(β2−1)(ρ+2)

α ∥∇v∥β2

α + ∥∇v∥2σ(β2−1)(ρ+2)+β2

α

)
.(42)
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for some positive constants c2, c3, c4, c5, c6 and c7. By using (29) and the algebraic
inequality

zν ≤ (z + 1) ≤
(
1 + 1

a

)
(z + a) , ∀z ≥ 0, 0 < ν ≤ 1, a ≥ 0, (43)

we have, for all t ≥ 0,

∥∇u∥2σ(m−1)(ρ+2)+m
α ≤ d (∥∇u∥αα +H (0)) ≤ d (∥∇u∥αα +H (t)) ,

∥∇v∥2σ(r−1)(ρ+2)+r
α ≤ d (∥∇v∥αα +H (t)) ,

∥∇u∥2σ(ρ+2)+2
α ≤ d (∥∇u∥αα +H (t)) ,

∥∇v∥2σ(ρ+2)+2
α ≤ d (∥∇v∥αα +H (t)) ,

∥∇u∥2σ(β1−1)(ρ+2)+β1

α ≤ d (∥∇u∥αα +H (t)) ,

∥∇v∥2σ(β2−1)(ρ+2)+β2

α ≤ d (∥∇v∥αα +H (t)) ,

(44)

where d = 1 + 1/H (0) . Also keeping in mind the fact that max(m, r) < α , using
Yong’s inequality, the inequality (43) togrther withe (29), we conclude

∥∇v∥2σ(m−1)(ρ+2)
α ∥∇u∥mα ≤ C (∥∇v∥αα + ∥∇u∥αα) ,

∥∇u∥2σ(r−1)(ρ+2)
α ∥∇v∥rα ≤ C (∥∇u∥αα + ∥∇v∥αα) ,

∥∇v∥2σ(ρ+2)
α ∥∇u∥2α ≤ C (∥∇v∥αα + ∥∇u∥αα) ,

∥∇u∥2σ(ρ+2)
α ∥∇v∥2α ≤ C (∥∇u∥αα + ∥∇v∥αα) ,

∥∇v∥2σ(β1−1)(ρ+2)
α ∥∇u∥β1

α ≤ C (∥∇v∥αα + ∥∇u∥αα) ,

∥∇u∥2σ(β2−1)(ρ+2)
α ∥∇v∥β2

α ≤ C (∥∇u∥αα + ∥∇v∥αα) ,

(45)

where C is a generic positive constant. Taking into account (37)- (45) , then, (36)
takes the form

L
′
(t) ≥ ((1− σ)− εM)H−σ (t)H

′
(t) + ε

(
1 +

k

2

)(
∥ut∥22 + ∥vt∥22

)
+ε

([
k/α− 1− kE1ζ

−a
2

]
− CM

−(m−1)
1 − CM

−(r−1)
2 (46)

−C

4
M−1

3 − C

4
M−1

4 − CM
−(β1−1)
5 − CM

−(β2−1)
6 − 1

)
(∥∇u∥αα + ∥∇v∥αα)

+ε

(
k − CM

−(m−1)
1 − CM

−(r−1)
2 − C

4
M−1

3 − C

4
M−1

4

−CM
−(β1−1)
5 − CM

−(β2−1)
6

)
H (t)

+ε

(
c0

2 (ρ+ 2)
− kc1

2 (ρ+ 2)

)(
∥u∥2(ρ+2)

2(ρ+2) + ∥v∥2(ρ+2)
2(ρ+2)

)
,
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for some constant k. Using k = c0/c1, we arrive at

L
′
(t) ≥ ((1− σ)− εM)H−σ (t)H

′
(t) + ε

(
1 +

c0
2c1

)(
∥ut∥22 + ∥vt∥22

)
+ε

(
c− CM

−(m−1)
1 − CM

−(r−1)
2 − C

4
M−1

3 − C

4
M−1

4 (47)

−CM
−(β1−1)
5 − CM

−(β2−1)
6 − 1

)
(∥∇u∥αα + ∥∇v∥αα)

+ε

(
c0/c1 − CM

−(m−1)
1 − CM

−(r−1)
2 − C

4
M−1

3 − C

4
M−1

4

−CM
−(β1−1)
5 − CM

−(β2−1)
6

)
H (t) ,

where c = k/α− 1− kE1ζ
−2
2 = c0/ (c1α)− 1− (c0/c1)E1ζ

−2
2 > 0 since ζ2 > ζ1.

At this point, and for large values of M1, M2, M3, M4, M5 and M6, we can find
positive constants Λ1 and Λ2 such that (47) becomes

L
′
(t) ≥ ((1− σ)−Mε)H−σ (t)H

′
(t) + ε

(
1 +

c0
2c1

)(
∥ut∥22 + ∥vt∥22

)
+εΛ1 (∥∇u∥αα + ∥∇v∥αα) + εΛ2H (t) . (48)

Once M1, M2, M3, M4, M5 and M6 are fixed (hence, Λ1 and Λ2), we pick ε small
enough so that ((1− σ)−Mε) ≥ 0 and

L (0) = H1−σ (0) +

∫
Ω

[u0.ut + v0.vt] dx > 0.

From these and (48) becomes

L
′
(t) ≥ εΓ

(
H (t) + ∥ut∥22 + ∥vt∥22 + ∥∇u∥αα + ∥∇v∥αα

)
. (49)

Thus, we have L (t) ≥ L (0) > 0, for all t ≥ 0. Next, by Holder’s and Young’s
inequalities, we estimate

(∫
Ω

u.ut (x, t) dx+

∫
Ω

v.vt (x, t) dx

) 1
1−σ

≤ C

(
∥u∥

τ
1−σ
2(ρ+2) + ∥ut∥

s
1−σ
2 + ∥v∥

τ
1−σ
2(ρ+2) + ∥vt∥

s
1−σ
2

)
≤ C

(
∥∇u∥

τ
1−σ
α + ∥ut∥

s
1−σ
2 + ∥∇v∥

τ
1−σ
α + ∥vt∥

s
1−σ
2

)
(50)

for
1

τ
+

1

s
= 1. We take s = 2 (1− σ) , to get

τ

1− σ
=

2

1− 2σ
. By using (29) and

(43) we get

∥∇u∥

2

(1− 2σ)
α ≤ d (∥∇u∥αα +H (t)) ,

and

∥∇v∥

2

(1− 2σ)
α ≤ d (∥∇v∥αα +H (t)) , ∀t ≥ 0.
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Therefore, (50) becomes(∫
Ω

u.ut (x, t) dx+

∫
Ω

v.vt (x, t) dx

) 1
1−σ

≤ C
(
∥∇u∥αα + ∥∇v∥αα + ∥ut∥22 + ∥vt∥22 +H (t)

)
, ∀t ≥ 0. (51)

Also, since

L
1

1−σ (t) =

(
H1−σ (t) + ε

∫
Ω

(u.ut + v.vt) (x, t) dx

) 1
(1−σ)

≤ C

H (t) +

∣∣∣∣∫
Ω

(u.ut (x, t) + v.vt (x, t)) dx

∣∣∣∣
1

(1−σ)

 (52)

≤ C
[
H (t) + ∥∇u∥αα + ∥∇v∥αα + ∥ut∥22 + ∥vt∥22

]
, ∀t ≥ 0,

combining withe (52) and (49), we arrive at

L
′
(t) ≥ a0L

1
1−σ (t) , ∀t ≥ 0. (53)

Finally, a simple integration of (53) gives the desired result.This completes the
proof of Theorem (3) �

References

[1] K. Agre and M. A. Rammaha. Systems of nonlinear wave equations with damping and source
terms. Di . Integral Equations, 19(11): 1235–1270, 2006.

[2] J. Ball. Remarks on blow up and nonexistence theorems for nonlinear evolutions equations.

Quart. J. Math. Oxford, 28(2): 473–486, 1977.
[3] A. Benaissa, D. Ouchenane and Kh. Zennir. Blow up of positive initial-energy solutions to

systems of nonlinear wave equation withe degenerate damping and source terms. Nonlinear
studies, 19 (4): 523–535, 2012

[4] V. Georgiev and G. Todorova. Existence of a solution of the wave equation with nonlinear
damping and source term. J. Differential. Equations, 109: 295–308, 1994.

[5] A. Haraux and Zuazua E. Decay estimates for some semilinear damped hyperbolic problems.

Arch. Rational Mech. Anal, 150: 191–206, 1988.
[6] K. Jorgens. Nonlinear wave equations. University of Colorado, Department of Mathematics,

1970.
[7] V. K. Kalantarov and O. A. Ladyzhenskaya. The occurence of collapse for quasilinear equa-

tions of parabolic and hyperbolic type. J. Soviet. Math, 10: 53–70, 1978.
[8] M. Kopackova. Remarks on bounded solutions of a semilinear dissipative hyperbolic equation.

Comment. Math. Univ. Carolin, 30(4): 713–719, 1989.
[9] H. A. Levine and S. R. Park. Global existence and global nonexistence of solutions of the

cauchy problem for a non-linearly damped wave equation. J. Math. Anal. App, 228(1): 181–
205, 1998.

[10] H. A. Levine and J. Serrin. Global nonexistence theorems for quasilinear evolution equations
with dissipation. Arch. Rational Mech. Anal, 137(4): 341–361, 1997.

[11] H.A. Levine. Instability and nonexistence of global solutions to nonlinear wave equations of
the form. Trans. Amer. Math. Soc, 192: 1–21, 1974.

[12] H.A. Levine. Some additional remarks on the nonexistence of global solutions to nonlinear
wave equations. SIAM J. Math. Anal, 5:138–146, 1974.

[13] S. Messaoudi and B. Said-Houari. Global nonexistence of solutions of a class of wave equations
with non-linear damping and source terms. Math. Methods Appl. Sci, 27: 1687–1696, 2004.

[14] S. Messaoudi and B. Said-Houari. Global nonexistence of positive initial-energy solutions of

a system of nonlinear viscoelastic wave equations with damping and source terms. J. Math.
Anal. Appl, 365(1): 277–287, 2010.



24 ABDELAZIZ RAHMOUNE, DJAMEL OUCHENANE EJMAA-2018/6(1)

[15] S. Messaoudi. Blow up in a nonlinearly damped wave equation. Mathematische Nachrichten,

231:1–7, 2001.
[16] M. Milla Miranda and L. A. Medeiros. On the existence of global solutions of a coupled

nonlinear klein-gordon equations. Funkcial. Ekvac, 30(1): 147–161, 1987.
[17] D. Ouchenane, A stability result of the Timoshenko system in thermoelasticity of second

sound with a delay term in the internal feedback, G. Math. J, 21(4): 475–489, (2014).
[18] D. Ouchenane, Kh. Zennir and M. Bayoud. Global nonexistence of solutions for a system of

nonlinear viscoelastic wave equations with degenerate damping and source terms . U. Math.
J, 65(7): 723–739, 2013.

[19] B. Said-Houari. Global existence and decay of solutions of a nonlinear system of wave equa-
tions. Appl. Anal, 91 (3): 475–489, 2010.

[20] B. Said-Houari. Global nonexistence of positive initial-energy solutions of a system of nonlin-
ear wave equations with damping and source terms. Di . Integral. Equations, 23(1-2): 79–92,

2010.
[21] I. Segal. Nonlinear partial di erential equations in quantum field theory. Proc. Symp. Appl.

Math. A.M.S, 17: 210–226, 1965.
[22] E. Vitillaro. Global existence theorems for a class of evolution equations with dissipation.

Arch. Rational Mech. Anal, 149: 155–182, 1999.
[23] Z. Yang. Existence and asymptotic behavior of solutions for a class of quasi-linear evolution

equations with non-linear damping and source terms. Math. Meth. Appl. Sci, 25: 795–814,

2002.

Abdelaziz Rahmoune
Mathematic department, Biskra University BP 145 RP, 07000 Biskra, Algeria
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