A TWO-POINT BOUNDARY VALUE PROBLEM FOR A DIFFERENTIAL EQUATION WITH SELF-REFERENCE

NGUYEN T.T. LAN AND EDUARDO PASCALI

Abstract. In this paper, we study the following two-point boundary value problem

$$
\left\{\begin{array}{l}
u^{\prime}(t)=a(t) u(u(t)), t \in[-1,1] \\
\alpha u(-1)+\beta u(1)=\gamma,
\end{array}\right.
$$

where $a(t)$ is a given continuous, non-negative function on $[-1,1] ; \alpha, \beta$ and γ are constants such that $\alpha+\beta \neq 0$ and other appropriate conditions. The existence of solution of this problem is proved first by the Schauder fixed-point theorem and next by a iterative procedure.

1. Introduction

The existence, uniqueness, analyticity and analytic dependence of solutions to the following equation of a one-variable unknown function $u: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is well considered in [1]

$$
\begin{equation*}
u^{\prime}(t)=u(u(t)) \tag{1}
\end{equation*}
$$

This equation has attracted much attention. As a more general case than (1), Si and Cheng [3] investigated the functional-differential equation

$$
\begin{equation*}
u^{\prime}(t)=u(a t+b u(t)) \tag{2}
\end{equation*}
$$

where $a \neq 1$ and $b \neq 0$ are complex numbers; the unknown $u: \mathbb{C} \rightarrow \mathbb{C}$ is a complex function. By using the power series method, analytic solutions of this equation are obtained. By generalizing (2), in [7] Cheng, Si and Wang considered the equation

$$
\alpha t+\beta u^{\prime}(t)=u\left(a t+b u^{\prime}(t)\right)
$$

where a, α and b, β are complex numbers. Existence theorems are established for the analytic solutions, and systematic methods for deriving explicit solutions are also given. In [8], Staněk studied maximal solutions of the functional-differential equation

$$
\begin{equation*}
u(t) u^{\prime}(t)=k u(u(t)) \tag{3}
\end{equation*}
$$

[^0]with $0<|k|<1$. Here $u: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is a real unknown. This author showed that properties of maximal solutions depend on the sign of the parameter k for two separate cases $k \in(-1,0)$ and $k \in(0,1)$. For earlier work of Staněk than (3), see [9]-[14].

The idea of the equation (1) is developed also for partial differential equations (see $[2,4,5,6]$).

It is emphasized that in $[1,3,7]$ and [9]-[14] any boundary-value problem of (1) has not been considered.

In this paper, by associating (1) with a two-point boundary condition, we study the solution existence of the following two-point boundary-value problem:

$$
\left\{\begin{array}{l}
u^{\prime}(t)=a(t) u(u(t)), t \in[-1,1] \tag{4}\\
\alpha u(-1)+\beta u(1)=\gamma
\end{array}\right.
$$

where $a(t), \alpha, \beta$ and γ with $\alpha+\beta \neq 0$ are given.

2. Solution existence by Schauder fixed-point theorem

In this section we start with the definition of an operator T such that fixed point for T are solution of the problem (4).

Lemma 2.1. Assume that $a(t)$ is a given continuous, non-negative function on $[-1,1] ; \alpha, \beta$ and γ are constants such that $\alpha+\beta \neq 0$. Moreover assume

$$
\begin{equation*}
\int_{-1}^{1} a(s) d s \leq \frac{|\alpha+\beta|-|\gamma|}{|\alpha+\beta|+|\beta|} \tag{5}
\end{equation*}
$$

Then the problem (4) is equivalent to the following operator equation

$$
\begin{equation*}
u=T(u) \tag{6}
\end{equation*}
$$

where the operator

$$
T u(t):=\int_{-1}^{t} a(s) u(u(s)) d s-\frac{\beta}{\alpha+\beta} \int_{-1}^{1} a(s) u(u(s)) d s+\frac{\gamma}{\alpha+\beta}
$$

acts in the convex, closed, bounded subset $K=C([-1,1],[-1,1])$ of the Banach space $X=C([-1,1] ; R)$ endowed with the norm $\|u\|=\max |u(t)|$.

Proof. We prove at first that if $u \in K$ then $T u$ is an element of K. This is easy to prove from (5). In fact if $|u()| \leq$.1 , then

$$
|T u(t)| \leq\left(1+\frac{|\beta|}{|\alpha+\beta|}\right) \int_{-1}^{1} a(s) d s+\frac{|\gamma|}{|\alpha+\beta|} \leq 1
$$

Now, from $(4)_{1}$, we deduce that

$$
\begin{equation*}
u(t)=u(-1)+\int_{-1}^{t} a(s) u(u(s)) d s \tag{7}
\end{equation*}
$$

hence, from $(4)_{2}$

$$
\begin{equation*}
u(-1)=\frac{-\beta}{\alpha+\beta} \int_{-1}^{1} a(s) u(u(s)) d s+\frac{\gamma}{\alpha+\beta} \tag{8}
\end{equation*}
$$

From (7) and (8), we obtain

$$
\begin{equation*}
u(t)=\int_{-1}^{t} a(s) u(u(s)) d s-\frac{\beta}{\alpha+\beta} \int_{-1}^{1} a(s) u(u(s)) d s+\frac{\gamma}{\alpha+\beta} \tag{9}
\end{equation*}
$$

Moreover, if (9) holds for $u \in X$ then (4) also holds.
We have the following theorem.
Theorem 2.1. Suppose $a(t)$ is a given continuous, non-negative function on $[-1,1]$ satisfying (5) where α, β and γ are constants such that $\alpha+\beta \neq 0$.. Then the operator (6) has a fixed point in K.

Proof. From the definition of K, it is clear that K is convex, closed and bounded in the Banach space X .

For $u \in K$, consider

$$
T(u):=\int_{-1}^{t} a(s) u(u(s)) d s-\frac{\beta}{\alpha+\beta} \int_{-1}^{1} a(s) u(u(s)) d s+\frac{\gamma}{\alpha+\beta} .
$$

Note that the identity $\alpha(T u)(-1)+\beta(T u)(1)=\gamma$ holds.
Moreover, we have that $T(K) \subseteq K$. In fact, if $u \in K$, from $|(T u)(t)| \leq$ $\left(1+\frac{|\beta|}{|\alpha+\beta|}\right) \int_{-1}^{1}|a(s)| d s+\frac{|\gamma|}{|\alpha+\beta|}$, it follows

$$
|(T u)(t)| \leq \frac{[|\alpha+\beta|+|\beta|] \int_{-1}^{1}|a(s)| d s+|\gamma|}{|\alpha+\beta|} \leq 1
$$

for all $t \in[-1,1]$. Therefore the claim is proved.
Furthermore, T is continuous. Let $\left(u_{n}\right)$ be a sequence in K convergent with respect to the norm $\|.\|_{0}$ to the function $u \in K$. Note that for every $n \in N$ and $t \in[-1,1]$,

$$
\left|u_{n}\left(u_{n}(t)\right)-u(u(t))\right| \leq\left|u_{n}\left(u_{n}(t)\right)-u\left(u_{n}(t)\right)\right|+\left|u\left(u_{n}(t)\right)-u(u(t))\right| .
$$

From the uniform convergence of $\left(u_{n}\right)$ to u, for a fixed $\epsilon>0$ there exists ν_{1} such that $\left|u_{n}(\rho)-u(\rho)\right| \leq \frac{\epsilon}{2}$ for every ρ. And still, for the uniform continuity of u, for a fixed $\epsilon>0$ there exists $\delta>0$ such that $\left|\xi_{2}-\xi_{1}\right| \leq \delta$ we have $\left|u\left(\xi_{2}\right)-u\left(\xi_{1}\right)\right| \leq \frac{\epsilon}{2}$. Hence, there exists ν_{2} such that for $n>\nu_{2}$ we have $\left|u_{n}(\rho)-u(\rho)\right| \leq \delta$. So for $n>\max \left\{\nu_{1}, \nu_{2}\right\}$ we obtain that

$$
\left|u_{n}\left(u_{n}(t)\right)-u(u(t))\right| \leq\left|u_{n}\left(u_{n}(t)\right)-u\left(u_{n}(t)\right)\right|+\left|u\left(u_{n}(t)\right)-u(u(t))\right|<\epsilon
$$

for all $t \in[-1,1]$. This proves the continuity of T.
Since a is continuous on $[-1,1]$, there exists $M \in \mathbb{R}$ such that $a(s) \leq M$.
We are proving that $T(K)$ is relatively compact with respect to the norm $\|.\|_{0}$. Let $\left(T u_{n}\right)$ be a sequence with $u_{n} \in K$ for all $n \in N$. It is obvious that $\left(T u_{n}\right)$ is bounded, recalled Lemma 3.2. From the continuity of u_{n} and a, we have that $T u_{n} \in C^{1}$ and $\left(T u_{n}\right)^{\prime}(t)=a(t) u_{n}\left(u_{n}(t)\right)$. Therefore, $\left|\left(T u_{n}\right)^{\prime}\right| \leq M$ for all t. Then $\left(T u_{n}\right)$ is an equi-bounded, equi-Lipschitz sequence. By the Ascoli-Arzelà theorem, there exists a convergent subsequence of $\left(T u_{n}\right)$.

In conclusion, we have that $T: K \rightarrow K$ is a continuous operator and $T(K)$ is relatively compact. By Schauder fixed point theorem, T has a fixed point in K.

3. An iterative scheme for existence of solutions

The Schauder theorem applied in the previous section say that a solution of the problem (4) exists; now we consider a sequence of functions, defined by iteration, for which the uniform limit exists and is a solution of the problem (4). We need an other condition on function $a=a(t)$ and α, β, γ.

Consider the following sequence of functions $\left\{u_{n}\right\}_{n}$

$$
\left\{\begin{array}{l}
u_{n+1}(t)=\int_{-1}^{t} a(s) u_{n}\left(u_{n}(s)\right) d s-\frac{\beta}{\alpha+\beta} \int_{-1}^{1} a(s) u_{n}\left(u_{n}(s)\right) d s+\frac{\gamma}{\alpha+\beta} \tag{10}\\
u_{0}(t):=\frac{\gamma^{1}}{\alpha+\beta}
\end{array}\right.
$$

for all $t \in[-1,1]$.
Assume also the following condition

$$
\begin{equation*}
\left|\frac{\gamma}{\alpha+\beta}\right| \leq 1 \tag{11}
\end{equation*}
$$

from the definition of the operator T, as in the previous section, it is easy to prove the following lemma.

Lemma 3.2. The sequence defined by (10) is equibounded and every u_{n} is a C^{1} function provided that $a(t)$ is a given continuous, non-negative function on $[-1,1]$ such that (5) and (11) hold.

More precisely we have that, $\forall n \in N$,

$$
\left.\left|u_{n}(t)\right| \leq 1 ; \quad \mid u_{n}^{\prime}(t)\right) \mid \leq M
$$

and so

$$
\left|u_{n}\left(t_{2}\right)-u_{n}\left(t_{1}\right)\right| \leq M\left|t_{2}-t_{1}\right| \quad \forall t_{2}, t_{1} \in[-1,1]
$$

where $M=\max _{t} a(t)$.
Hence we are able to prove the following theorem.
Theorem 3.2. Suppose $a(t)$ is a given continuous, non-negative function on $[-1,1]$ satisfying (5) and (11) where α, β and γ are constants such that $\alpha+\beta \neq 0$..

Assume, if $1 \leq M$,

$$
\begin{equation*}
\max _{t}\left[\frac{|\alpha|}{|\alpha+\beta|} \int_{-1}^{t} a(s) d s+\frac{|\beta|}{|\alpha+\beta|} \int_{t}^{1} a(s) d s\right]<\frac{1}{2 M} \tag{12}
\end{equation*}
$$

or, if α, β are non negative,

$$
\begin{equation*}
\int_{-1}^{1} a(s) d s<\frac{1}{2 M} \tag{13}
\end{equation*}
$$

or, if $M \leq 1$, the same previous conditions with M replaced with 1. Then the sequence (10) is uniformly convergent to a solution of the problem (4).

Proof. We remark that

$$
\left|u_{1}(t)-u_{0}(t)\right|=\left|\frac{\gamma}{(\alpha+\beta)^{2}}\left[\alpha \int_{-1}^{t} a(s) d s-\beta \int_{t}^{1} a(s) d s\right]\right|
$$

hence

$$
\left|u_{1}(t)-u_{0}(t)\right| \leq \frac{|\gamma|}{|\alpha+\beta|^{2}}\left[|\alpha| \int_{-1}^{t} a(s) d s+|\beta| \int_{t}^{1} a(s) d s\right]=\frac{|\gamma|}{|\alpha+\beta|^{2}} g_{1}(t)
$$

where $g_{1}(t)=\left[|\alpha| \int_{-1}^{t} a(s) d s+|\beta| \int_{t}^{1} a(s) d s\right]$.
Assume that $1 \leq M$.
From

$$
\left|u_{2}(t)-u_{1}(t)\right|=\left\lvert\, \frac{1}{\alpha+\beta}\left[\alpha \int_{-1}^{t} a(s)\left[u_{1}\left(u_{1}(s)\right)-u_{0}\left(u_{0}(s)\right)\right] d s+\right.\right.
$$

$$
\left.-\beta \int_{t}^{1} a(s)\left[u_{1}\left(u_{1}(s)\right)-u_{0}\left(u_{0}(s)\right)\right] d s\right] \mid
$$

we obtain, for the previous step, condition on M and the Lipschitz property of all u_{n} of the previous lemma,

$$
\left|u_{2}(t)-u_{1}(t)\right| \leq \frac{M|\gamma|}{|\alpha+\beta|^{3}} g_{2}(t)
$$

where

$$
\begin{aligned}
& g_{2}(t)=\left[|\alpha| \int_{-1}^{t} a(s) g_{1}(s) d s+|\beta| \int_{t}^{1} a(s) g_{1}(s) d s\right]+ \\
& {\left[|\alpha| \int_{-1}^{t} a(s) g_{1}\left(u_{0}(s)\right) d s+|\beta| \int_{t}^{1} a(s) g_{1}\left(u_{0}(s)\right) d s\right]}
\end{aligned}
$$

It is easy to prove, by induction, that for all $n \in N$ and $t \in[-1,1]$

$$
\left|u_{n+1}(t)-u_{n}(t)\right| \leq \frac{M^{n}|\gamma|}{|\alpha+\beta|^{n+2}} g_{n+1}(t)
$$

where

$$
\begin{aligned}
& g_{n+1}(t)=\left[|\alpha| \int_{-1}^{t} a(s) g_{n}(s) d s+|\beta| \int_{t}^{1} a(s) g_{n}(s) d s\right]+ \\
& {\left[|\alpha| \int_{-1}^{t} a(s) g_{n}\left(u_{n-1}(s)\right) d s+|\beta| \int_{t}^{1} a(s) g_{n}\left(u_{n-1}(s)\right) d s\right]}
\end{aligned}
$$

Now we consider $H=\max _{t} g_{1}(t)$ and remark that

$$
0 \leq g_{2}(t) \leq 2 H^{2}, \quad 0 \leq g_{3}(t) \leq 2^{2} H^{3}
$$

Hence, by induction, it is easy to prove that for all $n \in N, \quad t \in[-1,1]$

$$
0 \leq g_{n}(t) \leq 2^{n-1} H^{n}
$$

Then the following inequalities hold

$$
\left|u(t) n+1-u_{n}(t)\right| \leq \frac{M^{n}|\gamma|}{|\alpha+\beta|^{n+2}} 2^{n} H^{n+1}=|\gamma| H \frac{2^{2}}{M^{2}}\left[\frac{2 M H}{|\alpha+\beta|}\right]^{n+2}
$$

From condition (12) (or (13)) follows, for all $n \in N, \quad\left[\frac{2 H M}{|\alpha+\beta|}\right]<1$.
If we assume $M \leq 1$, the proof is analogous.
Hence the sequence $\left(u_{n}\right)_{n}$ is uniformly convergent to a function $u_{\infty} \in K$ and this limit is obviously a solution for the problem (4).

References

[1] Eder, E.: The functional-differential equation $x^{\prime}(t)=x(x(t))$, J. Differ. Equ. 54, 390-400, 1984.
[2] U. V. Lê and E. Pascali: An existence theorem for self-referred and hereditary differential equations, Adv. Differential Equations Control Process. 1, 25-32, 2008.
[3] J. G. Si and S. S. Cheng: Analytic solutions of a functional-differential equation with state dependent argument, Taiwanese J. Math. 4, 471-480, 1997.
[4] M. Miranda and E. Pascali: On a class of differential equations with self-reference, Rend. Mat., serie VII, 25, 155-164, 2005.
[5] M. Miranda and E. Pascali: On a type of evolution of self-referred and hereditary phenomena, Aequationes Math. 71, 253-268, 2006.
[6] E. Pascali: Existence of solutions to a self-referred and hereditary system of differential equations, Electron. J. Diff. Eqns. Vol. 2006 No. 07, pp. 1-7, 2006.
[7] X. Wang, J. G. Si and S. S. Cheng: Analytic solutions of a functional differential equation with state derivative dependent delay, Aequationes Math. 1, 75-86, 1999.
[8] S. Staněk, Global properties of solutions of the functional differential equation $x(t) x^{\prime}(t)=$ $k x(x(t)), 0<|k|<1$, Funct. Differ. Equ. 9, 527-550, 2002.
[9] S. Staněk, On global properties of solutions of the equation $u^{\prime}(t)=a u(t-b u(t))$, Hokkaido Math. J. 30, 75-89, 2001.
[10] S. Staněk, Global properties of decreasing solutions for the equation $u^{\prime}(t)=u(u(t))-$ $b u(t), b \in(0,1)$, Soochow J. Math. 26, 123-134, 2000.
[11] S. Staněk, Global properties of increasing solutions for the equation $u^{\prime}(t)=u(u(t))-$ $b u(t), b \in(0,1)$, Soochow J. Math. 26, 37-65, 2000.
[12] S. Staněk, Global properties of solutions of iterative-differential equations, Funct. Differ. Equ. 5, 463-481, 1998.
[13] S. Staněk, Global properties of decreasing solutions of the equation $u^{\prime}(t)=u(u(t))+u(t)$, Funct. Differ. Equ. 4, 191-213, 1997.
[14] S. Staněk, On global properties of solutions of functional differential equation $u^{\prime}(t)=$ $u(u(t))+u(t)$, Dynamical Systems and Appl. 4, 263-278, 1995.

Nguyen T.T. Lan
Faculty of Mathematics and Applications, Saigon University, Ho Chi Minh City, VietNAM

E-mail address: nguyenttlan@sgu.edu.vn; nguyenttlan@gmail.com
Eduardo Pascali
Department of Mathematics "Ennio De Giorgi", University of Salento, Italy.
E-mail address: eduardo.pascali@unisalento.it

[^0]: 2010 Mathematics Subject Classification. 47J35, 45G10.
 Key words and phrases. Non-linear evolution equations; functional differential equations, existence.

 Submitted Dec. 4, 2016.

