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OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR

MIXED NEUTRAL DYNAMIC EQUATIONS WITH NON

POSITIVE NEUTRAL TERM ON TIME SCALES

H. A. AGWA, AHMED M. M. KHODIER AND HEBA M. ARAFA

Abstract. In this work, we establish some new oscillation results for the

second-order nonlinear mixed neutral dynamic equation

(r(t)(z∆(t))γ)∆ + f(t, x(τ1(t))) + g(t, x(τ2(t))) = 0,

where z(t) = x(t) − p1(t)x(η1(t)) + p2(t)x(η2(t)). Our results not only com-

plement and generalize some existing results in [9], but also can be applied
to some oscillation problems that were not covered before, we also give some
examples to illustrate our main results.

1. Introduction

A time scale T is a nonempty closed subset of the real numbers R. The book
by Bohner and Peterson [5] summarizes and organizes much of time scale calculus.
We refer also to Bohner and Peterson [6] for advances in dynamic equations on
time scales. In recent years, there has been much activities concerning oscillation
and nonoscillation of the solution of various equations on time scales. We refer the
reader to the papers [[2], [3],[7]-[15]] and references cited therein. In this paper, we
deal with oscillation of the second order mixed nonlinear neutral dynamic equation
with negative neutral term on time scales

(r(t)(z∆(t))γ)∆ + f(t, x(τ1(t))) + g(t, x(τ2(t))) = 0, (1)

where

z(t) = x(t)− p1(t)x(η1(t)) + p2(t)x(η2(t)) (2)

subject to the following hypotheses:

(H1) T is an unbounded above time scale and t0 ∈ T with t0 > 0. We define the
time scale interval [t0,∞)T by [t0,∞)T = [t0,∞)

∩
T.
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(H2) η1, τ1 and τ2 : T → T are rd-continuous such that η1(t) ≤ t, τ1(t) ≤ t,
τ2(t) ≥ t, limt→∞ τ1(t) = ∞ = limt→∞ η1(t) = ∞ and η2 : T → T is injec-
tive rd-continuous increasing function such that η2(t) ≥ t.

(H3) p1 and p2 are non-negative rd-continuous functions on an arbitrary time
scale T where

0 ≤ p1(t) ≤ p1 < 1 and 0 ≤ p2(t) ≤ p2.

(H4) r is a positive rd-continuous function such that
∞∫

t0

∆s

r
1
γ (s)

= ∞. (3)

(H5) f, g ∈ C(R×T,R) such that uf(t, u) ≥ 0, ug(t, u) ≥ 0, f(t, u) ≥ q1(t)u
α and

g(t, u) ≥ q2(t)u
β for u ̸= 0 where q1 and q2 are non-negative rd-continuous

functions on an arbitrary time scale T, α and β are quotients of odd positive
integers.

(H6) γ is a quotient of odd positive integers.

Through out this paper we assume that

d+(t) = max{0, d(t)}, d−(t) = max{0,−d(t)},

A(t) :=


bα−β
0 α ≥ β

bα−β
1

[ t∫
t1

∆s

r
1
γ (s)

]α−β
α < β,

(4)

C(t) :=


b

β
γ −1

0
β
γ ≥ 1

b
β
γ −1

1

[ σ(t)∫
t1

∆s

r
1
γ (s)

] β
γ −1 β

γ < 1,
(5)

where b0 and b1 are positive constants, σ(t) is the forward jump operator which is
defined by σ(t) = inf{s ∈ T, s > t}.
By a solution of (1), we mean a nontrivial real valued function x(t) satisfies (1)
for t ∈ T. A solution of (1) is called oscillatory if it is neither eventually positive
nor eventually negative; otherwise, it is called non-oscillatory. Eq. (1) is said to be
oscillatory if all of its solutions are oscillatory. A nontrivial solution x(t) is said to
be almost oscillatory if either x(t) is oscillatory or x∆(t) is oscillatory.
In what follows, we provide some background details which motivated our study.
L. Erbe et al. [9] considered the second-order nonlinear functional dynamic equation

(r(t)[(x(t)− p(t)x(η(t)))∆]γ)∆ + f(t, x(g(t))) = 0, (6)

where η(t) ≤ t and either g(t) ≥ t or g(t) ≤ t and proved that if

lim sup
t→∞

t∫
T

[
M(s, T∗)δ(s)q(s)−

r(s)(δ∆(s))+)
γ+1

(γ + 1)γ+1δγ(s)

]
∆s = ∞, (7)

then every solution of (6) is either oscillatory on [t0,∞)T or tends to zero where

M(t, T∗) :=

{
1 g(t) ≥ t

θγ(t, T∗) g(t) ≤ t.
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Qi Li et al. [10] obtained oscillation criteria for the delay differential equation

(r(t)((y(t)− p(t)y(τ(t)))′)γ)′ + q(t)f(y(δ(t))) = 0.

R. Arul and V. S. Shobha [4] improved the obtained results in [10] and E. Thanda-
pani et al. [14] obtained some results on oscillatory behavior of the second order
neutral difference equation:

∆(an(∆(xn − pnxn−τ ))
α) + qnf(xn−σ) = 0.

This paper is organized as follows: In Section 2, we give some lemmas that we need
through our work. In Section 3, we establish some new sufficient conditions for
oscillation of (1). Finally, in Section 4, we present some examples to illustrate our
results.

2. Basic Lemmas

In this section, we give some lemmas that play important roles in the proof of
our results.
Lemma 1 Let conditions H1 − H6 be satisfied and x(t) is a positive solution of
(1). Then z(t) satisfies one of the following two cases:
(C1) z(t) > 0, z∆(t) > 0 and (r(t)(z∆(t))γ)∆ ≤ 0
(C2) z(t) < 0, z∆(t) > 0 and (r(t)(z∆(t))γ)∆ ≤ 0,
for t ≥ t1 where t1 ≥ t0 is sufficiently large.
Proof. Suppose that there exists t1 ≥ t0 such that x(t) > 0, x(τi(t)) > 0 and x(ηi(t)) >
0, i = 1, 2 on [t1,∞)T. ( when x(t) is negative the proof is similar, because the trans-
formation x(t) = −y(t) transforms (1) into the same form). From (1) and H5, it
follows that

(r(t)(z∆(t))γ)∆ ≤ −q1(t) x
α(τ1(t))− q2(t)x

β(τ2(t)) ≤ 0 for t ∈ [t1,∞)T. (8)

Then, r(t)(z∆(t))γ is decreasing and of one sign on [t1,∞)T. Hence, there exists
t2 ≥ t1 such that z∆(t) > 0 or z∆(t) < 0 for t ≥ t2.
If z∆(t) > 0 for t ≥ t2, then we have (C1) or (C2). Now we prove that z∆(t) < 0
cannot occur.
If z∆(t) < 0 for t ≥ t2, then r(t)(z∆(t))γ ≤ −c for t ≥ t2, where c := −r(t2)(z

∆(t2))
γ >

0. Thus we conclude that

z(t) ≤ z(t2)− c
1
γ

t∫
t2

∆s

r
1
γ (s)

,

using (3), we have limt→∞ z(t) = −∞. Then we have the following two possiblities
Case(a): If x(t) is unbounded, then there exists a sequence {tk} such that limk→∞ tk =
∞ and limk→∞ x(tk) = ∞. Assume that

x(tk) = max{x(s) : t0 ≤ s ≤ tk}.

Since limt→∞ η1(t) = ∞, η1(tk) > t0 for all sufficiently large k and η1(t) ≤ t, then

x(η1(tk)) = max{x(s) : t0 ≤ s ≤ η1(tk)} ≤ max{x(s) : t0 ≤ s ≤ tk} = x(tk), (9)

therefore from(9) into (2), we have for all large k

z(tk) = x(tk)− p1(tk)x(η1(tk)) + p2(tk)x(η2(tk))

≥ x(tk)− p1(tk)x(η1(tk))

≥ x(tk)− p1x(tk) = (1− p1)x(tk) > 0,
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which contradicts that limt→∞ z(t) = −∞
Case(b): If x(t) is bounded, then z(t) is also bounded which contradicts limt→∞ z(t) =
−∞.
Hence, z(t) satisfies one of the two cases (C1) or (C2). This completes the proof.
Lemma 2 Assume that x(t) is a positive solution of (1) and z(t) satisfies case (C2).
Then limt→∞ x(t) = 0.
proof. By z(t) < 0 and z∆(t) > 0, we deduce that

limt→∞ z(t) = l ≤ 0.

As in the proof of Case(a) of the previous lemma, x(t) is bounded, then limt→∞ x(t) =
a ≥ 0.
Now, if a > 0, then there exists tk ⊆ [t2,∞)T such that limk→∞ tk = ∞, limk→∞ x(tk) =
a > 0 and

x(tk) = max{x(s) : t0 ≤ s ≤ tk},
then z(tk) ≥ x(tk)− p1(tk)x(η1(tk)) ≥ x(tk)− p1x(tk) = (1− p1)x(tk)
thus, 0 > limk→∞ z(tk) > (1− p1)a > 0, which is a contradiction. Therefore, a = 0
and limt→∞ x(t) = 0.

Lemma 3 If f(u) = bu − au
γ+1
γ , where a > 0 and b are constants, then f attains

its maximum value on R at u∗ = ( bγ
a(γ+1) )

γ , and

max
u∈R

f = f(u∗) =
γγ

(γ + 1)γ+1

bγ+1

aγ
.

3. Main Results

Theorem 1 Assume that H1-H6 hold, τ2(t) ≥ η2(t) for all t ≥ t0, and there
exists positive real-valued ∆ -differentiable functions R(t) and δ(t) such that for
sufficiently large T and t1, we have

R(t)

r
1
γ (t)

∫ t

t1
1

r
1
γ (s)

∆s
−R∆(t) ≤ 0, (10)

and

lim sup
t→∞

t∫
T

[
δ(s)ξ(s)[q1(s)L

α(s)A(s)+q2(s)]−
γγ

βγ(γ + 1)γ+1

r(s)(δ∆+ (s))γ+1

δγ(s)Cγ(s)

]
∆s = ∞,

(11)
where

L(s) = min{R(τ1(t))

R(t)
,
R(η−1

2 (τ1(t)))

R(t)
},

ξ(t) = min{ 1

(1 + p2(τ1(t))α
,

1

(1 + p2(τ2(t))β
,

1

(1 + p2(η
−1
2 (τ1(t)))α

,
1

(1 + p2(η
−1
2 (τ2(t)))β

}.

Then, every solution of (1) is almost oscillatory on [t0,∞)T or converges to zero as
t → ∞.
Proof. Assume that x(t) is not almost oscillatory solution of (1). Then without loss
of generality, there exists t3 ≥ t0 such that x(t) > 0, x(τi(t)) > 0 and x(ηi(t)) >
0, i = 1, 2 on [t3,∞)T.(when x(t) is negative, the proof is similar). Then from
lemma 1, z(t) satisfies one of the cases C1 or C2. Also, by the definition of not
almost oscillatory we have the two possibilities:
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(I) x∆(t) < 0 for t ≥ t3
(II) x∆(t) > 0 for t ≥ t3

Case1. Suppose that C1 holds and x∆(t) < 0, then we have

z(t) = z(t1) +

∫ t

t1

(r(s)(z∆(s))γ)
1
γ

r
1
γ (s)

∆s

≥ r
1
γ (t)z∆(t)

∫ t

t1

∆s

r
1
γ (s)

,

thus ( z(t)
R(t)

)∆ =
z∆(t)R(t)− z(t)R∆(t)

R(t)Rσ(t)

≤ z(t)

R(t)Rσ(t)

[ R(t)

r
1
γ (t)

∫ t

t1
1

r
1
γ (s)

∆s
−R∆(t)

]
≤ 0, (12)

then z/R is a non-increasing function. From the definition of z(t), we see that

z(t) < x(t) + p2(t)x(η2(t))

≤ (1 + p2(t))x(t)for t ≥ t3

choosing t4 > t3 such that τ1(t) ≥ t3 for all t ≥ t4, then

x(τ1(t)) ≥
1

1 + p2(τ1(t))
z(τ1(t)) and x(τ2(t)) ≥

1

1 + p2(τ2(t))
z(τ2(t)), t ≥ t4 (13)

substituting from (13) into (8), we have

(r(t)(z∆(t))γ)∆ ≤ −q1(t)

(1 + p2(τ1(t)))α
zα(τ1(t))−

q2(t)

(1 + p2(τ2(t)))β
zβ(τ2(t))

≤ −N(t)[q1(t)z
α(τ1(t)) + q2(t)z

β(τ2(t))]fort ≥ t4 (14)

where N(t) = min{ 1
(1+p2(τ1(t)))α

, 1
(1+p2(τ2(t)))β

}.
Defining the function w by

w = δ(t)
r(t)(z∆(t))γ

zβ(t)
, (15)

then w(t) > 0 and

w∆(t) = (
δ(t)

zβ(t)
)(r(t)(z∆(t))γ)∆ + r(σ(t))(z∆(σ(t))γ(

δ(t)

zβ(t)
)∆.

= (
δ(t)

zβ(t)
)(r(t)(z∆(t))γ)∆ + r(σ(t))(z∆(σ(t)))γ

zβ(t)δ∆(t)− δ(t)(zβ(t))∆

zβ(t)zβ(σ(t))
.

(16)

Substituting from (14) and (15) into (16), we obtained

w∆(t) ≤ −δ(t)N(t)
[
q1(t)(

z(τ1(t))

z(t)
)αzα−β(t) + q2(t)(

z(τ2(t))

z(t)
)β
]
+

δ∆(t)

δ(σ(t))
w(σ(t))− δ(t)r(σ(t))(z∆(σ(t)))γ(zβ(t))∆

zβ(t)zβ(σ(t))
, t ≥ t4. (17)
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Since t > τ1(t) for all t ≥ t4, then integrating using the fact that z(t)
R(t) is a decreasing

function, therefore
z(τ1(t))

z(t)
≥ R(τ1(t))

R(t)
for all t ≥ t4. (18)

Using z(t) > 0, z∆(t) > 0 and (r(t)(z∆(t))γ)∆ ≤ 0, then there exists t5 ∈ [t4,∞)T
and positive constants b0 and b1 such that

z(t0) := b0 ≤ z(t) ≤ b1

t∫
t1

∆s

r
1
γ (s)

, t ≥ t5, (19)

hence, we have

zα−β(t) ≥ A(t) :=


bα−β
0 α ≥ β

bα−β
1

[ t∫
t1

∆s

r
1
γ (s)

]α−β
α < β.

(20)

Using chain rule, we get

(zβ(t))∆ ≥


βz∆(t)zβ−1(t), β ≥ 1

βz∆(t)(z(σ(t)))β−1, β < 1

(21)

since, σ(t) ≥ t and r(t)(z∆(t))γ is a decreasing function, then

z∆(t) >
(r(σ(t)))

1
γ

r
1
γ (t)

z∆(σ(t)). (22)

Using (15), (21) and (22), then we have

δ(t)r(σ(t))(z∆(σ(t)))γ(zβ(t))∆

zβ(t)zβ(σ(t))
≥ βδ(t)

(δ(σ(t)))λr
1
γ (t)

(z(σ(t)))
β
γ −1wλ(σ(t)), (23)

where λ = γ+1
γ . Then by using (19), we have

(z(σ(t)))
β
γ −1 ≥ C(t) :=


b

β
γ −1

0
β
γ ≥ 1

b
β
γ −1

1

[ σ(t)∫
t1

∆s

r
1
γ (s)

] β
γ −1 β

γ < 1,

consequently (23) becomes

δ(t)r(σ(t))(z∆(σ(t)))γ(zβ(t))∆

zβ(t)zβ(σ(t))
≥ βδ(t)C(t)

(δ(σ(t)))λr
1
γ (t)

wλ(σ(t)), t ≥ t5. (24)

Since τ2(t) ≥ t and z∆(t) > 0, then z(τ2(t))
z(t) ≥ 1.

Substituting from the above inequality, (18), (20) and (24) into (17), we obtain

w∆(t) ≤ −δ(t)N(t)[q1(t)(
R(τ1(t))

R(t)
)αA(t) + q2(t)] +

δ∆+ (t)

δ(σ(t))
w(σ(t))

− βδ(t)C(t)

(δ(σ(t)))λr
1
γ (t)

wλ(σ(t)), (25)
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using lemma 3 and taking

b :=
δ∆+ (t)

δ(σ(t))
and a :=

βδ(t)C(t)

(δσ(t))λr
1
γ (t)

,

then

δ∆+ (t)

δ(σ(t))
w(σ(t))− βδ(t)C(t)

(δ(σ(t))λr
1
γ (t)

wλ(σ(t)) ≤ γγ

βγ(γ + 1)γ+1

r(t)(δ∆+ (t))γ+1

δγ(t)Cγ(t)
. (26)

Substituting from (26) into (25), we obtain

w∆(t) ≤ −δ(t)N(t)[q1(t)(
R(τ1(t))

R(t)
)αA(t)+q2(t)]+

γγ

βγ(γ + 1)γ+1

r(t)(δ∆+ (t))γ+1

δγ(t)Cγ(t)
, t ≥ t5.

Integrating the above inequality from t5 to t, we get

t∫
t5

[
δ(s)N(s)[q1(s)(

R(τ1(s))

R(s)
)αA(s) + q2(s)]−

γγ

βγ(γ + 1)γ+1

r(s)(δ∆+ (s))γ+1

δγ(s)Cγ(s)

≤ w(t5)− w(t) < w(t5)

which is a contradiction with (11).
Case2. Suppose that C1 holds x∆(t) > 0, then we have

z(t) < x(t) + p2(t)x(η2(t))

≤ (1 + p2(t))x(η2(t))forall t ≥ t5.

Choosing t6 sufficiently large such that t6 > t5 and η−1
2 (t) > t5 for all t ≥ t6, then

x(t) ≥ 1

1 + p2(η
−1
2 (t))

z(η−1
2 (t))t ≥ t6.

Taking t7 > t6 such that τ1(t) > t6 for all t ≥ t7, then

x(τ1(t)) ≥
1

1 + p2(η
−1
2 (τ1(t)))

z(η−1
2 (τ1(t))) and

x(τ2(t)) ≥
1

1 + p2(η
−1
2 (τ2(t)))

z(η−1
2 (τ2(t))), t ≥ t7. (27)

substituting from (27) into (8), we have

(r(t)(z∆(t))γ)∆ ≤ −q1(t)

(1 + p2(η
−1
2 (τ1(t))))α

zα(η−1
2 (τ1(t)))−

q2(t)

(1 + p2(η
−1
2 (τ2(t))))β

zβ(η−1
2 (τ2(t)))

(28)

for all t ≥ t7, then using the same technique we used in Case 1, we obtain

w∆(t) ≤ −δ(t)M(t)
[
q1(t)(

z(η−1
2 (τ1(t)))

z(t)
)αzα−β(t) + q2(t)(

z(η−1
2 (τ2(t)))

z(t)
)β
]
+

δ∆+ (t)

δ(σ(t))
w(σ(t))− βδ(t)C(t)

(δ(σ(t))λr
1
γ (t)

wλ(σ(t)) for all t ≥ t7,

(29)
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where M(t) = min{ 1
(1+p2(η

−1
2 (τ1(t))))α

, 1
(1+p2(η

−1
2 (τ2(t))))β

}.

Since t ≥ η−1
2 (τ1(t)) for all t ≥ t7, then using the fact that z(t)

R(t) is a decreasing

function (see (12)), we get

z(η−1
2 (τ1(t)))

z(t)
≥ R(η−1

2 (τ1(t)))

R(t)
for allt ≥ t7. (30)

Since τ2(t) ≥ η2(t), then

z(η−1
2 (τ2(t)))

z(t)
≥ 1 for all t ≥ t7. (31)

Substituting from (30) and (31) into (29), we obtain

w∆(t) ≤ −δ(t)M(t)[q1(t)(
R(η−1

2 (τ1(t)))

R(t)
)αA(t) + q2(t)] +

δ∆+ (t)

δ(σ(t))
w(σ(t))−

βδ(t)C(t)

(δ(σ(t)))λr
1
γ (t)

(w(σ(t)))λ. (32)

Using Lemma 3 and integrating from t7 to t, we get

t∫
t7

[
δ(s)M(s)[q1(s)(

R(η−1
2 (τ1(s)))

R(s)
)αA(s)+q2(s)]−

γγ

βγ(γ + 1)γ+1

r(s)(δ∆+ (s))γ+1

δγ(s)Cγ(s)
< w(t7)

(33)
which is a contradiction with (11).
Finally, suppose that case (C2) holds, then according to lemma 2, we have limt→∞ x(t) =
0. This completes the proof.
Theorem 2 Assume that H1-H6 hold and η2(t) ≥ τ2(t) for all t ≥ t0. Furthermore
suppose that there exist positive real-valued ∆ -differentiable functions R(t) and
δ(t) such that Eq. (10) is satisfied and for sufficiently large T , we have

lim sup
t→∞

t∫
T

[
δ(s)ξ(s)[q1(s)L

α(s)A(s)+q2(s)v
β(s)]− γγ

βγ(γ + 1)γ+1

r(s)(δ∆+ (s))γ+1

δγ(s)Cγ(s)

]
∆s = ∞,

(34)
where

L(s) = min{R(τ1(s))

R(s)
,
R(η−1

2 (τ1(s)))

R(s)
)} and v(s) = min{1, R(η−1

2 (τ2(s)))

R(s)
}

Then, every solution of (1) is almost oscillatory on [t0,∞)T or converges to zero as
t → ∞
Proof. Assume that x(t) is not almost oscillatory solution of (1). Then without loss
of generality, there exists t3 ≥ t0 such that x(t) > 0, x(τi(t)) > 0 and x(ηi(t)) >
0, i = 1, 2 on [t3,∞)T (when x(t) is negative, the proof is similar). Then from
lemma 1, z(t) satisfies one of the cases C1 or C2. Also, by the definition of not
almost oscillatory we have the two possibilities:

(I) x∆(t) < 0 for t ≥ t3
(II) x∆(t) > 0 for t ≥ t3

Case1. Suppose that C1 holds and x∆(t) < 0, then the proof is similar to that of
Theorem 1. So, it is omitted.
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Case2. Suppose that C1 holds and x∆(t) > 0, then using the same technique that
used in Case 2 of Theorem 1, until we reach to (29). Hence

w∆(t) ≤ −δ(t)M(t)
[
q1(t)(

z(η−1
2 (τ1(t)))

z(t)
)αzα−β(t) + q2(t)(

z(η−1
2 (τ2(t)))

z(t)
)β
]
+

δ∆(t)

δσ(t)
w(σ(t))− δ(t)rσ(t)(z∆σ(t))γ(zβ(t))∆

zβ(t)zβ(σ(t))
for all t ≥ t7.

(35)

Since, η2(t) ≥ τ2(t) > t1, then t ≥ η−1
2 (τ2(t)) for all t ≥ t7. Using the fact that z(t)

R(t)

is decreasing, hence

z(η−1
2 (τ2(t)))

z(t)
≥ R(η−1

2 (τ2(t)))

R(t)
for all t ≥ t7. (36)

Substituting from (20), (24), (30) and (36) into (35), we obtain

w∆(t) ≤ −δ(t)M(t)[q1(t)(
R(η−1

2 (τ1(t)))

R(t)
)αA(t) + q2(t)(

R(η−1
2 (τ2(t)))

R(t)
)β ]+

δ∆+ (t)

δ(σ(t))
w(σ(t))− βδ(t)C(t)

(δ(σ(t)))λr
1
γ (t)

(w(σ(t)))λ, (37)

Using Lemma 3 and integrating from t7 to t, we get

t∫
t7

[
δ(s)M(s)[q1(s)(

R(η−1
2 (τ1(s)))

R(s)
)αA(s) + q2(s)(

R(η−1
2 (τ2(s)))

R(s)
)β ]−

γγ

βγ(γ + 1)γ+1

r(s)(δ∆+ (s))γ+1

δγ(s)Cγ(s)

]
≤ w(t7)− w(t) < w(t7) (38)

which is a contradiction with (34).
Finally, if case (C2) holds, then according to lemma 2, we have limt→∞ x(t) = 0.
This completes the proof.
Theorem 3 Assume thatH1-H6 and (10) hold, τ2(t) ≥ η2(t) for all t ≥ t0 and there
exist functions H,h such that for each fixed t, H(t, s) and h(t, s) are rd-continuous
with respect to s on D ≡ {(t, s) : t ≥ s ≥ t0} such that

H(t, t) = 0, t ≥ t0,H(t, s) > 0, t > s ≥ t0, (39)

and H has a non-positive continuous ∆-partial derivative H∆s(t, s) satisfying

H∆s(t, s) +H(t, s)
δ∆+ (t)

δσ(t)
= −h(t, s)

δσ(t)
(H(t, s))

γ
γ+1 . (40)

Assume that there exists a positive real-valued ∆ -differentiable function δ(t) such
that for sufficiently large T ≥ t1 > t0, we have

lim sup
t→∞

1

H(t, T )

t∫
T

[
δ(s)ξ(s)H(t, s)[q1(s)L

α(s)A(s) + q2(s)]

− γγ

βγ(γ + 1)γ+1

r(s)(h−(s, t))
γ+1

δγ(s)Cγ(s)

]
∆s = ∞,

(41)
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Then, every solution of (1) is almost oscillatory on [t0,∞)T or converges to zero as
t → ∞.
Proof. Assume that x(t) is not almost oscillatory solution of (1). Then without loss
of generality, there exists t3 ≥ t0 such that x(t) > 0, x(τi(t)) > 0 and x(ηi(t)) >
0, i = 1, 2 on [t3,∞)T.(when x(t) is negative, the proof is similar). Then from
lemma 1, z(t) satisfies one of the cases C1 or C2. Also, by the definition of not
almost oscillatory we have the two possibilities:

(I) x∆(t) < 0 for t ≥ t3
(II) x∆(t) > 0 for t ≥ t3

Case1. Suppose that C1 holds and x∆(t) < 0, then Proceeding as in the proof of
Case 1 in Theorem 1 until we get (25), therefore

δ(t)N(t)[q1(t)(
R(τ1(t))

R(t)
)αA(t)+q2(t)] ≤ −w∆(t)+

δ∆+ (t)

δ(σ(t))
w(σ(t))− βδ(t)C(t)

(δ(σ(t)))λr
1
γ (t)

(w(σ(t)))λ,

Multiplying both sides of the previous inequality by H(t, s) and integrating from
t5 to t, we get

t∫
t5

[H(t, s)δ(s)N(s)[q1(s)(
R(τ1(s))

R(s)
)αA(s) + q2(s)]∆s

≤ −
t∫

t5

H(t, s)w∆(s)∆s+

t∫
t5

H(t, s)
δ∆+ (s)

δσ(s)
wσ(s)∆s−

t∫
t5

βH(t, s)δ(s)C(s)

r
1
γ (s)(δσ(s))λ

(wσ(s))λ∆s

≤ H(t, t5)w(t5)+

t∫
t5

[
−h(t, s)(H(t, s))

1
λ

δσ(s)
wσ(s)∆s−

t∫
t5

βH(t, s)δ(s)C(s)

r
1
γ (s)(δσ(s))λ

(wσ(s))λ∆s

≤ H(t, t5)w(t5)+

t∫
t5

[
h−(t, s)(H(t, s))

1
λ

δσ(s)
wσ(s)∆s−

t∫
t5

βH(t, s)δ(s)C(s)

r
1
γ (s)(δσ(s))λ

(wσ(s))λ∆s.

(42)

Using lemma 3, with

a :=
βH(t, s)δ(s)C(s)

r
1
γ (s)(δσ(s))λ

and b :=
h−(t, s)(H(t, s))

1
λ

δσ(s)
,

we get:

h−(t, s)(H(t, s))
1
λ

δσ(s)
wσ(s)− βH(t, s)δ(s)C(s)

r
1
γ (s)(δσ(s))λ

(wσ(s))λ ≤ γγ

βγ(γ + 1)γ+1

r(s)(h−(s, t))
γ+1

δγ(s)Cγ(s)
.

(43)



EJMAA-2018/6(1) ON OSCILLATION OF NEUTRAL DYNAMIC EQUATIONS 41

Substituting (43) into (42), we get

t∫
t5

[H(t, s)δ(s)N(s)[q1(s)(
R(τ1(s))

R(s)
)αA(s) + q2(s)]]∆s

≤ H(t, t5)w(t5) +

t∫
t5

γγ

βγ(γ + 1)γ+1

r(s)(h−(s, t))
γ+1

δγ(s)Cγ(s)
∆s,

which implies

1

H(t, t5)

t∫
t5

[
δ(s)N(s)H(t, s)[q1(s)(

R(τ1(s))

R(s)
)α(s, t1)A(s) + q2(s)]−

γγ

βγ(γ + 1)γ+1

r(s)(h−(s, t))
γ+1

δγ(s)Cγ(s)

]
∆s ≤ w(t5),

this is a contradiction with (41).
Case2. Suppose that C1 holds and x∆(t) > 0, then Proceeding as in the proof of
Case 2 in Theorem 1 until (32), we get:

δ(t)M(t)[q1(t)(
R(η−1

2 (τ1(t)))

R(t)
)αA(t) + q2(t)]

≤ −w∆(t) +
δ∆+ (t)

δ(σ(t))
w(σ(t))− βδ(t)C(t)

(δ(σ(t)))λr
1
γ (t)

(w(σ(t)))λ.

Multiplying both sides of the above inequality by H(t, s), integrating from t7 to t
and following the same proof as in Case 1, we obtain

1

H(t, t7)

t∫
t7

[
δ(s)M(s)H(t, s)[q1(s)(

R(η−1
2 (τ1(s)))

R(s)
)αA(s) + q2(s)]−

γγ

βγ(γ + 1)γ+1

r(s)(h−(s, t))
γ+1

δγ(s)Cγ(s)

]
∆s ≤ w(t7)

which is a contradiction with (41).
Finally, suppose that case (C2) holds, then according to lemma 2, we get limt→∞ x(t) =
0. This completes the proof.
Theorem 4 Assume that H1-H6 hold, η2(t) ≥ τ2(t) for all t ≥ t0. Also, assume
thst there exist functions H,h and δ defined as in Theorem 3 and satisfying Eqs.
(39), (40) and

lim sup
t→∞

1

H(t, T )

t∫
T

[
δ(s)ξ(s)H(t, s)[q1(s)L

α(s)A(s) + υβ(s)q2(s)]

− γγ

βγ(γ + 1)γ+1

r(s)(h−(s, t))
γ+1

δγ(s)Cγ(s)

]
∆s = ∞,

(44)

(45)

Then, every solution of (1) is almost oscillatory on [t0,∞)T or converges to zero as
t → ∞.



42 H. A. AGWA, AHMED M. M. KHODIER AND HEBA M. ARAFA EJMAA-2018/6(1)

Proof. Assume that x(t) is not almost oscillatory solution of (1). Then without loss
of generality, there exists t3 ≥ t0 such that x(t) > 0, x(τi(t)) > 0 and x(ηi(t)) >
0, i = 1, 2 on [t3,∞)T.(when x(t) is negative, the proof is similar). Then from
lemma 1, z(t) satisfies one of the cases C1 or C2. Also, by the definition of not
almost oscillatory we have the two possibilities:

(I) x∆(t) < 0 for t ≥ t3
(II) x∆(t) > 0 for t ≥ t3

Case1. Suppose that C1 holds and x∆(t) < 0, then the proof is similar to that of
Case 1 Theorem 3. So it is omitted.
Case2. Suppose that C1 holds and x∆(t) > 0, then Proceeding as in the proof of
Case 2 in Theorem 2 until (37), we get

δ(t)M(t)[q1(t)(
R(η−1

2 (τ1(t)))

R(t)
)αA(t) + q2(t)(

R(η−1
2 (τ2(t)))

R(t)
)β ]

≤ −w∆(t) +
δ∆+ (t)

δ(σ(t))
w(σ(t))− βδ(t)C(t)

(δ(σ(t))λr
1
γ (t)

(w(σ(t))λ,

Multiplying both sides of the above inequality by H(t, s), integrating from t7 to t
and following the same technique as in Case 1 Theorem 3, we obtain

1

H(t, t7)

t∫
t7

[
δ(s)M(s)H(t, s)[q1(s)(

R(η−1
2 (τ1(s)))

R(s)
)αA(s) + q2(s)(

R(η−1
2 (τ2(s)))

R(s)
)β(s, t1)]

− γγ

βγ(γ + 1)γ+1

r(s)(h−(s, t))
γ+1

δγ(s)Cγ(s)

]
∆s ≤ w(t7)

which is a contradiction with (44).
Finally, suppose that case (C2) holds, then according to lemma 2, we get limt→∞ x(t) =
0. This completes the proof.

4. Examples

In this section, we give some examples to illustrate our main results.
Example 1 Take T = [t1 +Π,∞)R where t1 ≥ 0 and consider the equation

[x(t)− 1

2
x(t−Π

2
)+2x(t+

Π

2
)]′′+32x(t−Π

2
)+8x(t+Π) = 0 for all t ≥ t0+Π. (46)

Here

α = β = γ = 1, r(s) = 1, η1(t) = τ1(t) = t− Π

2
, η2(t) = t+

Π

2
, τ2(t) = t+Π, p1(t) =

1

2
,

p2(t) = 2, q1(t) = 32 and q2(t) = 8

then substituting in (4) and (5), we obtain A(s) = C(s) = 1. Also

∞∫
t1+Π

∆s

r
1
γ (s)

=

∞∫
t1+Π

∆s = ∞ and η−1
2 (τ1(t)) = t−Π.
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hence t1 < η−1
2 (τ1(t)) < τ1(t), taking

t∫
t1

∆s

r
1
γ (s)

, we get
R(η−1

2 (τ1(s)))
R(s) < (R(τ1(s))

R(s) ).

Consequently

Lα(t) =
R(η−1

2 (τ1(s)))

R(s)
=

t−Π∫
t1

∆s

t∫
t1

∆s

=
t−Π− t1
t− t1

.

Also ξ(s) = 1
3 . Since η2(t) ≤ τ2(t), then subistituting in (11) with δ(t) = 1, we get

lim sup
t→∞

t∫
T

1

3
[32

s−Π− t1
s− t1

+ 8]∆s = ∞ (47)

using Theorem 1, we obtain that every solution of (46) is almost oscillatory or
converges to zero as t → ∞. Note that x(t) = sin 4t is an almost oscillatory
solution to Eq. (46).

Remark 1 The results of [4], [9] and [10] can not be applied to (46) as p2(t) ̸= 0
and f(t, x(τ1(t))) ̸= 0 ̸= g(t, x(τ2(t))), but according to Theorem 1 we obtain that
every solution of (46) is almost oscillatory or converges to zero as t → ∞.

Example 2 Take T = [2t1,∞)T where t1 ≥ 0 and consider the equation

[[[x(t)− 1

2
x(η1(t)) +

1

4
x(2t)]∆]4]∆ + q1(t)x

9(t) + q2(t)x
8(2t+ 1) = 0. (48)

Here

α = 9, β = 8, γ = 4, r(s) = 1, η1(t) ≤ t, η2(t) = 2t, τ1(t) = t, τ2(t) = 2t+ 1,

p1(t) =
1

2
, p2(t) =

1

4
, q1(t) =

29(t− t1)
9

(t− 2t1)9b0t
and q2(t) =

2

t

then substituting in (4) and (5), we obtain A(s) = C(s) = b0,
∞∫

2t1

∆s

r
1
γ (s)

=

∞∫
2t1

∆s = ∞ and η−1
2 (τ1(t)) =

t

2

hence t1 < η−1
2 (τ1(t)) < τ1(t), taking R(t) =

t∫
t1

∆s

r
1
γ (s)

, hence
R(η−1

2 (τ1(s)))
R(s) <

(R(τ1(s))
R(s) ), consequently

Lα(t) = (
R(η−1

2 (τ1(t)))

R(t)
)9 = (

t
2∫

t1

∆s

t∫
t1

∆s

)9 =
( t
2 − t1

t− t1

)9
> 0.

Also ξ(s) = (45 )
9, since η2(t) ≤ τ2(t), then substitute in (11) with δ(t) = 1 we have

lim sup
t→∞

t∫
T

(
4

5
)9
3

s
∆s = ∞ (49)

using Theorem 1, we find that every solution of (48) is almost oscillatory or con-
verges to zero as t → ∞.
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Remark 2 The results of [9] can not be applied to (48) as p2(t) ̸= 0, α ̸= β ̸= γ
and both f(t, x(τ1(t))) ̸= 0 ̸= g(t, x(τ2(t))). But according to Theorem 1, we obtain
that every solution of (48) is almost oscillatory or converges to zero as t → ∞.
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