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DHAGE ITERATION METHOD FOR INITIAL VALUE

PROBLEMS OF NONLINEAR SECOND ORDER HYBRID

FUNCTIONAL DIFFERENTIAL EQUATIONS

SHYAM B. DHAGE AND ASHOK D. KADAM

Abstract. In this paper we prove the existence and uniqueness results for
approximate solution of an initial value problem of second order nonlinear

functional differential equations via construction of an algorithm. The main

results rely on the Dhage iteration method embodied in a recent hybrid fixed
point principle of Dhage (2014) in a partially ordered normed linear space. Ex-

amples are also furnished to illustrate the hypotheses and the abstract results

of this paper.

1. Statement of the Problem

Given the real numbers r > 0 and T > 0, consider the closed and bounded
intervals I0 = [−r, 0] and I = [0, T ] in R and let J = [−r, T ]. By C = C(I0,R) we
denote the space of continuous real-valued functions defined on I0. We equip the
space C with he norm ‖ · ‖C defined by

‖x‖C = sup
−r≤θ≤0

|x(θ)|. (1)

Clearly, C is a Banach space with this supremum norm and it is called the history
space of the functional differential equation in question.

For any continuous function x : J → R and for any t ∈ I, we denote by xt the
element of the space C defined by

xt(θ) = x(t+ θ), −r ≤ θ ≤ 0. (2)

Differential equations involving the history of the dynamic systems are called
functional differential equations and it has been recognized long back the impor-
tance of such problems in the theory of differential equations. Since then, several
classes of nonlinear functional differential equations have been discussed in the
literature for different qualitative properties of the solutions. A special class of
functional differential equations has been discussed in Dhage [8, 9, 12], Dhage and
Dhage [14] and Dhage and Dhage [15] for the existence and approximation of solu-
tions via a new Dhage iteration method. Very recently the Dhage iteration method
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is successfully applied to first order hybrid functional differential equation of de-
lay type by Dhage [12, 13]. Therefore, it is desirable to extend this method to
other functional differential equations involving delay. The present paper is also an
attempt in this direction.

In this paper, we consider the nonlinear second order functional differential equa-
tion (in short FDE)

x′′(t) = f(t, xt), t ∈ I,
x0 = φ, x′(0) = η,

}
(3)

where φ ∈ C and f : I × C → R is a continuous function.

Definition 1.1. A function x ∈ C2(J,R) is said to be a solution solution of the
FDE (3) on J if

(i) x0 = φ, x′(0) = η,
(ii) xt ∈ C for each t ∈ I, and
(iii) x is twice continuously differentiable on I and satisfies the equation in (3),

where C2(J,R) is the space of twice continuously differentiable real-valued functions
defined on J .

The FDE (3) is well-known and extensively discussed in the literature for dif-
ferent aspects of the solutions. See Hale [18], Ntouyas [20, 21] and the references
therein. There is a vast literature on nonlinear functional differential equations
for different aspects of the solutions via different approaches and methods. The
method of upper and lower solution or monotone method is interesting and well-
known, however it requires the existence of both the lower as well as upper solutions
as well as certain inequality involving monotonicity of the nonlinearity. In this pa-
per we prove the existence of solution for FDE (3) via Dhage iteration method
which does not require the existence of both upper and lower solution as well as
the related monotonic inequality and also obtain the algorithm for the solutions.
The novelty of the present paper lies in its method which is completely new in
the field of functional differential equations and yields the monotonic successive
approximations for the solutions under some well-known natural conditions.

The rest of the paper is organized as follows. Section 2 deals with the preliminary
definitions and auxiliary results that will be used in subsequent sections of the
paper. The main results are given in Sections 3 and 4. Illustrative examples are
also furnished at the end of each section.

2. Auxiliary Results

Throughout this paper, unless otherwise mentioned, let (E,�, ‖ · ‖) denote a
partially ordered normed linear space. Two elements x and y in E are said to be
comparable if either the relation x � y or y � x holds. A non-empty subset C
of E is called a chain or totally ordered if all the elements of C are comparable.
It is known that E is regular if {xn} is a nondecreasing (resp. nonincreasing)
sequence in E such that xn → x∗ as n → ∞, then xn � x∗ (resp. xn � x∗) for
all n ∈ N. The conditions guaranteeing the regularity of E may be found in Guo
and Lakshmikatham [17] and the references therein. Similarly a few details of a
partially ordered normed linear space are given in Dhage [4] while orderings defined
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by different order cones are given in Deimling [1], Guo and Lakshmikantham [17],
and the references therein.

We need the following definitions (see Dhage [4, 5, 6] and the references therein)
in what follows.

Definition 2.1. A mapping T : E → E is called isotone or nondecreasing if it
preserves the order relation �, that is, if x � y implies T x � T y for all x, y ∈ E.
Similarly, T is called nonincreasing if x � y implies T x � T y for all x, y ∈ E.
Finally, T is called monotonic or simply monotone if it is either nondecreasing
or nonincreasing on E.

Definition 2.2. A mapping T : E → E is called partially continuous at a point
a ∈ E if for ε > 0 there exists a δ > 0 such that ‖T x − T a‖ < ε whenever x is
comparable to a and ‖x−a‖ < δ. T called partially continuous on E if it is partially
continuous at every point of it. It is clear that if T is partially continuous on E,
then it is continuous on every chain C contained in E and vice-versa.

Definition 2.3. A non-empty subset S of the partially ordered Banach space E is
called partially bounded if every chain C in S is bounded. An operator T on a
partially normed linear space E into itself is called partially bounded if T (E) is
a partially bounded subset of E. T is called uniformly partially bounded if all
chains C in T (E) are bounded by a unique constant.

Definition 2.4. A non-empty subset S of the partially ordered Banach space E is
called partially compact if every chain C in S is a relatively compact subset of
E. A mapping T : E → E is called partially compact if T (E) is a partially
relatively compact subset of E. T is called uniformly partially compact if T
is a uniformly partially bounded and partially compact operator on E. T is called
partially totally bounded if for any bounded subset S of E, T (S) is a partially
relatively compact subset of E. If T is partially continuous and partially totally
bounded, then it is called partially completely continuous on E.

Remark 2.1. Suppose that T is a nondecreasing operator on E into itself. Then
T is a partially bounded or partially compact if T (C) is a bounded or relatively
compact subset of E for each chain C in E.

Definition 2.5. The order relation � and the metric d on a non-empty set E are
said to be D-compatible if {xn} is a monotone sequence, that is, monotone non-
decreasing or monotone nonincreasing sequence in E and if a subsequence {xnk

} of
{xn} converges to x∗ implies that the original sequence {xn} converges to x∗. Simi-
larly, given a partially ordered normed linear space (E,�, ‖·‖), the order relation �
and the norm ‖ ·‖ are said to be D-compatible if � and the metric d defined through
the norm ‖ · ‖ are D-compatible. A subset S of E is called Janhavi if the order
relation � and the metric d or the norm ‖ · ‖ are D-compatible in it. In particular,
if S = E, then E is called a Janhavi metric or Janhavi Banach space.

Definition 2.6. An upper semi-continuous and monotone nondecreasing function
ψ : R+ → R+ is called a D-function provided ψ(0) = 0. An operator T : E → E is
called partially nonlinear D-contraction if there exists a D-function ψ such that

‖T x− T y‖ ≤ ψ
(
‖x− y‖

)
(4)

for all comparable elements x, y ∈ E, where 0 < ψ(r) < r for r > 0. In particular,
if ψ(r) = k r, k > 0, T is called a partial Lipschitz operator with a Lischitz constant
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k and moreover, if 0 < k < 1, T is called a partial linear contraction on E with a
contraction constant k.

Remark 2.2. Note that every partial nonlinear contraction mapping T on a par-
tially ordered normed linear space E into itself is partially continuous but the con-
verse may not be true.

The Dhage iteration method embodied in the following applicable hybrid
fixed point theorem of Dhage [5] in a partially ordered normed linear space is used
as a key tool for our work contained in this paper. The details of other hybrid fixed
point theorems involving the Dhage iteration principle and method are given
in Dhage [5, 6, 7], Dhage et.al. [16] and the references therein.

Theorem 2.1 (Dhage [5, 6]). Let
(
E,�, ‖·‖

)
be a regular partially ordered complete

normed linear space such that every compact chain C in E is Janhavi. Let T : E →
E be a partially continuous, nondecreasing and partially compact operator. If there
exists an element x0 ∈ E such that x0 � T x0 or T x0 � x0, then the operator
equation T x = x has a solution x∗ in E and the sequence {T nx0} of successive
iterations converges monotonically to x∗.

Theorem 2.2 (Dhage [5, 6]). Let (E,�, ‖ · ‖) be a partially ordered Banach space
and let T : E → E be a nondecreasing and partially nonlinear D-contraction.
Suppose that there exists an element x0 ∈ E such that x0 � T x0 or x0 � T x0. If T
is continuous or E is regular, then T has a fixed point x∗ and the sequence {T nx0}
of successive iterations converges monotonically to x∗. Moreover, the fixed point x∗

is unique if every pair of elements in E has a lower and an upper bound.

Remark 2.3. The regularity of E in above Theorem 2.1 may be replaced with a
stronger continuity condition of the operator T on E which is a result proved in
Dhage [4].

Remark 2.4. The condition that every compact chain of E is Janhavi holds if
every partially compact subset of E possesses the compatibility property with respect
to the order relation � and the norm ‖ · ‖ in it. This simple fact is used to prove
the main existence results of this paper.

3. Main Results

In this section, we prove existence and approximation results for the FDE (3) on
a closed and bounded interval J = [−r, T ] under mixed partial Lipschitz and partial
compactness type conditions on the nonlinearities involved in it. We place the FDE
(3) in the function space C(J,R) of continuous real-valued functions defined on J .
We define a norm ‖ · ‖ and the order relation ≤ in C(J,R) by

‖x‖ = sup
t∈J
|x(t)| (5)

and
x ≤ y ⇐⇒ x(t) ≤ y(t) for all t ∈ J. (6)

Clearly, C(J,R) is a Banach space with respect to above supremum norm and
also partially ordered w.r.t. the above partially order relation ≤. It is known that
the partially ordered Banach space C(J,R) is regular and lattice so that every pair
of elements of E has a lower and an upper bound in it. See Dhage [4, 5, 6] and
references therein. The following useful lemma concerning the Janhavi subsets of
C(J,R) follows immediately from the Arzelá-Ascoli theorem for compactness.
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Lemma 3.1. Let
(
C(J,R),≤, ‖ · ‖

)
be a partially ordered Banach space with the

norm ‖ · ‖ and the order relation ≤ defined by (5) and (6) respectively. Then every
partially compact subset of C(J,R) is Janhavi.

Proof. The proof of the lemma is well-known and appears in the papers of Dhage
[6], Dhage and Dhage [14] and so we omit the details. �

We introduce an order relation ≤C in C induced by the order relation ≤ defined
in C(J,R). This will avoid the confusion of comparison between the elements of two
Banach spaces C and C(J,R). Thus, for any x, y ∈ C, x ≤C y implies x(θ) ≤ y(θ)
for all θ ∈ I0. Note that if x, y ∈ C(J,R) and x ≤ y, then xt ≤C yt for all t ∈ I.

We need the following definition in what follows.

Definition 3.1. A twice differentiable function u ∈ C2(J,R) is said to be a lower
solution of the FDE (3) if u is twice continuously differentiable on I and satisfies
the inequalities

u′′(t) ≤ f (t, ut) , t ∈ I,

u0 ≤C φ, u′(0) ≤ η.

}
(∗)

Similarly, a twice differentiable function v ∈ C2(J,R) is called an upper solution
of the FDE (3) if the above inequalities are satisfied with reverse sign.

We consider the following set of assumptions in what follows:

(H1) There exists a constant Mf > 0 such that |f(t, x)| ≤ Mf for all t ∈ I and
x ∈ C.

(H2) f(t, x) is nondecreasing in x for each t ∈ I.
(H3) There exists D-function ϕ : R+ → R+ such that

0 ≤ f(t, x)− f(t, y) ≤ ϕ(‖x− y‖C)

for all t ∈ I and x, y ∈ C, x ≥C y.
(H4) FDE (3) has a lower solution u ∈ C2(J,R).

Lemma 3.2. A function x ∈ C(J,R) is a solution of the FDE (3) if and only if it
is a solution of the nonlinear integral equation

x(t) =


φ(0) + ηt+

∫ t

0

(t− s)f(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0.
(7)

Theorem 3.1. Suppose that hypotheses (H1), (H2) and (H4) hold. Then the FDE
(3) has a solution x∗ defined on J and the sequence {xn} of successive approxima-
tions defined by

x0 = u,

xn+1(t) =


φ(0) + ηt+

∫ t

0

(t− s)f(s, xns ) ds, if t ∈ I,

φ(t), if t ∈ I0,

(8)

where xns (θ) = xn(s+ θ), θ ∈ I0, converges monotonically to x∗.
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Proof. Set E = C(J,R). Then, in view of Lemma 3.1, every compact chain C in E
possesses the compatibility property with respect to the norm ‖ · ‖ and the order
relation ≤ so that every compact chain C is Janhavi in E.

Define an operator T on E by

T x(t) =


φ(0) + ηt+

∫ t

0

(t− s)f(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0.
(9)

From the continuity of the integral, it follows that T defines the operator T :
E → E. Applying Lemma 3.2, the FDE (3) is equivalent to the operator equation

T x(t) = x(t), t ∈ J.

Now, we show that the operators T satisfies all the conditions of Theorem 2.1
in a series of following steps.

Step I: T is nondecreasing on E.

Let x, y ∈ E be such that x ≥ y. Then xt ≥C yt for all t ∈ I and by hypothesis
(H2), we get

T x(t) =


φ(0) + tη +

∫ t

0

(t− s)f(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0.

≥


φ(0) + tη +

∫ t

0

(t− s)f(s, ys) ds, if t ∈ I,

φ(t), if t ∈ I0.

= T y(t),

for all t ∈ J . This shows that the operator T is also nondecreasing on E.

Step II: T is partially continuous on E.

Let {xn}n∈N be a sequence in a chain C such that xn → x as n → ∞. Then
xns → xs as n→∞. Since f is continuous, we have

lim
n→∞

T xn(t) =


φ(0) + tη +

∫ t

0

[
lim
n→∞

(t− s)f
(
s, xns

)]
ds, if t ∈ I,

φ(t), if t ∈ I0.

=


φ(0) + tη +

∫ t

0

(t− s)f(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0.

= T x(t),

for all t ∈ J . This shows that T xn converges to T x pointwise on J .
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Now we show that {T xn}n∈N is an equicontinuous sequence of functions in E.
There are three cases:

Case a): Let t1, t2 ∈ J with t1 > t2 ≥ 0. Then we have

|T xn(t2) − T xn(t1)|

=

∣∣∣∣(t2 − t1)η +

∫ t2

0

(t2 − s)f
(
s, xns

)
ds−

∫ t1

0

(t1 − s)f
(
s, xns

)
ds

∣∣∣∣
=

∣∣∣∣(t2 − t1)η +

∫ t2

0

(t2 − t1)f
(
s, xns

)
ds−

∫ t1

t2

(t1 − s)f
(
s, xns

)
ds

∣∣∣∣
≤ |t2 − t1| |η|+Mf

∫ t2

0

||t2 − t1|ds+Mf

∫ t1

t2

|t1 − s|ds

→ 0 as t2 → t1,

uniformly for all n ∈ N.
Case b): Let t1, t2 ∈ J with t2 < t1 ≤ 0. Then we have

|T xn(t2)− T xn(t1)| = |φ(t2)− φ(t1)| → 0 as t2 → t1,

uniformly for all n ∈ N.
Case c): Let t1, t2 ∈ J with t2 < 0 < t1. Then we have

|T xn(t2)− T xn(t1)| → 0 as t2 → t1.

Thus in all three cases, we obtain

|T xn(t2)− T xn(t1)| → 0 as t2 → t1,

uniformly for all n ∈ N. This shows that the convergence T xn → T x is uniform
and that T is a partially continuous operator on E into itself in view of Remark
2.1.

Step III: T is partially compact operator on E.

Let C be an arbitrary chain in E. We show that T (C) is uniformly bounded
and equicontinuous set in E. First we show that T (C) is uniformly bounded. Let
y ∈ T (C) be any element. Then there is an element x ∈ C such that y = T x. By
hypothesis (H1)

|y(t)| = |T x(t)|

≤


|φ(0)|+ T |η|+ T

∫ t

0

|f(s, xs)| ds, if t ∈ I,

|φ(t)|, if t ∈ I0.

≤ ‖φ‖+ T |η|+MfT
2 = r,

for all t ∈ J . Taking the supremum over t we obtain ‖y‖ ≤ ‖T x‖ ≤ r for all
y ∈ T (C). Hence T (C) is a uniformly bounded subset of E. Next we show that
T (C) is an equicontinuous set in E. Let t1, t2 ∈ J , with t1 < t2. Then proceeding
with the arguments that given in Step II it can be shown that∣∣y(t2)− y(t1)

∣∣ = |T x(t2)− T x(t1)| → 0 as t1 → t2

uniformly for all y ∈ T (C). This shows that T (C) is an equicontinuous subset of E.
Now, T (C) is a uniformly bounded and equicontinuous subset of functions in E and
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hence it is compact in view of Arzelá-Ascoli theorem. Consequently T : E → E
is a partially compact operator on E into itself.

Step IV: u satisfies the inequality u ≤ T u.

By hypothesis (H4), the FDE (3) has a lower solution u defined on J . Then we
have {

u′′(t) ≤ f(t, ut), t ∈ I,
u0 ≤C φ, u′(0) ≤ η.

Integrating the above inequality from 0 to t, we get

u(t) ≤


φ(0) + ηt+

∫ t

0

(t− s)f(s, us) ds, if t ∈ I,

φ(t), if t ∈ I0.

= T u(t)

for all t ∈ J . As a result we have that u ≤ T u.

Thus, T satisfies all the conditions of Theorem 2.1 and so the operator equation
T x = x has a solution. Consequently the integral equation and the equation (3)
has a solution x∗ defined on J . Furthermore, the sequence {xn}∞n=0 of successive
approximations defined by (9) converges monotonically to x∗. This completes the
proof. �

Remark 3.1. The conclusion of Theorems 3.1 also remains true if we replace the
hypothesis (H4) with the following ones:

(H′4) The FDE (3) has an upper solution v ∈ C2(J,R).

The proof of Theorem 3.1 under this new hypothesis is similar and can be obtained
by closely observing the same arguments with appropriate modifications.

Example 3.1. Given the closed and bounded intervals I0 =
[
−π2 , 0

]
and I = [0, 1],

consider the FDE
x′′(t) = f1(t, xt), t ∈ I,
x0 = φ, x′(0) = 1,

}
(10)

where φ ∈ C and f1 : I × C → R is a continuous functions given by

φ(θ) = sin θ, θ ∈
[
−π

2
, 0
]
,

and

f1(t, x) =

{
tanh(‖x‖C) + 1, if x ≥C 0, x 6= 0,

1, if x ≤C 0,

for all t ∈ I.
Clearly, f1 is bounded on I × C with Mf1 = 2. Again, let x, y ∈ C be such that

x ≥C y ≥C 0. Then ‖x‖C ≥ ‖y‖C ≥ 0 and therefore, we have

f1(t, x) = tanh(‖x‖C) + 1 ≥ tanh(‖y‖C) + 1 = f1(t, y)

for all t ∈ I. Again, if x, y ∈ C be such that x ≤C y ≤C 0, then we obtain

f1(t, x) = 1 = f1(t, y)
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for all t ∈ I. This shows that the function f1(t, x) is nondecreasing in x for each
t ∈ I. Finally,

u(t) =

t(t+ 1), if t ∈ I,

sin t, if t ∈ I0,
is a lower solution of the FDE (10) defined on J . Thus, f1 satisfies the hypotheses
(H1), (H2) and (H4). Hence we apply Theorem 3.1 and conclude that the FDE (10)
has a solution x∗ on J and the sequence {xn} of successive approximation defined
by

x0(t) =

t(t+ 1), if t ∈ I,

sin t, if t ∈ I0,

xn+1(t) =


t+

∫ t

0

(t− s)f1(s, xns ) ds, if t ∈ I,

sin t, if t ∈ I0,
converges monotonically to x∗.

Remark 3.2. The conclusion in Example 3.1 is also true if we replace the lower
solution u with the upper solution v given by

v(t) =

t(2t+ 1), if t ∈ [0, 1],

sin t, if t ∈
[
−π2 , 0

]
.

Theorem 3.2. Suppose that hypotheses (H3) and (H4) hold. Then the FDE (3)
has a unique solution x∗ defined on J and the sequence {xn} of successive approx-
imations defined by (8) converges monotonically to x∗.

Proof. Set E = C(J,R). Clearly, E is a lattice w.r.t. the order relation ≤ and so
the lower and the upper bound exist for every pair of elements in E. Define the
operator T by (9). Then, the FDE (3) is equivalent to the operator equation (9).
We shall show that T satisfies all the conditions of Theorem 2.2 in E.

Clearly, T is a nondecreasing operator on E into itself. We shall simply show
that the operator T is a partially nonlinear D-contraction on E. Let x, y ∈ E be
any two elements such that x ≥ y. Then, by hypothesis (H3),

|T x(t)− T y(t)| ≤
∫ t

0

(t− s)|f(s, xs)− f(s, ys)| ds

≤ T
∫ t

0

ϕ(‖xs − ys‖C) ds

≤ T 2ϕ(‖x− y‖) (11)

for all t ∈ J . Taking the supremum over t, we obtain

‖T x− T y‖ ≤ ψ(‖x− y‖)
for all x, y ∈ E, x ≥ y, where ψ(r) = T 2ϕ(r) < r for r > 0. As a result T is a
partially nonlinear D-contraction on E in view of Remark 2.3. Furthermore, it can
be shown as in the proof of Theorem 3.1 that the function u given in hypothesis
(H3) satisfies the the operator inequality u ≤ T u on J . Now a direct application of
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Theorem 2.2 yields that the FDE (3) has a unique solution x∗ defined on J and the
sequence {xn} of successive approximations defined by (9) converges monotonically
to x∗. �

Remark 3.3. The conclusion of Theorems 3.2 also remains true if we replace the
hypothesis (H4) with the following ones:

(H′4) The FDE (3) has an upper solution v ∈ C2(J,R).

The proof of Theorem 3.2 under this new hypothesis is similar and can be obtained
by closely observing the same arguments with appropriate modifications.

Example 3.2. Given the closed and bounded intervals I0 =
[
−π2 , 0

]
and I = [0, 1],

consider the FDE
x′(t) = f2(t, xt), t ∈ [0, 1],

x0 = φ, x′(0) = 1

}
(12)

where φ ∈ C and f2 : I × C → R is a continuous functions given by

φ(θ) = sin θ, θ ∈
[
−π

2
, 0
]
,

and

f2(t, x) =


‖x‖C

1 + ‖x‖C
+ 1, if x ≥C 0, x 6= 0,

1, if x ≤C 0,

for all t ∈ I.

Clearly, f2 is continuous on I×C. We show that f2 satisfies the hypotheses (H3)
and (H4). Let x, y ∈ C be such that x ≥C y ≥C 0. Then ‖x‖C ≥ ‖y‖C ≥ 0 and
therefore, we have

0 ≤ f2(t, x)− f2(t, x) =
‖x‖C

1 + ‖x‖C
− ‖y‖C

1 + ‖y‖C
≤ ϕ(‖x− y‖C)

for all t ∈ I, where ψ(r) =
r

1 + r
< r, r > 0. Again, if x, y ∈ C be such that

x ≤C y ≤C 0, then we obtain

0 ≤ f2(t, x)− f2(t, x) ≤ ϕ(‖x− y‖C)
for all t ∈ I. This shows that the function f(t, x) is nondecreasing in x for each
t ∈ I. Finally,

u(t) =

t(t+ 1), if t ∈ [0, 1],

sin t, if t ∈
[
−π2 , 0

]
,

is a lower solution of the FDE (12) defined on J . Thus, f satisfies the hypotheses
(H3) and (H4). Hence we apply Theorem 3.2 and conclude that the FDE (12) has
a solution x∗ on J and the sequence {xn} of successive approximation defined by

x0(t) =

t(t+ 1), if t ∈ [0, 1],

sin t, if t ∈
[
−π2 , 0

]
,

xn+1(t) =


t+

∫ t

0

(t− s)f2(s, xns ) ds, if t ∈ [0, 1],

sin t, if t ∈
[
−π2 , 0

]
,
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converges monotonically to x∗.

Remark 3.4. The conclusion in Example 3.2 is also true if we replace the lower
solution u with the upper solution v given by

v(t) =

t(2t+ 1), if t ∈ [0, 1],

sin t, if t ∈
[
−π2 , 0

]
.

4. Linear Perturbation of First Type

Now, consider the hybrid functional differential equation with a linear perturba-
tion of first type, namely,

x′′(t) = f(t, xt) + g(t, xt), t ∈ I,
x0 = φ, x′(0) = η,

}
(13)

where φ ∈ C and f, g : I × C → R are continuous functions.

By a solution of the FDE (13) we mean a twice differentiable function x ∈
C2(J,R) that satisfies the equations in (13).

The FDE (13) is well-known in the literature and studied via different methods
for existence of solution. The FDE (13) is a liner perturbation of first type of
the FDE (1) and different types of perturbations are given in Dhage [3] which
can be handled with the hybrid fixed point theorems involving the sum of two
operators. See Dhage [2] and the references therein. The novelty of present study
lies in its study of new Dhage iteration method for proving the existence as well as
approximation of the solution. As a result of our new approach we obtain algorithm
for the solutions of FDE (13) on J . We use the Dhage iteration method embodied
in the following hybrid fixed point principle of Dhage [5]. See also Dhage [6] for the
related results.

Theorem 4.1. Let
(
E,�, ‖ · ‖

)
be a regular partially ordered complete normed

linear space such that every compact chain C of E is Janhavi. Let A,B : E → E
be two nondecreasing operators such that

(a) A is a partially bounded and partially nonlinear D-contraction,
(b) B is partially continuous and partially compact,
(c) there exists an element α0 ∈ X such that α0 � Aα0 + Bα0 or α0 �
Aα0 + Bα0.

Then the operator equation
Ax+ Bx = x (14)

has a solution x∗ and the sequence {xn} of successive iterations defined by xn+1 =
Axn + Bxn, n = 0, 1, . . . ; converges monotonically to x∗.

We need the following definition in what follows.

Definition 4.1. A twice differentiable function u ∈ C2(J,R) is said to be a lower
solution of the equation (13) if

(i) ut ∈ C for each t ∈ I, and
(ii) u is twice continuously differentiable on I and satisfies the inequalities

u′′(t) ≤ f (t, ut) + g (t, ut) , t ∈ I,

u0 ≤C φ, u′(0) ≤ η.

}
(∗)
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Similarly, a differentiable function v ∈ C2(J,R) is called an upper solution of the
FDE (13) if the above inequalities are satisfied with reverse sign.

We consider the following set of hypotheses in what follows.

(H5) There exists a constant Mg > 0 such that |g(t, x)| ≤ Mg for all t ∈ I and
x ∈ C.

(H6) g(t, x) is nondecreasing in x for each t ∈ I.
(H7) FDE (13) has a lower solution u ∈ C2(J,R).

Our main existence and approximation result for the FDE (13) is as follows.

Theorem 4.2. Suppose that hypotheses (H1)− (H3) and (H5)− (H7) hold. Then
the FDE (13) has a solution x∗ defined on J and the sequence {xn} of successive
approximations defined by

x0 = u,

xn+1(t) =


φ(0) + tη +

∫ t

0

(t− s)f(s, xns ) ds

+

∫ t

0

(t− s)g(s, xns ) ds, if t ∈ I,

φ(t), if t ∈ I0,

(15)

where xns (θ) = xn(s+ θ), θ ∈ I0, converges monotonically to x∗.

Proof. Set E = C(J,R). Then, in view of Lemma 3.1, every partially compact
subset S of E possesses the compatibility property with respect to the norm ‖ · ‖
and the order relation ≤ so that every compact chain C in E is Janhavi.

Define two operators A and B on E by

Ax(t) =


∫ t

0

(t− s)f(s, xs) ds, if t ∈ I,

0, if t ∈ I0.
(16)

and

Bx(t) =


φ(0) + tη +

∫ t

0

(t− s)g(s, xs) ds, if t ∈ I,

φ(t), if t ∈ I0.
(17)

From the continuity of the integral, it follows that A and B define the operator
A,B : E → E. Applying Lemma 3.2, the FDE (13) is equivalent to the operator
equation

Ax(t) + Bx(t) = x(t), t ∈ J. (18)

Now, we show that the operators A and B satisfy all the conditions of Theorem
4.1. Proceeding with the arguments that given in Theorem 3.1, it can be shown that
B is a partially continuous and compact operator on E into itself. By hypothesis
(H1), A is a bounded operator on E. Again following the arguments that given in
theorem 3.2 is is shown that A is a partial nonlinear contraction on E into itself.
Now a direct application of Theorem 2.2 yields that the FDE (13) has a solution
x∗ and the sequence {xn} of successive approximations defined by (17) converges
to x∗. This completes the proof. �
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Remark 4.1. The conclusion of Theorem 4.1 also remains true if we replace the
hypothesis (H7) with the following one:

(H′7) The FDE (13) has an upper solution v ∈ C2(J,R).

The proof of Theorem 3.1 under this new hypothesis is similar and can be obtained
by closely observing the same arguments with appropriate modifications.

Remark 4.2. We note that if the FDEs (3) and (13) have a lower solution u as
well as an upper solution v such that u ≤ v, then under the given conditions of
Theorems 3.1 and 4.1 it has corresponding solutions x∗ and x∗ and these solutions
satisfy x∗ ≤ x∗. Hence they are the minimal and maximal solutions of the FDEs (3)
and (13) respectively in the vector segment [u, v] of the Banach space E = C(J,R),
where the vector segment [u, v] is a set in C1(J,R) defined by

[u, v] = {x ∈ C(J,R) | u ≤ x ≤ v}.

This is because the order relation ≤ defined by (6) is equivalent to the order relation
defined by the order cone K = {x ∈ C(J,R) | x ≥ θ} which is a closed set in
C(J,R). The existence results concerning the maximal and minimal solutions for
the HFDE (3) may be obtained via generalized iteration method under weaker
Caratheódory condition of the nonlinearity f as did in Guo and Lakshmikaham
[17] but in that case we do not get any algorithm for approximating the extremal
solutions. Similarly, we can not apply monotone iterative technique given in Ladde
et.al [19] for the problems (3) and (13) for proving the existence theorem, because
we do not assume the existence of both lower as well as upper solutions of the
HFDEs (3) and (13).

Example 4.1. Given the closed and bounded intervals I0 =
[
−π2 , 0

]
and I = [0, 1]

and given a function φ ∈ C(I0,R), consider the FDE

x′′(t) = f1(t, xt) + f2(t, xt), t ∈ I,

x0 = φ, x′(0) = 1,

 (19)

where φ ∈ C and f1, f2 : I × C → R are continuous functions given by

φ(θ) = sin θ, θ ∈
[
−π

2
, 0
]
,

f1(t, x) =


‖x‖C

1 + ‖x‖C
+ 1, if x ≥C 0, x 6= 0,

1, if x ≤C 0,

and

f2(t, x) =

{
tanh(‖x‖C) + 1, if x ≥C 0, x 6= 0,

1, if x ≤C 0,

for all t ∈ I.

Clearly the functions f1 and f2 satisfy the hypotheses (H1) and (H5) with Mf1 =
2 = Mf2 . Next, it can be show as in Theorem 3.1 the nonlinearity f1 satisfies the
hypothesis (H3). Similarly, the nonlinearity f2 satisfies the hypothesis (H6). Again,
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it can be verified that

u(t) =

2(t+ 1), if t ∈ [0, 1],

sin t, if t ∈
[
−π2 , 0

]
,

is a lower solution for the FDE (13 defined on J =
[
−π2 , 1

]
. Thus, f1 and f2 satisfy

all the hypotheses of Theorem 4.1. Hence the FDE (13) has a solution x∗ and the
sequence {xn} of successive approximations defined by

x0(t) =

2(t+ 1), if t ∈ [0, 1],

sin t, if t ∈
[
−π2 , 0

]
,

xn+1(t) =


t+

∫ t

0

(t− s)f1(s, xns ) ds

+

∫ t

0

(t− s)f2(s, xns ) ds, if t ∈ [0, 1],

sin t, if t ∈
[
−π2 , 0

]
,

where xns (θ) = xn(s+ θ), θ ∈
[
−π2 , 0

]
, converges monotonically to x∗.

Remark 4.3. The conclusion in Example 4.1 is also true if we replace the lower
solution u with the upper solution v given by

v(t) =

t(4t+ 1), if t ∈ [0, 1],

sin t, if t ∈
[
−π2 , 0

]
.

5. Conclusion

In this paper we have discussed a very simple nonlinear second order ordinary
functional differential equation via Dhage iteration method by constructing an al-
gorithm for the solutions. However, other several nonlinear functional differential
equations could also be studied for existence and approximation of the solutions
using Dhage iteration method in an analogous way with appropriate modifications.
Again, here our discussion is limited to proving the existence theorem for the func-
tional differential equation under consideration, but other qualitative aspects such
as maximal and minimal solutions and comparison principle etc. could also be
studied by constructing the algorithm via Dhage iteration method on the lines of
Dhage [10] and the references therein. It is known that the comparison principle
is very much useful in the theory of nonlinear functional differential equations for
proving the qualitative properties of the solutions. Therefore, we claim that the
Dhage iteration method is a powerful method in the theory of nonlinear differen-
tial and integral equations. Finally, while concluding this paper we mention that
the use of Dhage iteration method in the qualitative study of nonlinear functional
differential equations is interesting and some of the results in this directions will be
reported elsewhere.
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