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ON OSCILLATION OF THIRD ORDER FUNCTIONAL

DIFFERENTIAL EQUATION

M. TAMER ŞENEL

Abstract. The objective of this work is to study oscillatory and asymptotic

properties of the third-order nonlinear delay differential equation

(p(t)((r(t)x′(t))′)γ)′ + f(t, x(τ(t))) = 0

Applying suitable comparison theorems we present new criteria for oscillation

or certain asymptotic behaviors of nonoscillatory solutions.

1. Introduction

We are concerned with oscillatory behaviors of the third-order functional differ-
ential equations of the form

(p(t)((r(t)x′(t))′)γ)′ + f(t, x(τ(t))) = 0 (1)

In the sequel we will assume:

(H1) p(t), r(t) ∈ C([t0,R+)), r′(t) > 0,
∫∞
t0

1/r(s)ds = ∞,
∫∞
t0
p−1/γ(s)ds = ∞

and τ(t) ∈ C([t0,∞)), τ(t) ≤ t, limt→∞τ(t) =∞,
(H2) γ is a quotient of odd positive integers,
(H3) f : R × R → R is continuous function , uf(t, u) > 0 for u 6= 0, f(t, u) ≥

q(t)f(u) , f ′(u) ≥ 0 and −f(−uv) ≥ f(uv) ≥ f(u)f(v) for uv > 0, q(t) ∈
C([t0,R+)) .

By a solution of Eq. (1) we mean a function x(t) ∈ C3[Tx,∞), Tx ≥ t0, which has
the property p(t)((r(t)x′(t))′)γ ∈ C1[Tx,∞) and satisfies Eq. (1) on [Tx,∞). We
assume that (1) possesses such a solution. A solution of (1) is called oscillatory if it
has arbitrarily large zeros on [Tx,∞) and otherwise it is called to be nonoscillatory.
Eq. (1) is said to be oscillatory if all its solutions are oscillatory. In recent years ,
there has been much research activity concerning third-order nonlinear differential
equations, e.g., see [2-6,8-11]. In particular Bacuĺıková and Dzurina [7] considered
the third-order nonlinear delay equation[

a(t)
[
x′′(t)

]γ]′
+ q(t)f(x[τ(t)]) = 0,
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where γ > 0 is a quotient of odd positive integers. We conclude that if the gap
between t and τ(t) is small then there exists nonoscillatory solution of (1) and so
in this case our goal is to prove that every nonoscillatory solution of (1) tends to
zero as t → ∞, while if the difference t − τ(t) is large enough then we can study
the oscillatory character of (1). So our aim in this work is to provide a general
classification of oscillatory and asymptotic behaviors of the equation studied. We
say that a nontrivial solution x(t) of (1) is strongly decreasing if it satisfies

x(t)x′(t) < 0 (2)

for all sufficiently large t and it is said to be strongly increasing if

x(t)x′(t) > 0 (3)

2. Main Results

We start our main results with the classification of the possible nonoscillatory
solutions of (1).

Lemma 1. Let x(t) be a nonoscillatory solution of Eq. (1). Then x(t) is either
strongly increasing or strongly decreasing.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1). We may assume that
x(t) > 0, eventually ,if it is an eventually negative, the proof is similar. From (H3),
we obtain

(p(t)((r(t)x′(t))′)γ)′ = −f(t, x(τ(t))) ≤ q(t)f(x(τ(t))) < 0,

eventually. Then, p(t)((r(t)x′(t))′)γ is decreasing and of one sign and it follows
from hypotheses (H1) and (H2) that there exists a t1 ≥ t0 such that (r(t)x′(t))′ is
of fixed sign for t ≥ t1. If we admit (r(t)x′(t))′ < 0, then there exists a constant
K < 0 such that

p(t)((r(t)x′(t))′)γ ≤ K < 0, t ≥ t1.
Integrating from t1 to t, we obtain

r(t)x′(t) ≤ r(t1)x′(t1) +K1/γ

∫ t

t1

1

p1/γ(s)
ds.

And using (H1), we get r(t)x′(t)→ −∞ for t→∞. Then, we can write

r(t)x′(t) ≤ −c1 < 0.

From (H1),

x(t) ≤ x(t1)− c1
∫ t

t1

1

r(s)
ds

implies that x(t)→ −∞ for t→∞. This contradiction shows that (r(t)x′(t))′ > 0.
Therefore r(t)x′(t) is increasing and thus either (2) or (3) holds, eventually. The
proof is complete. �

Theorem 1. If the first-order delay equation

z′(t) + q(t)f

(∫ τ(t)

t0

1

r(s)

∫ s

t0

p−1/γ(u)duds

)
f
(
z1/γ(τ(t))

)
= 0 (4)
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is oscillatory, then every solution of Eq. (1) is either oscillatory or strongly decreas-
ing.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1). We may assume that
x(t) > 0 for t ≥ t0. From Lemma 1 we see that (r(t)x′(t))′ > 0 and x(t) is either
strongly increasing or strongly decreasing. Assume that x(t) is strongly increasing,
that is x′(t) > 0, eventually. Using that p(t)((r(t)x′(t))′)γ is decreasing, we are led
to

r(t)x′(t) ≥
∫ t

t1

(r(u)x′(u))′du =

∫ t

t1

p−1/γ(u)(p(u)((r(u)x′(u))′)γ)1/γdu

≥ (p(t)((r(t)x′(t))′)γ)1/γ

∫ t

t1

p−1/γ(u)du. (5)

Integrating (5) from t1 to t, we have

x(t) ≥
∫ t

t1

(p(s)((r(s)x′(s))′)γ)1/γ

r(s)

∫ s

t1

p−1/γ(u)duds

≥ (p(t)((r(t)x′(t))′)γ)1/γ

∫ t

t1

1

r(s)

∫ s

t1

p−1/γ(u)duds.

There exists a t2 ≥ t1 such that for all t ≥ t2, one gets

x(τ(t)) ≥ (z(τ(t))1/γ

∫ τ(t)

t2

1

r(s)

∫ s

t2

p−1/γ(u)duds, (6)

where z(t) = p(t)((r(t)x′(t))′)γ . Combining (6) together with (1), we see that

−z′(t) = f(t, x(τ(t))) ≥ q(t)f(x(τ(t)))

≥ q(t)f

(
(z(τ(t))1/γ

∫ τ(t)

t2

1

r(s)

∫ s

t2

p−1/γ(u)duds

)

≥ q(t)f

(∫ τ(t)

t2

1

r(s)

∫ s

t2

p−1/γ(u)duds

)
f
(

(z(τ(t))1/γ
)
,

where we have used (H3). Thus function z(t) is a positive and decreasing solution
of the differential inequality

z′(t) + q(t)f

(∫ τ(t)

t2

1

r(s)

∫ s

t2

p−1/γ(u)duds

)
f
(

(z(τ(t))1/γ
)
≤ 0.

Hence, by Theorem 1 in [8] we conclude that the corresponding differential equation
(4) also has a positive solution, which contradicts the oscillation of (4). Therefore
x(t) is strongly decreasing. �

Lemma 2. Assume that x(t) is a positive decreasing solution of Eq. (1). If∫ ∞
t0

1

r(v)

[∫ ∞
v

1

p1/γ(u)

(∫ ∞
u

q(s)ds

)1/γ

du

]
dv =∞, (7)

then x(t) tends to zero as t→∞.



106 M. T. ŞENEL EJMAA-2018/6(1)

Proof. It is clear that there exists a finite limt→∞ x(t) = b. We shall prove that
b = 0. Assume that b > 0. Integrating Eq. (1) from t to ∞ and using x(τ(t)) > b
and (H3), we obtain

p(t)((r(t)x′(t))′)γ ≥
∫ ∞
t

f(s, x(τ(s))ds ≥
∫ ∞
t

q(s)f(x(τ(s)))ds

≥ f(b)

∫ ∞
t

q(s)ds,

whichs implies

(r(t)x′(t))′ ≥ f1/γ(b)

p1/γ(t)

[∫ ∞
t

q(s)ds

]1/γ

.

Integrating the last inequality from t to ∞, we get

−r(t)x′(t) ≥ f1/γ(b)

∫ ∞
t

1

p1/γ(u)

[∫ ∞
u

q(s)ds

]1/γ

du.

Now integrating from t1 to t, we arrive that

x(t1) ≥ f1/γ(b)

∫ t

t1

1

r(v)

[∫ ∞
v

1

p1/γ(u)

[∫ ∞
u

q(s)ds

]1/γ
]
dudv.

Letting t → ∞ we have a contradiction with (7) and so we have verified that
limt→∞ x(t) = 0. �

Combining Theorem 1 and Lemma 2 we get:

Theorem 2. Assume that (7) holds. If Eq. (4) is oscillatory, then every solution
of (1) is oscillatory or tends to zero as t→∞.

In Theorems 1 and 2 , I have established new comparison principles that enable
us to reduce properties of third order nonlinear differential equation (1) from oscil-
lation of the first order nonlinear delay Eq. (4).

Example Let us consider the third-order functional differential equation[
t

(
1

t
x′(t)

)′]′
+

1

t2
x(
t

2
) = 0, t ≥ 1. (8)

Now (7) holds and Eq. (4) reduces to

z′(t) +
1

8

(
ln(t)− ln2− 1

2
+

4

t2

)
z(
t

2
) = 0. (9)

On the other hand, Theorem 2.1.1 in [1] quarantees oscillation of Eq. (9) provided
that

lim
t→∞

∫ t

t
2

1

8

(
ln(t)− ln2− 1

2
+

4

t2

)
ds >

1

e
,

which is evidently fulfilled and according to Theorem 2 every positive solution of
Eq. (9) tends to zero as t→∞.
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Theorem 3. Let τ ′(t) > 0. Assume that there exists a function ζ(t) ∈
C1([t0,∞)) such that

ζ ′(t) ≥ 0, ζ(t) > 0 and σ(t) = τ(ζ(ζ(t))) < t.

If both the first-order delay Eq. (4) and

z′(t) + Θ(t)f1/γ(z(σ(t))) = 0 (10)

where

Θ(t) =
1

r(t)

∫ ζ(t)

t

1

p1/γ(v2)

(∫ ζ(v2)

v2

q(v1)dv1

)1/γ

dv2

,are oscillatory , then Eq. (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of Eq. (1). We assume that x(t) > 0.
From Theorem 1, we see that x(t) is strongly decreasing. Integrating of (1) from t
to ζ(t) yields

p(t) ((r(t)x′(t))′)
γ ≥

∫ ζ(t)

t

q(v1)f(x(τ(v1))dv1 ≥ f(x(τ(ζ(t))))

∫ ζ(t)

t

q(v1)dv1.

Thus

(r′(t)x′(t))′ ≥ f1/γ(x(τ(ζ(t))))

p1/γ(t)

(∫ ζ(t)

t

q(v1)dv1

)1/γ

.

Integrating from t to ζ(t) once more, we get

−r(t)x′(t) ≥
∫ ζ(t)

t

f1/γ(x(τ(ζ(v2))))

p1/γ(v2)

(∫ ζ(v2)

v2

q(v1)dv1

)1/γ

dv2

≥ f1/γ(x(σ(t))

∫ ζ(t)

t

1

p1/γ(v2)

(∫ ζ(v2)

v2

q(v1)dv1

)1/γ

dv2.

Integrating from t to ∞, we gets

x(t) ≥
∫ ∞
t

f1/γ(x(σ(v3))

r(v3)

∫ ζ(v3)

v3

1

p1/γ(v2)

(∫ ζ(v2)

v2

q(v1)dv1

)1/γ

dv2dv3. (11)

Let us denote the right hand side of (11) by z(t). Then z(t) > 0 one can easily
verify that z(t) is a solution of the differential inequality

z′(t) + Θ(t)f1/γ(z(σ(t))) ≤ 0,

where

Θ(t) =
1

r(t)

∫ ζ(t)

t

1

p1/γ(v2)

(∫ ζ(v2)

v2

q(v1)dv1

)1/γ

dv2.

Then, show that the corresponding differential equation (10) also has a positive
solution. This contradiction finishes the proof. �
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[9] Tunç, C., On the non-oscillation of solutions of some nonlinear differential equations of third

order. Nonlinear Dyn. Syst. Theory 7 , no. 4, 419-430, 2007.
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