
Electronic Journal of Mathematical Analysis and Applications

Vol. 6(1) Jan. 2018, pp. 125-136.

ISSN: 2090-729X(online)

http://fcag-egypt.com/Journals/EJMAA/

————————————————————————————————

SOME COMMENTS AND NOTES ON ALMOST PERIODIC

FUNCTIONS AND CHANGING-PERIODIC TIME SCALES

RAVI P AGARWAL AND DONAL O’REGAN

Abstract. In this paper, we correct some misleading statements made in
the paper (Y.K. Li, Some remarks on almost periodic time scales and almost

periodic functions on time scales, Electr. J. Math. Anal. Appl. 5 (2017) 42-49)
on recent work concerning almost periodic time scales and changing-periodic
time scales.

1. Introduction

Recently, Y.K. Li, etc. (see [1]) made some misleading comments on recent work
concerning almost periodic functions and changing-periodic time scales. Unfortu-
nately these mistakes also appear in a recent publication of Y.K. Li and P. Wang
(see [2]). The purpose of this paper is to consider the mistakes in [1, 2] (which we
will illustrate with examples) and try to motivate some ideas for future research
. In addition we will discuss uniformly almost periodic functions on periodic time
scales and changing-periodic time scales from the literature; see [3, 4, 5] and the
references therein.

2. Comments

We begin by noting that the basic concept of the integral on time scales intro-
duced in [1] is incorrect. The integral in [1] was introduced partly to claim that
paper [3] is unnecessary.

For the convenience of the reader we note in [3] that the authors proposed the
concept of a relatively dense set on time scales. Let T be a periodic time scale and
Π :=

{
τ ∈ R : t± τ ∈ T, ∀t ∈ T

}
̸= {0}.

Definition 2.1 ([3]). Let A ⊂ Π. We say that A is relatively dense in Π if there
exists a positive number l ∈ Π such that for all a ∈ Π we have [a, a+ l]Π ∩ A ̸= ∅;
here l is called the inclusion length.

Note the ε-translation number set is relatively dense in Π, rather than in T
because T ∩ Π may be an empty set. The concept of almost periodic functions on
periodic time scales is as follows:
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Definition 2.2 ([3]). Let T be a periodic time scale. A function f ∈ C(T×D,En) is
called an almost periodic function in t ∈ T uniformly for x ∈ D if the ε-translation
set of f

E{ε, f, S} = {τ ∈ Π : |f(t+ τ, x)− f(t, x)| < ε, for all (t, x) ∈ T× S}
is a relatively dense set in Π for all ε > 0 and for each compact subset S of D;
that is, for any given ε > 0 and each compact subset S of D, there exists a constant
l(ε, S) > 0 such that each interval of length l(ε, S) contains a τ(ε, S) ∈ E{ε, f, S}
such that

|f(t+ τ, x)− f(t, x)| < ε, for all t ∈ T× S.

Here τ is called the ε-translation number of f and and l(ε, S) is called the inclusion
length of E{ε, f, S}.

As mentioned above the author in [1] believes that [3] is unnecessary. In [1, 2]
two proposed integral computation rules were used to justify this. We restate these
two rules from the original papers:

(i): From [1] (on lines 7-15, page 45), the author wrote:
“... according to our convention,

1

l

∫ t+l

t

f(s)∆s :=

∫ ρ(t+l)

t

f(s)∆s if t ∈ T, t+ l ̸∈ T, l ∈ R.

Hence, the integral
∫ t+l

t
f(s)∆s is well defined.”

(ii): From [2] (lines 4-6 from the bottom on Page 466), the author wrote
“From now on, for any a, b ∈ R and a ≤ b, denote

a∗ = inf{s ∈ T, s ≥ a}, b∗ = sup{s ∈ T, s ≤ b},
and for the integrable function f , denote∫ b

a

f(t)∆t =

∫ b∗

a∗
f(t)∆t. (2.1)

Obviously, a∗, b∗ ∈ T. If a ∈ T, then a∗ = a, and if b ∈ T, then b∗ = b.”

Note that in [2], all the results are established under rule (2.1) and all integral
calculations on time scales obey rule (2.1). Note that (2.1) indicates that for any

a, b ̸∈ T, the authors in [2] have found a way so that
∫ b

a
f(s)∆s is reasonable (in fact,

as we will see from our knowledge of time scales calculus, this symbolic notation of
the integral is false).

First note (i) is incorrect because t + l ̸∈ T, and so ρ(t + l) will make no sense
since on a time scale the domain of ρ is T.

The rule in (ii) is incorrect because the measure of sets on time scales is different
from the measure of sets on the real line (we note as well that this justifies that the
ε-translation number set of an almost periodic function f is relatively dense in Π,
rather than in R; as a result Definition 8 from [1] is incorrect). A simple example
will show why (ii) is incorrect. Let f(t) ≡ 3 and consider the time scale

T = [0, 1] ∪ [2, 3] ∪ [4, 5] ∪ [6, 7].

From the calculation rule in [2] we have for a = 3
2 ̸∈ T, b = 11

2 ̸∈ T, (see (2.1)) that∫ 11
2

3
2

3∆t =

∫ 7
2

3
2

3∆t+

∫ 11
2

7
2

3∆t =

∫ 3

2

3∆t+

∫ 5

4

3∆t = 6.



EJMAA-2018/6(1) SOME COMMENTS AND NOTES 127

Also from (2.1) directly we get∫ 11
2

3
2

3∆t =

∫ 5

2

3∆t = 9.

Thus 9 = 6, a contradicition. In fact, in general the rule is incorrect because when
calculating, the measure of some (left or right) scattered points of a time scale is
ignored. Under such a rule, the interval additivity of the integral, i.e.,∫ b

a

f(t)∆t =

∫ c

a

f(t)∆t+

∫ b

c

f(t)∆t

will be false. Unfortunately the results in [2] are incorrect. In [2], all upper and
lower bounds of the integrals are not in T, i.e, a, b ̸∈ T, and unfortunately (2.1)

is used to define
∫ b

a
f(s)∆s. However we feel if one uses the ideas in [3] (i.e., the

ε-translation number set of various types of almost periodic functions on periodic
time scales should be relatively dense in Π, rather than in R or T), the concept of
Stepanove-Almost periodic functions can be corrected successfully and we present
this new concept here for the reader.

Let f : T → X be a locally p-integrable function, where 1 ≤ p < ∞, and we
denote the set of all such functions by Lp

Loc(T,X). Let T be a periodic time scale
and

Lp
S(T,X) =

{
f ∈ Lp

Loc(T,X) : ∥f∥Sp
l
= sup

t∈T

(
1

l

∫ t+l

t

∥f(s)∥p∆s

) 1
p

< ∞, for fixed l ∈ Π

}
.

Definition 2.3. A function f ∈ Lp
S(T,X) is said to be Stepanov-Almost periodic

function if the ε-translation number set of f

E{ε, f} =
{
τ ∈ Π :

∥∥f(t+ τ
)
− f(t)

∥∥
Sp
l

< ε for all t ∈ T
}

is relatively dense in Π, that is, for any given ε > 0, there exists a constant
L(ε) ∈ (0,∞)Π such that each interval of length L(ε) contains a τ(ε) ∈ E{ε, f}
such that ∥∥f(t+ τ

)
− f(t)

∥∥
Sp
l

< ε for all t ∈ T,

where ∥∥f(t+ τ
)
− f(t)

∥∥
Sp
l

= sup
t∈T

(
1

l

∫ t+l

t

∥f(s+ τ)− f(s)∥p∆s

) 1
p

.

Now τ is called the ε-translation number of f and L(ε) is called the inclusion length
of E{ε, f}.

We note as well using Definition 2.1 when investigating almost periodic problems
on periodic time scales, one is able to establish the required integrals and one is
able to guarantee that they are Cauchy integrals on time scales.

Next we note in [1] that the author claims that some of the results in [4] are incor-
rect. This claim is established through a counter-example (the following example
is from Example 1 in [1] (page 45)):

(iii): T =
{
− 2k, 2k+1, k ∈ N

}
. The author claims the concept of changing-

periodic time scales introduced in [4] is incorrect because there is no time

scale T̂ which is periodic and T̂ ⊂ T.
Before we discuss (iii) we introduce the concept of changing-periodic time scales.
For this, we need the following concepts.
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Definition 2.4 ([4]). We say a time scale is an infinite time scale if one of the
conditions are satisfied: supT = +∞ and inf T = −∞ or supT = +∞ or inf T =
−∞.

Remark 2.1. Under Definition 2.4, it is clear that an infinite time scale indicates
it has at least an infinite boundary. For a simple example take T =

∪+∞
k=1[2k, 2k+1].

Definition 2.5 ([4]). Let T be a time scale and we say T is a zero-periodic time
scale if and only if there exists no nonzero real number ω such that t + ω ∈ T for
all t ∈ T.

Remark 2.2. Note Definition 2.5 indicates that for a zero-periodic time scale,
t + ω ∈ T for all t ∈ T if and only if ω = 0. Hence, we one can easily see
that a finite union of closed intervals is a zero-periodic time scale. For example,
T = [0, 1] ∪ [2, 3] ∪ [4, 5] and T =

∪100
k=0[2k, 2k + 1], etc.

Definition 2.6 ([4]). A time scale sequence {Ti}i∈Z+ is called a well connective
sequence if and only if for i ̸= j, one has Ti ∩ Tj = {tkij}k∈Z, where {tkij} is the

countable points set or an empty set, and tkij is called the connective point between

Ti and Tj for each k ∈ Z, and the set {tkij} is called the connective points set of
this well connective sequence.

Remark 2.3. Under Definition 2.6, we will give some examples to help the reader
understand Definition 2.6. We provide a time scale sequence {Ti}i∈Z+ .

(a): Let T1 =
∪∞

k=0[4k, 4k + 1], T2 =
∪∞

k=0[4k + 2, 4k + 3], Ti =

{
4i− 1

2

}
for i ≥ 3. Then Ti ∩ Tj = ∅ if i ̸= j. According to Definition 2.6, one
has {tkij}k∈Z = ∅, and then such a time scale sequence is a well connective
sequence.

(b): Let T1 =
∪∞

k=0[2k, 2k + 1], T2 = {1, 2}
∪(∪∞

k=1

{
4k − 1

2

})
, Ti ={

4i− 1

2
+

1

3

}
for i ≥ 3. We can obtain T1 ∩ T2 = {tk12}k∈Z = {1, 2}

is a countable set. Further, T1 ∩ Ti = ∅ and T2 ∩ Ti = ∅ for i ≥ 3,
Ti ∩ Tj = ∅ for i, j ≥ 3, i ̸= j, that is, {tk1i}k∈Z = {tk2i}k∈Z = {tkij}k∈Z = ∅
for i ≥ 3, i ̸= j. According to Definition 2.6, such a time scale sequence is
a well connective sequence.

(c): Let T1 =
∪∞

k=0[k(1 + a), k(1 + a) + 1], where

a > 0 and

∞∑
n=1

1

n2
< a.

For i ≥ 2, let

Ti =
∞∪
k=0

[
k(1 + a) + 1 +

i−1∑
i0=2

1

i20
, k(1 + a) + 1 +

i∑
i0=2

1

i20

]
.

One can obtain that

T1 ∩ Tj =

{
{tk12}k∈Z =

∪∞
k=0{k(1 + a) + 1}, i = 1, j = 2,

{tk1j}k∈Z = ∅, i = 1, j ̸= 2,
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for i ̸= 1, j ̸= 2, we have

Ti ∩ Tj =

{
{tkij}k∈Z = Ti ∩ Tj =

∪∞
k=0

{
k(1 + a) + 1 +

∑i
i0=2

1
i20

}
, j = i+ 1,

{tkij}k∈Z = ∅, j ̸= i+ 1.

According to Definition 2.6, such a time scale sequence is a well connective
sequence.

(d): If T1 =
∪∞

k=0[2k, 2k+1] and Ti =
∪∞

k=0[2k+
1
i , 2k+1+ 1

i ], then for any
i ̸= j, Ti ∩ Tj is an uncountable set, such a time scale sequence is not a
well connective sequence.

Now, the concept of changing-periodic time scales is introduced as follows:

Definition 2.7 ([4]). Let T be an infinite time scale. We say T is a changing-
periodic or a piecewise-periodic time scale if the following conditions are fulfilled:

(a): T =

( ∞∪
i=1

Ti

)∪
Tr and {Ti}i∈Z+ is a well connective time scale sequence,

where Tr =
k∪

i=1

[αi, βi] and k is some finite number and [αi, βi] are closed

intervals for i = 1, 2, . . . , k or Tr = ∅;
(b): Si is a nonempty subsets of R with 0 ̸∈ Si for each i ∈ Z+ and Π =(∪∞

i=1 Si

)∪
R0, where R0 = {0} or R0 = ∅;

(c): for all t ∈ Ti and all ω ∈ Si, we have t+ω ∈ Ti, i.e., Ti is an ω-periodic
time scale;

(d): for i ̸= j, for all t ∈ Ti\{tkij} and all ω ∈ Sj, we have t + ω ̸∈ T, where
{tkij} is the connective points set of the time scale sequence {Ti}i∈Z+ ;

(e): R0 = {0} if and only if Tr is a zero-periodic time scale and R0 = ∅ if
and only if Tr = ∅;

and the set Π is called a changing-periods set of T, Ti is called the periodic sub-
timescale of T and Si is called the periods subset of T or the periods set of Ti, Tr

is called the remaining time scale of T and R0 the remaining periods set of T.

From condition (c) in Definition 2.7, one can observe that Ti is the periodic
time scale attached with translation direction for each i ∈ Z+. The condition (c)
is t + ω ∈ Ti, rather than t ± ω ∈ Ti. Hence, in this concept of changing-periodic
time scales, Ti is a periodic time scale with translation direction. In [5] the authors
introduced the concept of periodic time scales attached with translation direction to
help a reader understand the decomposition theorem of time scales. The following
is the concept of periodic time scales attached with translation direction.

Definition 2.8. We say T is called a periodic time scale if

Π2 := {τ ∈ R : Tτ ⊆ T, ∀t ∈ T} ̸= {0}. (2.2)

Furthermore, we can describe it in detail as follows:

(a): if for any p > 0, there exists a number P > p and P ∈ Π2, we say T is a
positive-direction periodic time scale;

(b): if for any q < 0, there exists a number Q < q and Q ∈ Π2, we say T is a
negative-direction periodic time scale.

(c): if ±τ ∈ Π2, we say T is a bi-direction periodic time scale;
(d): we say T is an oriented-direction periodic time scale if T is a positive-

direction periodic time scale or a negative-direction periodic time scale.
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Using Definition 2.8 in [5] some theorems from [4] were proved again.

Theorem 2.1. If T is an infinite time scale and the graininess function µ : T → R+

is bounded, then T is a changing-periodic time scale.

Theorem 2.2 (Decomposition Theorem of Time Scales). Let T be an infinite time
scale and the graininess function µ : T → R+ be bounded, then T is a changing-
periodic time scale, i.e., there exists a countable periodic decomposition such that

T =

( ∞∪
i=1

Ti

)∪
Tr and Ti is an ω-periodic sub-timescale, ω ∈ Si, i ∈ Z+, where

Ti, Si, Tr are satisfied the conditions in Definition 2.7.

Now let us return to the counter-example in [1], i.e., (iii) above. This time
scale is the simplest changing-periodic time scale and can be decomposed into two
periodic time scales attached with translation direction, i.e., T1 = {−2k, k ∈ N} and
T2 = {2k+1, k ∈ N}. One can observe that T1 is a negative-direction periodic time
scale and T2 is a positive-direction periodic time scale. Hence, this counter-example
is invalid (note the author in [1] neglected condition (c) in Definition 2.7).

We now provide several examples of changing-periodic time scales.

Example 2.1. Let k ∈ Z, and consider the following time scale:

T =

{ +∞∪
k=−∞

[
3

2
(2k+1),

3

2
(2k+1)+

1

12

]}∪{ +∞∪
k=−∞

[
3
√
2

2
(2k+1),

3
√
2

2
(2k+1)+

√
3

5

]}
.

We denote

T1 =

+∞∪
k=−∞

[
3

2
(2k+1),

3

2
(2k+1)+

1

12

]
and T2 =

+∞∪
k=−∞

[
3
√
2

2
(2k+1),

3
√
2

2
(2k+1)+

√
3

5

]
.

Then, by a direct calculation the set Π2 is

Π2 =
{
3n, n ∈ Z

}∪{
3
√
2n, n ∈ Z

}
:= S1 ∪ S2.

This time scale is a changing-periodic time scale according to Definition 2.7.

Example 2.2. Let k ∈ Z, and consider the following time scale:

T =

{ +∞∪
k=0

[
−3

2
(2k+1),−3

2
(2k+1)− 1

12

]}∪{ +∞∪
k=0

[
3
√
2

2
(2k+1),

3
√
2

2
(2k+1)+

√
3

5

]}
.

We denote

T1 =
+∞∪
k=0

[
−3

2
(2k+1),−3

2
(2k+1)− 1

12

]
and T2 =

+∞∪
k=0

[
3
√
2

2
(2k+1),

3
√
2

2
(2k+1)+

√
3

5

]
.

Then, by direct calculation the set Π2 is

Π2 =
{
− 3n, n ∈ N

}∪{
3
√
2n, n ∈ N

}
:= S1 ∪ S2.

According to Definition 2.7, this time scale is a changing-periodic time scale in
which T1 is a negative-direction periodic sub-timescale and T2 is a positive-direction
periodic sub-timescale.

Example 2.3. Consider T = {−4k, 4k+3 : k ∈ N}. Note that T1 = {−4k : k ∈ N}
and T2 = {4k + 3 : k ∈ N} are oriented-direction periodic time scales, i.e., T1 is
a negative-direction periodic time scale and T2 is a positive-direction periodic time
scale. Hence, T is a changing-periodic time scale.
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Unfortunately there are problems with the definitions proposed in [1]. For ex-
ample, Definition 4, Definition 5 and Definition 6 are called “almost periodic time
scales” but there is no almost periodicity at all on the time scales, and in particular
almost periodicity should reflect an approximation between the time scale and its
translation (however there is no approximation in these definitions). Also there are
problems in [8], as we indicate below.

First we state a result from [5]. Let

Π1 := {τ ∈ R : T ∩ Tτ ̸= ∅} ≠ {0},
where Tτ := T+ τ = {t+ τ : ∀t ∈ T}.
Theorem 2.3 ([5]). Let T be an oriented-direction intersection time scale. For
any given ε > 0, there exists a constant l(ε) such that each interval of length l(ε)
contains a τ(ε) ∈ Π1 such that

d(T,Tτ ) < ε, (2.3)

that is, for any ε > 0, the following set

E{T, ε} := {τ ∈ Π1 : d(T,Tτ ) < ε} (2.4)

is relatively dense in Π1, where d(·, ·) denote a Hausdorff distance and Tτ = T∩Tτ .
Then T is an oriented-direction periodic time scale.

In [7], the concept of almost periodic time scales was introduced to study the
approximation of time scales. In [1] the author introduced a similar concept of
almost periodic time scales (see Definition 9 in [8]), but according to Theorem
2.3 above, Definition 9 in [8] is in fact a oriented periodic time scale. Also some
definitions and concepts are also incorrect in [8]. For example, Definition 16 from
[8] is actually a periodic function on a periodic time scale because the time scale
and the function have a common ε. Thus, if ε = 0, then d(T,Tτ ) = 0 ⇔ T = Tτ ,
and f(t + τ, x) = f(t, x). In the next section we present some incorrect remarks
fron [1, 2, 8] and we indicate some corrections.

3. Some incorrect remarks and corrections

In [1, 2, 8], the authors presented some incorrect comments and in this section
we discuss and correct them.

Remark 3.1 (Incorrect Remark 3 from [1]). From the above, we see that if we
adopt Definition 8 from [1] as the definition of almost periodic functions on time
scales, all the results of [6] remain true.

Definition 3.1 (Incorrect Definition 8 from [1]). Let T be a periodic time
scale. A function f ∈ C(T ×D,En) is called an almost periodic function in t ∈ T
uniformly for x ∈ D if the ε-translation set of f

E{ε, f, S} = {τ ∈ Π : |f(t+ τ, x)− f(t, x)| < ε, for all (t, x) ∈ T× S}
is a relatively dense set in R for all ε > 0 and for each compact subset S of D;
that is, for any given ε > 0 and each compact subset S of D, there exists a constant
l(ε, S) > 0 such that each interval of length l(ε, S) contains a τ(ε, S) ∈ E{ε, f, S}
such that

|f(t+ τ, x)− f(t, x)| < ε, for all t ∈ T× S.

τ is called the ε-translation number of f and and l(ε, S) is called the inclusion length
of E{ε, f, S}.
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Remark 3.2. Definition 3.1 arose from the incorrect computation rules (i) and
(ii) in Section 2. The correct definition, in our opinion, should be Definition 2.2
above.

Theorem 3.1 (Incorrect Theorem 3.21 from [6]). If f(t, x) is almost periodic
in t uniformly for x ∈ D, then, for any ε > 0, there exists a positive constant
L = L(ε, S) and for any a ∈ R, there exist a constant η > 0 and α ∈ R, such that
([α, α+ η] ∩Π) ⊂ [a, a+ L] and ([α, α+ η] ∩Π]) ⊂ E(ε, f, S).

Remark 3.3. For Theorem 3.1, because of the interval [a, a+ L], where a, L ∈ R,
the integral∫ t+a2

t+a1

f(s, x)∆s makes no sense for ∀t ∈ T and ∀a1, a2 ∈ [a, a+ L].

In fact, by adopting Definition 2.1 and Definition 2.2, we can provide the follow-
ing correct theorem:

Theorem 3.2 (Correction of Theorem 3.21 from [6]). If f(t, x) is almost
periodic in t uniformly for x ∈ D, then, for any ε > 0, there exists a positive
constant L ∈ Π such that for any a ∈ Π, there exist η ∈ (0,+∞)Π and α ∈ Π, such
that ([α, α+ η]Π) ⊂ [a, a+ L]Π and ([α, α+ η]Π]) ⊂ E(ε, f, S).

Remark 3.4. Now, for all a1, a2 ∈ [a, a + L]Π, the integral
∫ t+a2

t+a1
f(s, x)∆s is a

Cauchy integral on time scales with t+ a1, t+ a2 ∈ T. The proof of Theorem 3.2 is
easy using Definition 2.1.

Remark 3.5. Theorem 3.22 from [6] is based on Theorem 3.21 and Theorem 3.22
which refers to the product and quotient of two almost periodic functions. If you do
not use the corrections in [3], then some mean-value integrals for almost periodic
functions may make no sense on periodic time scales. These mistakes continued in
[2] because they say E{ε, f} is relatively dense in R, rather than in Π. For example
there are mistakes on page 467, in the proof of Lemma 2.11,∫ t0−δ+l

t0−δ

. . .∆s, t0 ∈ T, δ, l ∈ R, t0 − δ, t0 − δ + l ∈ R,

and on page 469, in the proof of Lemma 3.4,∫ t−k+l

t−k

. . .∆s, t ∈ T, k ∈ Z, l ∈ R, t− k, t− k + l ∈ R,

etc. Note some authors use the results in [6] (note corrections are needed as pointed
out in [3]) which lead to mistakes.

Remark 3.6 (Incorrect Remark 4 from [1]). Example 1 shows that there exists
a time scale that satisfies all the conditions of Theorem 1, but it contains no sub
time scale that is an invariant under a translation time scale. Therefore, Theorem
1 is incorrect.

Remark 3.7. Note the time scale in Example 1 from [1] is a changing-periodic time
scale and can be decomposed into two periodic time scales attached with translation
direction, i.e., T1 = {−2k, k ∈ N} and T2 = {2k + 1, k ∈ N}. Note T1 is a
negative-direction periodic time scale and T2 is a positive-direction periodic time
scale. Hence, this counter-example is invalid. Therefore, Remark 5, Remark 6,
Remark 7, Remark 8 from [1] are all incorrect.
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From [5], we recall the following theorem:

Theorem 3.3. Let T be an arbitrary time scale with supT = +∞, inf T = −∞.
If µ : T → R+ is bounded, then T contains at least one oriented-direction periodic
time scale.

Remark 3.8. It is easy to see that {−2k, 2k + 1, k ∈ N} contains two periodic
time scales attached with translation direction, i.e., T1 = {−2k, k ∈ N} and T2 =
{2k + 1, k ∈ N}.

Remark 3.9 (Incorrect Remark 9 from [1]). Since the fact that T is an almost
periodic time scale under Definition 15 may do not guarantee that the set {τ ∈ Πε :
T ∩ Tτ ̸= ∅}, is relatively dense. Therefore, Definition 16 is not well defined. A
correction for this, we refer to [8].

To discuss this we recall a result from [5]. Let

Π1 := {τ ∈ R : T ∩ Tτ ̸= ∅} ≠ {0},
where Tτ := T+ τ = {t+ τ : ∀t ∈ T}.

Definition 3.2 ([5]). Let X and Y be two non-empty subsets of a metric space
(M,d). We define their Hausdorff distance d(X,Y ) by

d(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d̃(x, y), sup
y∈Y

inf
x∈X

d̃(x, y)

}
, (3.5)

where d̃(·, ·) denotes the distance between two points.

Hence, from Definition 3.2, if we assume that X = T1 and Y = T2, then

d(T1,T2) = max

{
sup
t∈T1

inf
s∈T2

d̃(t, s), sup
s∈T2

inf
t∈T1

d̃(t, s)

}
.

In [7], the authors let τ be a number and set the time scales:

T :=
+∞∪

i=−∞
[αi, βi], Tτ := T+ τ = {t+ τ : ∀t ∈ T} :=

+∞∪
i=−∞

[ατ
i , β

τ
i ]. (3.6)

Define the distance between two time scales, T and Tτ by

d(T,Tτ ) = max

{
sup
i∈Z

|αi − ατ
i |, sup

i∈Z
|βi − βτ

i |
}
, (3.7)

where

ατ
i := inf

{
α ∈ Tτ : |αi − α|

}
and βτ

i := inf
{
β ∈ Tτ : |βi − β|

}
. (3.8)

Note if we let X = T and Y = Tτ in Definition 3.2, then (3.5) immediately turns
into (3.7) and we can calculate the distance between T and Tτ from the distance
of their intervals, i.e, from formula (3.7).

Definition 3.3 ([5]). Let T be an oriented-direction intersection time scale. We
say T is an almost periodic time scale if for any given ε > 0, there exists a constant
l(ε) > 0 such that each interval of length l(ε) contains a τ(ε) ∈ Π1 such that

d(T,Tτ ) < ε,

i.e., for any ε > 0, the following set

E{T, ε} = {τ ∈ Π1 : d(Tτ ,T) < ε}
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is relatively dense in Π1. Here τ is called the ε-translation number of T and l(ε) is
called the inclusion length of E{T, ε}, E{T, ε} is called the ε-translation set of T,
and for simplicity, we use the notation E{T, ε} := Πε.

Remark 3.10. In [5], the authors discuss almost periodic time scales when T∩Tτ ̸=
∅ can be guaranteed. Definition 8 from [7] is also correct. Some comments and some
results in [8] are incorrect.

To discuss Remark 3.9, we need to consider some comments and definitions from
[8].

Definition 3.4 (Incorrect Definition 9 from [8]). A time scale T is called an
almost periodic time scale if for every ε > 0, there exists a constant l(ε) > 0 such
that each interval of length l(ε) contains a τ(ε) such that Tτ ̸= and dist(T,Tτ ) < ε;
that is, for any ε > 0, the following set Π(T, ε) = {τ ∈ R : dist(T,Tτ ) < ε} is
relatively dense.

Remark 3.11. Note Definition 3.4 is a slight modification of Definition 8 in [7],
i.e, the authors changed Tτ from Definition 8 in [7] to T∩Tτ := Tτ and added the
condition Tτ ̸= ∅ . From Theorem 2.3 above we see that Definition 3.4 is actually a
oriented periodic time scales, i.e., it is with no almost periodicity. When discussing
almost periodic time scales, one should take the translation Tτ of T, rather than Tτ ,
because Tτ will lead to the periodicity of the time scale (see [5] for details). Lemma
10, Lemma 11, Theorem 12, Theorem 13, Theorem 14 from [8] are incorrect.

Remark 3.12. Based on Definition 3.4, all theorems related to it from [8] are
incorrect.

Definition 3.5 (Incorrect Definition 16 from [8]). Let T be an almost periodic
time scale. A function f ∈ C(T × D,En) is called an almost periodic function in
t ∈ T uniformly for x ∈ D if the ε-translation set of f

E{ε, f, S} = {τ ∈ Π(T, ε) : |f(t+ τ, x)− f(t, x)| < ε, ∀(t, x) ∈ Tτ × S}
is relatively dense for all ε > 0 and for each compact subset S of D.

Remark 3.13. Note that there are two ε in Definition 3.5. One is in Π(T, ε), the
other is in |f(t+ τ, x)− f(t, x)| < ε. The two ε’s are equivalent in this definition.
Hence, time scales defined in Definition 3.4 are periodic time scales, and then ε = 0.
Thus, one has f(t + τ, x) = f(t, x), which implies f(t, x) is periodic in t. This is
incorrect. Therefore, Theorem 17, Theorem 19, Theorem 20, Definition 21 from [8]
are incorrect.

Definition 3.6 ([5, 9]). Let T be an almost periodic time scale under Definition
3.3, i.e., T satisfies Definition 3.3. A function f ∈ C(T×D,En) is called an almost
periodic function in t ∈ T uniformly for x ∈ D if the ε2-translation set of f

E{ε2, f, S} = {τ ∈ Πε1 : |f(t+ τ, x)−f(t, x)| < ε2, for all (t, x) ∈ (T ∩ T−τ )× S}
is a relatively dense set in Πε1 for all ε2 > ε1 > 0 and for each compact subset S
of D; that is, for any given ε2 > ε1 > 0 and each compact subset S of D, there
exists a constant l(ε2, S) > 0 such that each interval of length l(ε2, S) contains a
τ(ε2, S) ∈ E{ε2, f, S} such that

|f(t+ τ, x)− f(t, x)| < ε2, for all (t, x) ∈ (T ∩ T−τ )× S.

This τ is called the ε2-translation number of f and l(ε2, S) is called the inclusion
length of E{ε2, f, S}.
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Remark 3.14. In [9] the authors discussed the approximation between an almost
periodic function and its translation function on almost periodic time scales through
the analysis of the relationship between ε1 and ε2, where ε1 is for the time scale and
ε2 is for the function (note ε1, ε2 may be different). Unfortunately the author in [1]
presented some incorrect comments in relation to this. Remark 3.9 is incorrect.

Definition 3.7 (Incorrect Definition 22 from [8]). Let T be an almost periodic
time scale. For any t ∈ T, τ ∈ Π(T, ε), we define

t+̃τ =

{
t+ τ, if t+ τ ∈ T,
t∗ + τ, if t+ τ ̸∈ T,

where t∗ ∈ Tτ satisfies that dist(t,Tτ ) = |t− t∗| < ε and (t− t∗)sign(τ) > 0.

Remark 3.15. Because T is oriented periodic time scale, Definition 3.7 is incor-
rect. Even if T is an arbitrary time scale with T∩Tτ ̸= ∅, it is also incorrect because
t∗ from Definition 3.7 is not unique. Hence, |f(t∗ + τ)− f(t)| makes no sense and
t∗ + τ is not the translation of t. Thus, Definition 22 is incorrect.

Definition 3.8 (Incorrect Definition 25 from [8]). A time scale T called an
almost periodic time scale if Π := {τ ∈ R : Tτ ̸= ∅} is relatively dense in R, where
Tτ = T ∩ {T− τ} or Tτ = T ∩ {T± τ}.

Remark 3.16. Definition 3.8 is incorrect. First, there is no almost periodicity of
the time scale in this definition. Second, Tτ depends on τ , i.e., Tτ is different if
τ is different. For such a time scale, there is no translation invariance and almost
translation invariance or some special property that can support any function and
its ∆-derivatives on Tτ , which indicates that Definition 3.8 has major problems.

Remark 3.17 (Incorrect Remark 10 from [1]). If we take T = Z, then T∩Tτ =
∅ for τ ∈ {τ ∈ R : ε∗ < d(T,Tτ ) < ε1 < 1}. Therefore, Definition 17 is not well
defined.

Remark 3.18. Z is a periodic time scale so Remark 3.17 is incorrect since ε1 = 0.
The condition T ∩ Tτ ̸= ∅ was emphasized in Remark 6.1 in [9] (see the following
remark).

Remark 3.19 (Remark 6.1 from [9]). Because T is an almost periodic time scale
and not periodic, we emphasize that in Definition 6.2, there is a τ ∈ Πε1 such that
T ∩ T−τ ̸= ∅. From these concepts of almost periodic functions on almost periodic
time scales, we notice that there is a condition that τ must satisfy T ∩ T−τ ̸= ∅.

Remark 3.20. The author in [1] seems to have ignored Remark 3.19 and made an
incorrect comment (i.e., Remark 3.17) .
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