Electronic Journal of Mathematical Analysis and Applications Vol. 6(1) Jan. 2018, pp.156-173. ISSN: 2090-729X(online) http://fcag-egypt.com/Journals/EJMAA/

ON SOME DOUBLY NONLINEAR SYSTEM IN INHOMOGENOUS ORLICZ SPACES

A. ABERQI, J. BENNOUNA AND M. ELMASSOUDI

ABSTRACT. Our aim in this paper is to discuss the existence of renormalized solutions of the following systems:

 $\begin{array}{l} \displaystyle \frac{\partial b_i(x,u_i)}{\partial t} - div(a(x,t,u_i,\nabla u_i)) - \phi_i(x,t,u_i)) + f_i(x,u_1,u_2) = 0 \qquad \text{i=1,2.} \\ \text{where the function } b_i(x,u_i) \text{ verifies some regularity conditions, the term} \\ \displaystyle \left(a(x,t,u_i,\nabla u_i)\right) \text{ is a generalized Leray-Lions operator and } \phi_i \text{ is a Carathéodory} \\ \text{function assumed satisfy only a growth condition. The source term } f_i(t,u_1,u_2) \\ \text{belongs to } L^1(\Omega \times (0,T)) \ . \end{array}$

1. INTRODUCTION

Let Ω be a bounded open subset of \mathbb{R}^N , $(N \ge 1)$ with the segment property. Fixing a final time T > 0 and let $Q_T := (0, T) \times \Omega$. We prove the existence of a renormalized solutions for the nonlinear parabolic systems:

$$(b_i(x, u_i))_t - \operatorname{div}\left(a(x, t, u_i, \nabla u_i) - \Phi_i(x, t, u_i)\right) + f_i(x, u_1, u_2) = 0 \quad \text{in } Q, \quad (1)$$

$$u_i = 0 \quad \text{on } \Gamma := (0, T) \times \partial \Omega,$$
 (2)

$$b_i(x, u_i)(t=0) = b_i(x, u_{i,0})$$
 in Ω , (3)

where i = 1, 2. Here, the vector field

$$a: \Omega \times (0,T) \times R \times R^N \to R^N$$
 is a Carathéodory function (4)

where $A(u) = -\operatorname{div}(a(x, t, u, \nabla u))$ is a Leary-Lions operator defined on the inhomogeneous Orlicz-Sobolev space $W_0^{1,x} L_M(Q_T)$, M is a N-function related to the growth of A(u) (see assumptions (8)-(10)), and to the growth of the lower order Carathéodory function $\phi(x, t, u)$ (see assumption (11)). $b : \Omega \times R \longrightarrow R$ is a Carathéodory function such that for every $x \in \Omega$, b(x, .) is a strictly increasing C^1 -function, the source term f_i is a Carathéodory function.

In the first time, on the Classical Sobolev space, The existence of renormalized solution has been proved by R.-Di Nardo et al. in [9] in the case b(x, u) = u, by

²⁰¹⁰ Mathematics Subject Classification. 47A15, 46A32, 47D20.

 $Key\ words\ and\ phrases.$ Parabolic problems, Sobolev-Orlicz inhomogeneous spaces, Renormalized Solutions.

Submitted May 8, 2017.

H. Redwane in [12] where b(u) = b(x, u), by A. Aberqi, J. Bennouna and H. Redwane, in [2], where $|\phi(x, t, s)| \leq c(x, t)|s|^{\gamma}$ and by L. Aharouch, J. Bennouna and A. Touzani in [3] and by A. Benkirane and J. Bennouna [7] in the Orlicz spaces and degenerated spaces.

In the second time, the existence of a renormalized solution to a class of doubly nonlinear parabolic systems, in the classical Sobolev space $b_i(u_i) = u_i$ and $\phi_i = \phi$, i = 1, 2 has been studied by H. Redwane [12] and for the parabolic version of (1.1)-(1.3), existence and uniqueness results are already proved in [8] (see also [13]) in the case $f_i(x, u1, u2)$ is replaced by f - div(g), by Azroul et al. in [6] has studied the Problem (1), where the term ϕ is continuous function, who allows to eliminate it by using the Stockes formula. Recently Aberqi et al. in [2] has treated the same problem, where the right-side is f - div(g) where $f \in L^1(Q)$, $g \in (L^{p'}(Q))^N$ and the term ϕ satisfy the following growth condition $\phi(x, t, s) \leq c(x, t)|s|^{\gamma}$.

It is our purpose in this paper to generalize the last two results in the Orliczsobolev spaces and with the condition $\phi(x,t,s) \leq c(x,t)\overline{M}^{-1}M(\frac{\alpha}{\lambda}|s|)$ and not assuming any other condition (no coercivity condition and no Δ_2 condition on the N-function M). However the uniqueness of solution remains yet open.

To illustrate the type of problems in Orlicz–Sobolev spaces, we cite the model bellow:

$$\begin{cases} \frac{\partial |u|^{q(x)-2}}{\partial t} - div \left(\frac{\alpha |\nabla u|^{p-2} \nabla u}{1+|u|^{\gamma}} . log(e+u)\right) - div(c(x,t)|u|^{p-1}) = f & \text{in} \quad Q_T, \\ u(x,t) = 0 & \text{on} \quad \partial\Omega \times (0,T) \end{cases}$$

where $b(x, u) = |u|^{q(x)-2}u$, where $q: \Omega \to]1, +\infty[$, with $q(x) \leq -|x|^2 + 2$. $Au = -\Delta_M u = -div \left(\frac{\alpha |\nabla u|^{p-2} \nabla u}{1+|u|^{\gamma}} .log(e+u)\right)$, here the N-functions M associated to the operator are $M(t) = t^p log^q(e+t)$, and $P(t) = \frac{t^p}{p}$, with $P \ll M$. $\phi(x, t, u) = c(x, t)|u|^{p-1}$ the term in divergentiel form which is not continuous with respect to x.

This article is organized as follows: In Section 2, we give some technical lemmas. In Section 3 we give the basic assumptions and give the definition of a renormalized solution of (1.1)-(1.3) and in Section 4, we establish (Theorem 4) the existence of such a solutions.

2. Preliminaries and some technical lemmas

Let $M: R^+ \to R^+$ be an N-function, that is, M is continuous, convex, with M(t) > 0 for t > 0, $M(t)/t \to 0$ as $t \to 0$, and $M(t)/t \to +\infty$ as $t \to +\infty$. Equivalently, M admits the representation $M(t) = \int_0^t a(s)ds$, where $a: R^+ \to R^+$ is nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0, and $a(t) \to +\infty$ as $t \to +\infty$. The N-function \overline{M} conjugate to M is defined by $\overline{M}(t) = \int_0^t \overline{a}(s)ds$, where $\overline{a}: R^+ \to R^+$, is given by $\overline{a}(t) = \sup\{s: a(s) \le t\}$.

We will extend these N-functions into even functions on all R. Let P and Q be two N-functions. $P \ll Q$ means that P grows essentially less rapidly than Q, that is, for each $\epsilon > 0, \frac{P(t)}{Q(\epsilon t)} \to 0$ as $t \to +\infty$. This is the case if and only if $\lim_{t\to+\infty} \frac{Q^{-1}(t)}{P^{-1}(t)} = 0.$

The Orlicz class $K_M(\Omega)$ (resp. the Orlicz space $L_M(\Omega)$ is defined as the set of (equivalence classes of) real valued measurable functions u on Ω such that

$$\int_{\Omega} M(u(x))dx < +\infty \quad (\text{resp.} \quad \int_{\Omega} M(\frac{u(x)}{\lambda})dx < +\infty \quad \text{for some} \quad \lambda > 0).$$

The set $L_M(\Omega)$ is Banach space under the norm

$$\|u\|_{M,\Omega} = \inf\{\lambda > 0 : \int_{\Omega} M(\frac{u(x)}{\lambda}) dx \le 1\}$$

and $K_M(\Omega)$ is a convex subset of $L_M(\Omega)$. The closure in $L_M(\Omega)$ of the set of bounded measurable functions with compact support in $\overline{\Omega}$ is denoted by $E_M(\Omega)$. The dual $E_M(\Omega)$ can be identified with $L_{\overline{M}}(\Omega)$ by means of the pairing $\int_{\Omega} uvdx$, and the dual norm of $L_{\overline{M}}(\Omega)$ is equivalent to $||u||_{\overline{M},\Omega}$. We now turn to the Orlicz-Sobolev space, $W^1L_M(\Omega)$ [resp. $W^1E_M(\Omega)$] is the space of all functions u such that u and its distributional derivatives up to order 1 lie in $L_M(\Omega)$ [resp. $E_M(\Omega)$]. It is a Banach space under the norm

$$||u||_{1,M} = \sum_{|\alpha| \le 1} ||D^{\alpha}u||_{M,\Omega}$$

Thus, $W^1 L_M(\Omega)$ and $W^1 E_M(\Omega)$ can be identified with subspaces of product of N + 1 copies of $L_M(\Omega)$. Denoting this product by ΠL_M we will use the weak topologies $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ and $\sigma(\Pi L_M, \Pi L_{\overline{M}})$. The space $W_0^1 E_M(\Omega)$ is defined as the (norm) closure of the Schwartz space $\mathcal{D}(\Omega)$ in $W^1 E_M(\Omega)$ and the space $W_0^1 L_M(\Omega)$ as the $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ closure of $\mathcal{D}(\Omega)$ in $W^1 L_M(\Omega)$.

Let $W^{-1}L_{\overline{M}}(\Omega)$ [resp. $W^{-1}E_{\overline{M}}(\Omega)$] denote the space of distributions on Ω which can be written as sums of derivatives of order ≤ 1 of functions in $L_{\overline{M}}(\Omega)$ [resp. $E_{\overline{M}}(\Omega)$]. It is a Banach space under the usual quotient norm.(for more details see [1]).

We recall the following Lemma:

Lemma 1 (see [11] and [10]) For all $u \in W_0^1 L_M(Q_T)$ with $meas(Q_T) < +\infty$ one has

$$\int_{Q_T} M(\frac{|u|}{\lambda}) dx dt \le \int_{Q_T} M(|\nabla u|) dx dt?$$
(5)

where $\lambda = diamQ_T$, is the diameter of Q_T .

3. Assumptions and statement of main results

Throughout this paper, we assume that the following assumptions hold true: Let P and M are two N-functions, such that $P \ll M$, and for all i = 1, 2:

$$b_i: \Omega \times R \to R$$
 is a Carathéodory function such that for every $x \in \Omega$, (6)

 $b_i(x, .)$ is a strictly increasing $\mathcal{C}^1(R)$ -function and $b_i \in L^{\infty}(\Omega \times R)$ with $b_i(x, 0) = 0$. Next for any k > 0, there exists a constant $\lambda_k^i > 0$ and functions $A_k^i \in L^{\infty}(\Omega)$ and $B_k^i \in L_M(\Omega)$ such that:

$$\lambda_k^i \le \frac{\partial b_i(x,s)}{\partial s} \le A_k^i(x) \quad \text{and} \quad \left| \nabla_x \left(\frac{\partial b_i(x,s)}{\partial s} \right) \right| \le B_k^i(x) \quad \text{a.e. } x \in \Omega \text{ and } \forall |s| \le k.$$
(7)

For almost every $(x, t) \in Q_T$, for every $s \in R$ and every $\xi, \eta \in R^N$

$$a(x,t,s,\xi)| \le d_k(x,t) + \beta_{k,1} \overline{M}^{-1} P(\beta_{k,2}|\xi|),$$
(8)

$$a(x,t,s,\xi)\xi \ge \alpha M(|\xi|) \quad \text{with } \alpha > 0, \tag{9}$$

$$a(x,t,s,\xi) - a(x,t,s,\eta)\big)(\xi - \eta) > 0 \quad \text{with } \xi \neq \eta, \tag{10}$$

where $d_k(x,t) \in E_{\overline{M}}(Q_T)$, and $\beta_{k,1}, \beta_{k,2} > 0$ are the given real numbers. Let $\phi(x,t,s)$ be a Carathéodory function such that for a.e $(x,t) \in Q_T$ for all $s \in R$

$$|\phi_i(x,t,s)| \le c_i(x,t)\overline{M}^{-1}M(\frac{\alpha_0^i}{\lambda}|s|), \quad c_i(.,.) \in L^{\infty}(Q_T), \text{where} \quad \|c_i(.,.)\|_{\infty} \le \alpha,$$
(11)

 $f_i: \Omega \times R \times R \to R$ is a Carathéodory function with

$$f_1(x, 0, s) = f_2(x, s, 0) = 0$$
 a.e. $x \in \Omega, \forall s \in R,$ (12)

and for almost every $x \in \Omega$, for every $s_1, s_2 \in R$,

$$sign(s_i)f_i(x, s_1, s_2) \ge 0.$$
 (13)

The growth assumptions on f_i are as follows: For each K > 0, there exists $\sigma_K > 0$ and a function F_K in $L^1(\Omega)$ such that

$$|f_1(x, s_1, s_2)| \le F_K(x) + \sigma_K |b_2(x, s_2)|, \tag{14}$$

a.e. in Ω , for all s_1 such that $|s_1| \leq K$, for all $s_2 \in R$. For each K > 0, there exists $\lambda_K > 0$ and a function G_K in $L^1(\Omega)$ such that

$$|f_2(x, s_1, s_2)| \le G_K(x) + \lambda_K |b_1(x, s_1)|,$$
(15)

for almost every $x \in \Omega$, for every s_2 such that $|s_2| \leq K$, and for every $s_1 \in R$. Finally, we assume the following condition on the initial data $u_{i,0}$:

 $u_{i,0}$ is a measurable function such that $b_i(., u_{i,0}) \in L^1(\Omega)$, for i = 1, 2. (16)

In this paper, for K > 0, we denote by $T_K : r \mapsto \min(K, max(r, -K))$ the truncation function at height K. For any measurable subset E of Q_T , we denote by meas(E) the Lebesgue measure of E. For any measurable function v defined on Q and for any real number $s, \chi_{\{v < s\}}$ (respectively, $\chi_{\{v = s\}}, \chi_{\{v > s\}}$) denote the characteristic function of the set $\{(x, t) \in Q_T; v(x, t) < s\}$ (respectively, $\{(x, t) \in Q_T; v(x, t) > s\}$).

Definition 2 A couple of functions (u_1, u_2) defined on Q_T is called a renormalized solution of (6)-(16) if for i = 1, 2 the function u_i satisfies

$$T_K(u_i) \in W_0^{1,x} L_M(Q_T) \text{ and } b_i(x, u_i) \in L^{\infty}(0, T; L^1(\Omega)),$$
 (17)

$$\int_{\{ m \le |u_i| \le m+1 \}} a(x, t, u_i, \nabla u_i) \nabla u_i \, dx \, dt \to 0 \quad \text{as } m \to +\infty,$$
(18)

For every function S in $W^{2,\infty}(R)$ which is piecewise C^1 and such that S' has a compact support, we have

$$\frac{\partial B_{i,S}(x,u_i)}{\partial t} - div(S'(u_i)a(x,t,u_i,\nabla u_i)) + S''(u_i)a(x,t,u_i,\nabla u_i)\nabla u_i + div(S'(u_i)\phi_i(x,t,u_i)) - S''(u_i)\phi_i(x,t,u_i)\nabla u_i + f_i(x,u_1,u_2)S'(u_i) = 0$$
(19)
$$B_{i,S}(x,u_i)(t=0) = B_{i,S}(x,u_{i,0})$$
in Ω , (20)

where $B_{i,S}(r) = \int_0^r b'_i(x,s)S'(s) ds$. Remark 3 Due to (17), each term in (19) has a meaning in $W^{-1,x}L_{\overline{M}}(Q_T) + L^1(Q_T)$. Indeed, if K such that $supp S \subset [-K, K]$, the following identifications are made in (19)

- $B_{i,S}(x,u_i) \in L^{\infty}(Q_T)$, since $|B_{i,S}(x,u_i)| \le K ||A_K^i||_{L^{\infty}(\Omega)} ||S'||_{L^{\infty}(R)}$
- $S'(u_i)a(x, t, u_i, \nabla u_i)$ can be identified with $S'(u_i)a(x, t, T_K(u_i), \nabla T_K(u_i))$ a.e. in Q_T . Since indeed $|T_K(u_i)| \leq K$ a.e. in Q_T . As a consequence of (8), (17) and $S'(u_i) \in L^{\infty}(Q_T)$, it follows that

$$S'(u_i)a(x, T_K(u_i), \nabla T_K(u_i)) \in (L_{\overline{M}}(Q_T))^N.$$

• $S'(u_i)a(x, t, u_i, \nabla u_i)\nabla u_i$ can be identified with $S'(u_i)a(x, t, T_K(u_i), \nabla T_K(u_i))\nabla T_K(u_i)$ a.e. in Q_T with (7) and (17) it has

$$S'(u_i)a(x,t,T_K(u_i),\nabla T_K(u_i))\nabla T_K(u_i) \in L^1(Q_T)$$

- $S'(u_i)\Phi_i(u_i)$ and $S''(u_i)\Phi_i(u_i)\nabla u_i$ respectively identify with $S'(u_i)\Phi_i(T_K(u_i))$ and $S''(u_i)\Phi(T_K(u_i))\nabla T_K(u_i)$. In view of the properties of S and (11), the functions S', S'' and $\Phi \circ T_K$ are bounded on R so that (17) implies that $S'(u_i)\Phi_i(T_K(u_i)) \in (L^{\infty}(Q_T))^N$ and $S''(u_i)\Phi_i(T_K(u_i))\nabla T_K(u_i) \in (L_{\overline{M}}(Q_T))^N$.
- $S'(u_i)f_i(x, u_1, u_2)$ identifies with $S'(u_i)f_1(x, T_K(u_1), u_2)$ a.e. in Q_T (or $S'(u_i)f_2(x, u_1, T_K(u_2))$ a.e. in Q_T). Indeed, since $|T_K(u_i)| \leq K$ a.e. in Q_T , assumptions (14) and (15) and using (17) and of $S'(u_i) \in L^{\infty}(Q)$, one has

 $S'(u_1)f_1(x, T_K(u_1), u_2) \in L^1(Q_T)$ and $S'(u_2)f_2(x, u_1, T_K(u_2)) \in L^1(Q_T).$

As consequence, (19) takes place in $D'(Q_T)$ and that

$$\frac{\partial B_{i,S}(x,u_i)}{\partial t} \in W^{-1,x} L_{\overline{M}}(Q_T) + L^1(Q_T).$$
(21)

Due to the properties of S and (7)

$$B_{i,S}(x,u_i) \in W_0^{1,x} L_M(Q_T).$$
(22)

Moreover (21) and (22) implies that $B_{i,S}(x, u_i) \in C^0([0, T], L^1(\Omega))$ so that the initial condition (20) makes sense.

4. Existence result

We shall prove the following existence theorem **Theorem 4** Assume that (6)-(16) hold true. There is at least a renormalized

solution (u_1, u_2) of Problem (1).

Proof. We give the prof in 5 steps.

Step 1: Approximate problem.

Let us introduce the following regularization of the data: for n > 0 and i = 1, 2

$$b_{i,n}(x,s) = b_i(x,T_n(s)) + \frac{1}{n} \ s \quad \forall s \in \mathbb{R},$$
(23)

$$a_n(x,t,s,\xi) = a(x,t,T_n(s),\xi) \text{ a.e. in } \Omega, \forall s \in \mathbb{R}, \forall \xi \in \mathbb{R}^N,$$
(24)

$$\Phi_{i,n}(x,t,s) = \Phi_{i,n}(x,t,T_n(s)) \quad \text{a.e.} \quad (x,t) \in Q_T, \quad \forall s \in IR.$$
(25)

$$f_{1,n}(x, s_1, s_2) = f_1(x, T_n(s_1), s_2) \quad \text{a.e. in } \Omega, \forall s_1, s_2 \in R,$$
(26)

$$f_{2,n}(x, s_1, s_2) = f_2(x, s_1, T_n(s_2)) \quad \text{a.e. in } \Omega, \forall s_1, s_2 \in \mathbb{R},$$
(27)

 $u_{i,0n} \in C_0^{\infty}(\Omega), b_{i,n}(x, u_{i,0n}) \to b_i(x, u_{i,0}) \text{ in } L^1(\Omega) \text{ as } n \to +\infty.$ (28)

Let us now consider the regularized problem 01 (

$$\frac{\partial b_{i,n}(x, u_{i,n})}{\partial t} - \operatorname{div}(a_n(x, u_{i,n}, \nabla u_{i,n})) - div(\Phi_{i,n}(x, t, u_{i,n})) + f_{i,n}(x, u_{1,n}, u_{2,n}) = 0 \quad \text{in } Q_T$$
(29)

$$u_{i,n} = 0 \quad \text{on } (0,T) \times \partial\Omega,$$
 (30)

$$u_{i,n} = 0 \quad \text{on} \ (0,T) \times \partial\Omega, \tag{30}$$

$$b_{i,n}(x, u_{i,n})(t=0) = b_{i,n}(x, u_{i,0n}) \quad \text{in} \ \Omega. \tag{31}$$

In view of (23), for i = 1, 2, we have

$$\frac{\partial b_{i,n}(x,s)}{\partial s} \ge \frac{1}{n}, \quad |b_{i,n}(x,s)| \le \max_{|s| \le n} |b_i(x,s)| + 1 \quad \forall s \in R,$$

In view of (14)-(15), $f_{1,n}$ and $f_{2,n}$ satisfy: There exists $F_n \in L^1(\Omega), G_n \in L^1(\Omega)$ and $\sigma_n > 0, \lambda_n > 0$, such that

$$\begin{aligned} |f_{1,n}(x,s_1,s_2)| &\leq F_n(x) + \sigma_n \max_{|s| \leq n} |b_i(x,s)| \quad \text{a.e. in } x \in \Omega, \forall s_1, s_2 \in R, \\ |f_{2,n}(x,s_1,s_2)| &\leq G_n(x) + \lambda_n \max_{|s| \leq n} |b_i(x,s)| \quad \text{a.e. in } x \in \Omega, \forall s_1, s_2 \in R. \end{aligned}$$

As a consequence, proving the existence of a weak solution $u_{i,n} \in W_0^{1,x} L_M(Q_T)$ of (29)-(31) is an easy task (see e.g. [13]).

Step2: A priori estimates.

Let $t \in (0,T)$ and using $T_k(u_{i,n})\chi_{(0,t)}$ as a test function in problem (29), we get:

$$\int_{\Omega} B_{i,k}^{n}(x, u_{i,n}(t)) dx + \int_{Q_{t}} a_{n}(x, t, u_{i,n}, \nabla u_{i,n}) \nabla T_{k}(u_{i,n}) dx \, dt + \int_{Q_{t}} \phi_{i,n}(x, t, u_{i,n}) \nabla T_{k}(u_{i,n}) dx \, dt$$

$$(32)$$

$$+ \int_{Q_{t}} f_{i,n} T_{k}(u_{i,n}) \, dx \, dt \leq \int_{\Omega} B_{i,k}^{n}(x, u_{i,0n}) dx,$$
where $B_{i,k}^{n}(x, r) = \int^{r} \frac{\partial b_{i,n}(x, s)}{\partial x} T_{k}(s) ds.$

Due to definition of $B_{i,k}^n$ we have:

$$\int_{\Omega} B_{i,k}^n(x, u_{i,n}(t)) dx \ge \frac{\lambda_n}{2} \int_{\Omega} |T_k(u_{i,n})|^2 dx, \quad \forall k > 0,$$
(33)

and

$$0 \le \int_{\Omega} B_{i,k}^n(x, u_{i,0n}) dx \le k \int_{\Omega} |b_{i,n}(x, u_{i,0n})| dx \le k ||b_i(x, u_{i,0})||_{L^1(\Omega)}, \quad \forall k > 0.$$
(34)

In view of (13), we have $\int_{Q_t} f_{i,n} T_k(u_{i,n}) dx dt \ge 0$ Using Young inequality 11 and lemma 5, we obtain

$$\int_{Q_t} \phi_{i,n}(x,t,u_{i,n}) \nabla T_k(u_{i,n}) dx \, dt \le \|c_i\|_{L^{\infty}} (\alpha_0^i + 1) \int_{\Omega} M(\nabla T_k(u_{i,n})) dx dt.$$

We conclude that

$$\begin{aligned} \frac{\lambda_k}{2} \int_{\Omega} |T_k(u_{i,n})|^2 \, dx &+ \alpha \int_{Q_t} M(\nabla T_k(u_{i,n}) \, dx \, dt \leq \\ \|c_i\|_{L^{\infty}}(\alpha_0^i + 1) \int_{\Omega} M(\nabla T_k(u_{i,n})) \, dx \, dt + k \big(\|f\|_{L^1(Q_T)} + \|b(x, u_{i,0n})\|_{L^1(\Omega)} \big). \end{aligned}$$

Then

$$\frac{\lambda_k}{2} \int_{\Omega} |T_k(u_{i,n})|^2 \, dx + [\alpha - \|c\|_{L^{\infty}} (\alpha_0^i + 1)] \int_{Q_t} M(\nabla T_k(u_{i,n})) \, dt \, dx \le C_i.k.$$

If we choose $||c_i||_{L^{\infty}} < \alpha$ and $\alpha_0^i < \frac{\alpha - ||c_i||_{L^{\infty}}}{||c_i||_{L^{\infty}}}$ we get

$$\int_{Q_t} M(\nabla T_k(u_{i,n})) \, dx \, dt \le C_i.k,\tag{35}$$

then, we conclude that $T_k(u_{i,n})$ is bounded in $W^{1,x}L_M(Q_T)$ independently of nand for any $k \ge 0$, so there exists a subsequence still denoted by u_n such that

$$T_k(u_{i,n}) \to \psi_{i,k} \tag{36}$$

weakly in $W_0^{1,x}L_M(Q_T)$ for $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ strongly in $E_M(Q_T)$ and a.e in Q_T . Since Lemma (5) and (41), we get also,

$$\begin{split} M(\frac{k}{\lambda}) \ meas \Big\{ \{ |u_{i,n}| > k \} \cap B_R \times [0,T] \Big\} &\leq \int_0^T \int_{\{ |u_{i,n}| > k \} \cap B_R} M(\frac{T_k(u_{i,n})}{\lambda}) dx dt \\ &\leq \int_{Q_T} M(\frac{T_k(u_{i,n})}{\lambda}) dx dt \\ &\leq \int_{Q_T} M(\nabla T_k(u_{i,n})) dx dt. \end{split}$$

Then

$$meas\Big\{\{|u_{i,n}| > k\} \cap B_R \times [0,T]\Big\} \le \frac{C_i \cdot k}{M(\frac{k}{\lambda})},$$

which implies that: $\lim_{k \to +\infty} meas \Big\{ \{ |u_{i,n}| > k \} \cap B_R \times [0,T] \Big\} = 0. \text{ uniformly in } n.$ Now we turn to prove the almost every convergence of $u_{i,n}$, $b_{i,n}(x, u_{i,n})$ and convergence of $a_{i,n}(x, t, T_k(u_{i,n}), \nabla T_k(u_{i,n}))$.

Proposition 5 Let $u_{i,n}$ be a solution of the approximate problem, then:

$$u_{i,n} \to u_i$$
 a.e in Q_T , (37)

$$b_{i,n}(x, u_{i,n}) \to b_i(x, u_i)$$
 a.e in Q_T . $b_i(x, u_i) \in L^{\infty}(0, T, L^1(\Omega)),$ (38)

$$a_n(x,t,T_k(u_{i,n}),\nabla T_k(u_{i,n})) \rightharpoonup X_{i,k} \quad \text{in} \quad (L_{\overline{M}}(Q_T))^N \text{for} \quad \sigma(\Pi L_{\overline{M}},\Pi E_M), \quad (39)$$

for some $X_{i,k} \in (L_{\overline{M}}(Q_T))^N$

$$\lim_{m \to +\infty} \lim_{n \to +\infty} \int_{m \le |u_{i,n}| \le m+1} a_i(x, t, u_{i,n}, \nabla u_{i,n}) \nabla u_{i,n} dx dt = 0.$$
(40)

Proof

Proof of (37) and (38):

Now, consider a non decreasing function $g_k \in C^2(R)$ such that $g_k(s) = s$ for $|s| \leq \frac{k}{2}$

and $g_k(s) = k$ for $|s| \ge k$. Multiplying the approximate equation by $g'_k(u_{i,n})$, we get

$$\frac{\partial B_{k,g}^{i,n}(x,u_{i,n})}{\partial t} - div \Big(a_n(x,t,u_{i,n},\nabla u_{i,n})g_k'(u_{i,n}) \Big) + a_n(x,t,u_{i,n},\nabla u_{i,n})g_k''(u_{i,n})\nabla u_{i,n} \tag{41}$$

$$+ div \Big(\phi_{i,n}(x,t,u_{i,n})g_k'(u_{i,n}) \Big) - g_k''(u_{i,n})\phi_{i,n}(x,t,u_{i,n})\nabla u_{i,n} + f_{i,n}g_k'(u_n) = 0 \qquad \text{in } D'(Q_T),$$
where $B_{k,g}^{i,n}(x,z) = \int_0^z \frac{\partial b_{i,n}(x,s)}{\partial s}g_k'(s)ds.$

Using (41), we can deduce that $g_k(u_{i,n})$ is bounded in $W_0^{1,x}L_M(Q_T)$ and $\frac{\partial B_{k,g}^{i,n}(x,u_{i,n})}{\partial t}$ is bounded in $L^1(Q_T) + W^{-1,x}L_{\overline{M}}(Q_T)$ independently of n. thanks to (11) and properties of g_k , it follows that

$$\begin{split} |\int_{Q_T} \phi_{i,n}(x,t,u_n) g'_k(u_{i,n}) dx dt| &\leq \|g'_k\|_{\infty} (\int_{Q_T} \alpha_0^i M(\nabla T_k(u_{i,n})) dx dt + \int_{Q_T} \overline{M}(\|c_i(x,t)\|_{\infty}) dx dt \\ &\leq C^1_{i,k}, \end{split}$$

and

$$|\int_{Q_T} g_k''(u_{i,n})\phi_{i,n}(x,t,u_{i,n})\nabla u_{i,n}dxdt| \le \|g_k''\|_{\infty} (\|c_i\|_{L^{\infty}}(\alpha_0^i+1)\int_{\Omega} M(\nabla T_k(u_{i,n}))dxdt) \le C_{i,k}^2,$$

where $C_{i,k}^1$ and $C_{i,k}^2$ constants independently of n.

We conclude that $\frac{\partial g_k(u_{i,n})}{\partial t}$ is bounded in $L^1(Q_T) + W^{-1,x}L_{\overline{M}}(Q_T)$ for k < n. which implies that $g_k(u_{i,n})$ is compact in $L^1(Q_T)$. Due to the choice of g_k , we conclude that for each k, the sequence $T_k(u_{i,n})$ converges almost everywhere in Q_T , which implies that the sequence $u_{i,n}$ converge almost everywhere to some measurable function u_i in Q_T .

Then by the same argument in [5], we have

$$u_{i,n} \to u_i \text{ a.e. } Q_T,$$
 (42)

where u_i is a measurable function defined on Q_T . and

$$b_{i,n}(x, u_{i,n}) \to b_i(x, u_i)$$
 a.e. in Q_T ,

by (36) and (42) we have

$$T_k(u_{i,n}) \to T_k(u_i) \tag{43}$$

weakly in $W_0^{1,x}L_M(Q_T)$ for $\sigma(\Pi L_M, \Pi E_{\overline{M}})$ strongly in $E_M(Q_T)$ and a.e in Q_T . We now show that $b_i(x, u_i) \in L^{\infty}(0, T; L^1(\Omega))$. Indeed using $\frac{1}{\varepsilon}T_{\varepsilon}(u_{i,n})$ as a test function in (29),

$$\frac{1}{\varepsilon} \int_{\Omega} b_{i,n}^{\varepsilon}(x, u_{i,n})(t) \, dx + \frac{1}{\varepsilon} \int_{Q_T} a_n(x, u_{i,n}, \nabla u_{i,n}) \nabla T_{\varepsilon}(u_{i,n}) \, dx \, dt$$

$$- \frac{1}{\varepsilon} \int_{Q_T} \Phi_{i,n}(x, t, u_{i,n}) \nabla T_{\varepsilon}(u_{i,n}) \, dx \, dt + \frac{1}{\varepsilon} \int_{Q_T} f_{i,n}(x, u_{1,n}, u_{2,n}) T_{\varepsilon}(u_{i,n}) \, dx \, dt$$

$$= \frac{1}{\varepsilon} \int_{\Omega} b_{i,n}^{\varepsilon}(x, u_{i,0n}) \, dx,$$
(44)

for almost any t in (0,T), where, $b_{i,n}^{\varepsilon}(r) = \int_0^r b'_{i,n,\varepsilon}(s) T_{\varepsilon}(s) ds$.

Since a_n satisfies (9) and $f_{i,n}$ satisfies (13), we get

$$\int_{\Omega} b_{i,n}^{\varepsilon}(x, u_{i,n})(t) \, dx \le \int_{Q_T} \Phi_{i,n}(x, t, u_{i,n}) \nabla T_{\varepsilon}(u_{i,n}) \, dx \, dt + \int_{\Omega} b_{i,n}^{\varepsilon}(x, u_{i,0n}) \, dx, \tag{45}$$

By Young inequality and (11), we get

$$\int_{Q_T} \Phi_{i,n}(x,t,u_{i,n}) \nabla T_{\varepsilon}(u_{i,n}) \, dx \, dt \leq \int_{|u_{i,n}| \leq \varepsilon} \overline{M}(\Phi_{i,n}(x,t,u_{i,n})) \, dx \, dt + \int_{|u_{i,n}| \leq \varepsilon} M(\nabla T_{\varepsilon}(u_{i,n})) \, dx \, dt$$

$$\leq \|c_i\|_{L^{\infty}}(\alpha_0^i+1) \int_{|u_{i,n}| \leq \varepsilon} M(\nabla T_{\epsilon}(u_{i,n})) dx dt.$$
(46)

Using the Lebesgue's Theorem and $M(\nabla T_{\varepsilon}(u_{i,n})) \in W_0^{1,x}L_M(Q_T)$ in second term of the left hand side of (46) and letting $\varepsilon \to 0$ in (45)we obtain

$$\int_{\Omega} |b_{i,n}(x, u_{i,n})(t)| \, dx \le \|b_{i,n}(x, u_{i,0n})\|_{L^1(\Omega)} \tag{47}$$

for almost $t \in (0, T)$. thanks to (28) , (37), and passing to the limit-inf in (47), we obtain $b_i(x, u_i) \in L^{\infty}(0, T; L^1(\Omega))$.

Proof of (39) :

Following the same way in([4]), we deduce that $a_n(x, t, T_k(u_{i,n}), \nabla T_k(u_{i,n}))$ is a bounded sequence in $(L_{\overline{M}}(Q_T))^N$, and we obtain (39). **Proof of** (40) :

Multiplying the approximating equation (29) by the test function $\theta_m(u_{i,n}) = T_{m+1}(u_{i,n}) - T_m(u_{i,n})$

$$\int_{\Omega} B_{i,m}(x, u_{i,n}(T)) dx + \int_{Q_T} a_n(x, t, u_{i,n}, \nabla u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt + \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) \nabla \theta_m(u_{i,n}) \nabla \theta_m(u_{i,n}) \nabla \theta_m(u_{i,n}) \nabla \theta_$$

$$+ \int_{Q_T} f_{i,n} \theta_m(u_{i,n}) \, dx \, dt \le \int_{\Omega} B_{i,m}(x, u_{i,0n}) \, dx,$$

$$\int_{Q_T} f_{i,n} \theta_m(u_{i,n}) \, dx \, dt \le \int_{\Omega} B_{i,m}(x, u_{i,0n}) \, dx,$$

where $B_{i,m}(x,r) = \int_0^r \theta_m(s) \frac{\partial b_{i,n}(x,s)}{\partial s} ds$. By (11), we have

$$\int_{Q_T} \phi_{i,n}(x,t,u_{i,n}) \nabla \theta_m(u_{i,n}) dx \, dt \le \|c_i\|_{L^{\infty}} (\alpha_0^i + 1) \int_{\Omega} M(\nabla \theta_m(u_{i,n})) dx dt$$

Also $\int_{Q_T} f_{i,n} \theta_m(u_{i,n}) dx dt \ge 0$ in view of (13). Then, the same argument in step 2, we obtain,

$$\int_{Q_T} M(\nabla \theta_m(u_{i,n})) dx dt \le C_i \int_{\Omega} B_{i,m}(x, u_{i,0n}) dx$$

passing to limit as $n \to +\infty$, since the pointwise convergence of $u_{i,n}$ and strongly convergence in $L^1(Q_T)$ of $B_{i,m}(x, u_{i,0n})$ we get

$$\lim_{n \to +\infty} \int_{Q_T} M(\nabla \theta_m(u_{i,n})) dx dt \le C_i \int_{\Omega} B_{i,m}(x, u_{i,0}) dx$$

164

By using Lebesgue's theorem and passing to limit as $m \to +\infty$, in the all term of the right-hand side, we get

$$\lim_{m \to +\infty} \lim_{n \to +\infty} \int_{m \le |u_i| \le m+1} M(\nabla \theta_m(u_{i,n}) dx dt = 0,$$
(49)

and on the other hand, we have

$$\lim_{m \to +\infty} \lim_{n \to +\infty} \int_{Q_T} \phi_{i,n}(x, t, u_{i,n}) \nabla \theta_m(u_{i,n}) dx dt \le \lim_{m \to +\infty} \lim_{n \to +\infty} \int_{m \le |u_i| \le m+1} M(\nabla \theta_m(u_{i,n})) dx dt + \lim_{m \to +\infty} \lim_{n \to +\infty} \int_{m \le |u_{i,n}| \le m+1} \overline{M}(\phi_{i,n}(x, t, u_{i,n})) dx dt$$

Using the pointwise convergence of $u_{i,n}$ and by Lebesgue's theorem, in the second term of the right side, we get

$$\lim_{n \to +\infty} \int_{m \le |u_{i,n}| \le m+1} \overline{M}(\phi_{i,n}(x,t,u_{i,n})) dx dt = \int_{m \le |u_i| \le m+1} \overline{M}(\phi_i(x,t,u_i)) dx dt$$

and also, by Lebesgue's theorem

$$\lim_{m \to +\infty} \int_{m \le |u_i| \le m+1} \overline{M}(\phi_i(x, t, u_i)) dx dt = 0$$
(50)

we obtain with (49) and (50),

$$\lim_{m \to +\infty} \lim_{n \to +\infty} \int_{Q_T} \phi_{i,n}(x,t,u_{i,n}) \nabla \theta_m(u_{i,n}) dx dt = 0$$

then passing to the limit in (48), we get (40). **Step 3:**

Let $v_{i,j} \in \mathcal{D}(Q_T)$ be a sequence such that $v_{i,j} \to u_i$ in $W_0^{1,x} L_M(Q_T)$ for the modular convergence.

This specific time regularization of $T_k(v_{i,j})$ (for fixed $k \ge 0$) is defined as follows. Let $(\alpha_{i,0}^{\mu})_{\mu}$ be a sequence of functions defined on Ω such that

$$\alpha_{i,0}^{\mu} \in L^{\infty}(\Omega) \cap W_0^1 L_M(\Omega) \quad \text{for all} \quad \mu > 0$$

$$\|\alpha_{i,0}^{\mu}\|_{L^{\infty}(\Omega)} \le k \text{ for all} \quad \mu > 0.$$
(51)

and

 $\alpha_{i,0}^{\mu}$ converges to $T_k(u_{i,0})$ a.e. in Ω and $\frac{1}{\mu} \| \alpha_{i,0}^{\mu} \|_{M,\Omega}$ converges to $0 \quad \mu \to +\infty$.

For $k \geq 0$ and $\mu > 0$, let us consider the unique solution $(T_k(v_{i,j}))_{\mu} \in L^{\infty}(Q) \cap W_0^{1,x}L_M(Q_T)$ of the monotone problem:

$$\frac{\partial (T_k(v_{i,j}))_{\mu}}{\partial t} + \mu ((T_k(v_{i,j}))_{\mu} - T_k(v_{i,j})) = 0 \text{ in } D'(\Omega),$$
(52)

$$(T_k(v_{i,j}))_\mu(t=0) = \alpha^\mu_{i,0} \text{ in } \Omega.$$
 (53)

Remark that due to

$$\frac{\partial (T_k(v_{i,j}))_{\mu}}{\partial t} \in W_0^{1,x} L_M(Q_T)$$
(54)

We just recall that,

$$(T_k(v_{i,j}))_{\mu} \to T_k(u_i)$$
 a.e. in Q_T , weakly $*$ in $L^{\infty}(Q_T)$ and (55)

$$(T_k(v_{i,j}))_{\mu} \to (T_k(u_i))_{\mu} \text{ in } W_0^{1,x} L_M(Q_T)$$
 (56)

for the modular convergence as $j \to +\infty$.

$$(T_k(u_i))_{\mu} \to T_k(u_i) \quad \text{in} \quad W_0^{1,x} L_M(Q_T) \tag{57}$$

for the modular convergence as $\mu \to +\infty$.

$$\begin{aligned} ||(T_k(v_{i,j}))_{\mu}||_{L^{\infty}(Q_T)} &\leq max(||(T_k(u_i))||_{L^{\infty}(Q_T)}, ||\alpha_0^{\mu}||_{L^{\infty}(\Omega)}) \leq k, \ \forall \ \mu > 0 \ , \forall \ k > 0. \end{aligned}$$
(58)
Now, we introduce a sequence of increasing $C^{\infty}(R)$ -functions S_m such that, for any $m \geq 1.$

$$S_m(r) = r \text{ for } |r| \le m, \quad \sup(S'_m) \subset [-(m+1), (m+1)], \quad ||S''_m||_{L^{\infty}(R)} \le 1.$$
 (59)

Through setting, for fixed $K \ge 0$,

$$W_{i,j,\mu}^n = T_K(u_{i,n}) - T_K(v_{i,j})_\mu \quad \text{and} \quad W_{i,\mu}^n = T_K(u_{i,n}) - T_K(u_i)_\mu \tag{60}$$

we obtain upon integration,

$$\int_{Q_T} \left\langle \frac{\partial b_{i,S_m}(u_{i,n})}{\partial t}, W_{i,j,\mu}^n \right\rangle dx \, dt + \int_{Q_T} S''_m(u_{i,n}) W_{i,j,\mu}^n a_n(x, u_{i,n}, \nabla u_{i,n}) \nabla W_{i,j,\mu}^n dx \, dt + \int_{Q_T} S''_m(u_{i,n}) W_{i,j,\mu}^n a_n(x, u_{i,n}, \nabla u_{i,n}) \nabla u_{i,n} \, dx \, dt + \int_{Q_T} \Phi_{i,n}(x, t, u_{i,n}) S'_m(u_{i,n}) \nabla W_{i,j,\mu}^n \, dx \, dt + \int_{Q_T} S''_m(u_{i,n}) W_{i,j,\mu}^n \Phi_{i,n}(x, t, u_{i,n}) \nabla u_{i,n} \, dx \, dt + \int_{Q_T} f_{i,n}(x, u_{1,n}, u_{2,n}) S'_m(u_{i,n}) W_{i,j,\mu}^n \, dx \, dt = 0.$$
(61)

(61) We pass to limit, as $n \to +\infty$, $j \to +\infty$, $\mu \to +\infty$ and then m tends to $+\infty$, the real number $K \ge 0$ being kept fixed. In order to perform this task we prove below

the following results for fixed $K \ge 0$:

$$\liminf_{\mu \to +\infty} \lim_{j \to +\infty} \lim_{n \to +\infty} \int_{Q_T} \left\langle \frac{\partial b_{i,S_m}(u_{i,n})}{\partial t} , S'_m(u_{i,n}) W^n_{i,j,\mu} \right\rangle dx \, dt \ge 0 \quad \text{for any } m \ge K,$$
(62)

$$\lim_{\mu \to +\infty} \lim_{j \to +\infty} \lim_{n \to +\infty} \int_{Q_T} S'_n(u_{i,n}) \Phi_{i,n}(x,t,u_{i,n}) \nabla W^n_{i,j,\mu} \, dx \, dt = 0 \quad \text{for any } m \ge 1,$$
(63)

$$\lim_{\mu \to +\infty} \lim_{j \to +\infty} \lim_{n \to +\infty} \int_{Q_T} S''_m(u_{i,n}) W^n_{i,\mu} \Phi_{i,n}(x,t,u_{i,n}) \nabla u_{i,n} \, dx \, dt = 0 \quad \text{for any } m,$$
(64)

$$\lim_{m \to +\infty} \overline{\lim_{\mu \to +\infty} \lim_{j \to +\infty} \lim_{n \to +\infty}} \left| \int_{Q_T} S''_m(u_{i,n}) W^n_{i,j,\mu} a_n(x,t,u_{i,n},\nabla u_{i,n}) \nabla u_{i,n} \, dx \, dt \right| = 0,$$
(65)

$$\lim_{\mu \to +\infty} \lim_{j \to +\infty} \lim_{n \to +\infty} \int_{Q_T} f_{i,n}(x, u_{1,n}, u_{2,n}) S'_m(u_{i,n}) W^n_{i,j,\mu} \, dx \, dt = 0 \quad \text{for any } m \ge 1.$$
(66)

$$\limsup_{n \to +\infty} \int_{Q_T} a(x, t, u_{i,n}, \nabla T_K(u_{i,n})) \nabla T_K(u_{i,n}) \, dx \, dt \le \int_{Q_T} X_{i,K} \nabla T_K(u_i) \, dx \, dt.$$
(67)

$$\int_{Q_T} [a(x,t,T_k(u_{i,n}),\nabla T_k(u_{i,n})) - a(x,t,T_k(u_{i,n}),\nabla T_k(u_i))] [\nabla T_k(u_{i,n}) - \nabla T_k(u_i)] dx \, dt \to 0$$

$$\tag{68}$$

Proof of (62): Lemma 6

$$\int_{Q_T} \left\langle \frac{\partial b_{i,n}(x, u_{i,n})}{\partial t}, S'_m(u_{i,n}) W^n_{i,j,\mu} \right\rangle dx \, dt \ge \epsilon(n, j, \mu, m) \tag{69}$$

Proof This follows from the proof in [13].

Proof of (63):

If we take n > m + 1, we get

$$\phi_{i,n}(x,t,u_{i,n})S'_m(u_{i,n}) = \phi_i(x,t,T_{m+1}(u_{i,n}))S'_m(u_{i,n})$$

Using (11), we have:

$$\overline{M}(\phi_{i,n}(x,t,T_{m+1}(u_{i,n})S'_m(u_{i,n})) \le (m+1)\overline{M}(\phi_i(x,t,T_{m+1}(u_{i,n})))$$
$$\le (m+1)\overline{M}(\|c_i(x,t)\|_{L^{\infty}(Q_T)}\overline{M}^{-1}M(\frac{\alpha_0}{\lambda}(m+1)))$$

Then $\phi_{i,n}(x,t,u_n)S_m(u_{i,n})$ is bounded in $L_{\overline{M}}(Q_T)$, thus, by using the pointwise convergence of $u_{i,n}$ and Lebesgue's theorem we obtain $\phi_{i,n}(x,t,u_{i,n})S_m(u_{i,n}) \rightarrow \phi_i(x,t,u_i)S_m(u_i)$ with the modular convergence as $n \rightarrow +\infty$, then $\phi_{i,n}(x,t,u_{i,n})S_m(u_{i,n}) \rightarrow \phi(x,t,u_i)S_m(u_i)$ for $\sigma(\prod L_{\overline{M}}, \prod L_M)$. On the other hand $\nabla W_{i,j,\mu}^n = \nabla T_k(u_{i,n}) - \nabla (T_k(v_{i,j}))_\mu$ for converge to $\nabla T_k(u_i) - \nabla (T_k(v_{i,j}))_\mu$ weakly in $(L_M(Q_T))^N$, then

$$\int_{Q_T} \phi_{i,n}(x,t,u_{i,n}) S_m(u_{i,n}) \nabla W_{i,j,\mu}^n \, dx \, dt \to \int_{Q_T} \phi_i(x,t,u_i) S_m(u_i) \nabla W_{i,j,\mu} \, dx \, dt$$

as $n \to +\infty$.

By using the modular convergence of $W_{i,j,\mu}$ as $j \to +\infty$ and letting μ tends to infinity, we get (63).

Proof of (64):

For n > m + 1 > k, we have $\nabla u_{i,n} S''_m(u_{i,n}) = \nabla T_{m+1}(u_{i,n})$ a.e. in Q_T . By the almost every where convergence of $u_{i,n}$ we have $W^n_{i,j,\mu} \to W_{i,j,\mu}$ in $L^{\infty}(Q_T)$ weak-* and since the sequence $(\phi_{i,n}(x,t,T_{m+1}(u_{i,n})))_n$ converges strongly in $E_{\overline{M}}(Q_T)$, then

$$\phi_{i,n}(x,t,T_{m+1}(u_{i,n})) W_{i,j,\mu}^n \to \phi_i(x,t,T_{m+1}(u_i)) W_{i,j,\mu}$$

converge strongly in $E_{\overline{M}}(Q_T)$ as $n \to +\infty$. By virtue of $\nabla T_{m+1}(u_n) \to \nabla T_{m+1}(u_i)$ weakly in $(L_M(Q_T))^N$ as $n \to +\infty$ we have

$$\int_{m \le |u_{i,n}| \le m+1} \phi_{i,n}(x,t,T_{m+1}(u_{i,n})) \nabla u_{i,n} S_m''(u_{i,n}) W_{i,j,\mu}^n \, dx \, dt \to \int_{m \le |u_i| \le m+1} \phi(x,t,u_i)) \nabla u_i W_{i,j,\mu} \, dx \, dt$$

as $n \to +\infty$.

With the modular convergence of $W_{i,j,\mu}$ as $j \to +\infty$ and letting $\mu \to +\infty$ we get (64).

Proof of (65):

For any $m \geq 1$ fixed, we have

$$\begin{split} & \left| \int_{Q_T} S''_m(u_{i,n}) a_n(x,t,u_{i,n},\nabla u_{i,n}) \nabla u_{i,n} W^n_{i,j,\mu} \, dx \, dt \right| \\ & \leq \|S''_m\|_{L^{\infty}(R)} \|W^n_{i,j,\mu}\|_{L^{\infty}(Q_T)} \int_{\{m \leq |u_{i,n}| \leq m+1\}} a_n(x,t,u_{i,n},\nabla u_{i,n}) \nabla u_{i,n} \, dx \, dt, \end{split}$$

for any $m \ge 1$, and any $\mu > 0$. In view (58) and (59), we can obtain

$$\lim_{n \to +\infty} \sup_{n \to +\infty} \left| \int_{Q_T} S_m''(u_{i,n}) a_n(x, t, u_{i,n}, \nabla u_{i,n}) \nabla u_{i,n} W_{i,j,\mu}^n \, dx \, dt \right|
\leq 2K \limsup_{n \to +\infty} \int_{\{m \le |u_{i,n}| \le m+1\}} a_n(x, t, u_{i,n}, \nabla u_{i,n}) \nabla u_{i,n} \, dx \, dt,$$
(70)

for any $m \ge 1$. Using (40) we pass to the limit as $m \to +\infty$ in (70) and we obtain (65).

Proof of (66):

For fixed $n \ge 1$ and n > m + 1, we have

$$f_{1,n}(x, u_{1,n}, u_{2,n})S'_m(u_{1,n}) = f_1(x, T_{m+1}(u_{1,n}), T_n(u_{2,n}))S'_m(u_{1,n}),$$

$$f_{2,n}(x, u_{1,n}, u_{2,n})S'_m(u_{2,n}) = f_2(x, T_n(u_{1,n}), T_{m+1}(u_{2,n}))S'_m(u_{2,n}),$$

In view (14),(15),(43) and Lebegue's the theorem allow us to get, for

$$\lim_{n \to +\infty} \int_{Q_T} f_{i,n}(x, u_{1,n}, u_{2,n}) S'_m(u_{i,n}) W^n_{i,j,\mu} \, dx \, dt = \int_{Q_T} f_i(x, u_1, u_2) S'_m(u_i) W_{i,j,\mu} \, dx \, dt$$

Using (56), we follow a similar way we get as $j \to +\infty$

$$\lim_{j \to +\infty} \int_{Q_T} f_i(x, u_1, u_2) S'_m(u_i) W_{i,j,\mu} \, dx \, dt = \int_{Q_T} f_i(x, u_1, u_2) S'_m(u_i) (T_K(u_i) - T_K(u_i)_\mu) \, dx \, dt$$

we fixed m > 1, and using (57), we have

$$\lim_{\mu \to +\infty} \int_{Q_T} f_i(x, u_1, u_2) S'_m(u_i) (T_K(u_i) - T_K(u_i)_\mu) \, dx \, dt = 0$$

Then we conclude the proof of (66). **Proof of** (67):

If we pass to the lim-sup when n, j and μ tends to $+\infty$ and then to the limit as m tends to $+\infty$ in (61). We obtain using (62)-(66), for any $K \ge 0$,

$$\begin{split} \lim_{m \to +\infty} \limsup_{\mu \to +\infty} \limsup_{j \to +\infty} \sup_{n \to +\infty} \int_{Q_T} S'_m(u_{i,n}) a_n(x, t, u_{i,n}, \nabla u_{i,n}) \left(\nabla T_K(u_{i,n}) - \nabla T_K(v_{i,j})_\mu \right) dx \, dt &\leq 0. \\ \text{Since } S'_m(u_{i,n}) a_n(x, t, u_{i,n}, \nabla u_{i,n}) \nabla T_K(u_{i,n}) &= a_n(x, t, u_{i,n}, \nabla u_{i,n}) \nabla T_K(u_{i,n}) \\ \text{for } n > K \text{ and } K \leq m. \\ \text{Then, for } K \leq m, \\ \limsup_{n \to +\infty} \int_{Q_T} a_n(x, t, u_{i,n}, \nabla u_{i,n}) \nabla T_K(u_{i,n}) \, dx \, dt \\ &\leq \lim_{m \to +\infty} \limsup_{\mu \to +\infty} \limsup_{j \to +\infty} \limsup_{n \to +\infty} \int_{Q_T} S'_m(u_{i,n}) a_n(x, u_{i,n}, \nabla u_{i,n}) \nabla T_K(v_{i,j})_\mu \, dx \, dt \end{split}$$

Thanks to (59), we have in the right hand side of (71) for n > m + 1 that,

$$S'_{m}(u_{i,n})a_{n}(x,t,u_{i,n},\nabla u_{i,n}) = S'_{m}(u_{i,n})a\Big(x,t,T_{m+1}(u_{i,n}),\nabla T_{m+1}(u_{i,n})\Big) \text{ a.e. in } Q_{T}.$$

Using (39), and fixing $m \ge 1$, we get

$$S'_m(u_{i,n})a_n(u_{i,n}, \nabla u_{i,n}) \rightharpoonup S'_m(u_i)X_{i,m+1}$$
 weakly in $(L_{\overline{M}}(Q_T))^N$

when $n \to +\infty$.

We can pass to limit as $j \to +\infty$ and $\mu \to +\infty$, and using (56)-(57)

$$\lim_{\mu \to +\infty} \sup_{j \to +\infty} \lim_{n \to +\infty} \sup_{n \to +\infty} \int_{Q_T} S'_m(u_{i,n}) a_n(x, t, u_{i,n}), \nabla u_{i,n}) \nabla T_K(v_{i,j})_\mu \, dx \, dt$$

$$= \int_{Q_T} S'_m(u_i) X_{i,m+1} \nabla T_K(u_i) \, dx \, dt$$

$$= \int_{Q_T} X_{i,m+1} \nabla T_K(u_i) \, dx \, dt$$
(72)

where $K \leq m$, since $S'_m(r) = 1$ for $|r| \leq m$. On the other hand, for $K \leq m$, we have

 $a(x,t,T_{m+1}(u_{i,n}),\nabla T_{m+1}(u_{i,n}))\chi_{\{|u_{i,n}| < K\}} = a(x,t,T_K(u_{i,n}),\nabla T_K(u_{i,n}))\chi_{\{|u_{i,n}| < K\}},$ a.e. in Q_T . Passing to the limit as $n \to +\infty$, we obtain

$$X_{i,m+1}\chi_{\{|u_i| < K\}} = X_{i,K}\chi_{\{|u_i| < K\}} \quad \text{a.e. in } Q_T - \{|u_i| = K\} \text{ for } K \le n.$$
(73)

Then

$$X_{m+1}\nabla T_K(u_i) = X_K \nabla T_K(u_i) \quad \text{a.e. in } Q_T.$$
(74)

Then we obtain (67).

169

(71)

Proof of (68):

Let $K \ge 0$ be fixed. Using (10) we have

$$\int_{Q_T} \left[a(x, t, T_K(u_{i,n}), \nabla T_K(u_{i,n})) - a(x, t, T_K(u_{i,n}), \nabla T_K(u_i)) \right] \left[\nabla T_K(u_{i,n}) - \nabla T_K(u_i) \right] dx \, dt \ge 0,$$
(75)

In view (4) and (43), we get

$$a(x,t,T_K(u_{i,n}),\nabla T_K(u_i)) \rightarrow a(x,t,T_K(u_i),\nabla T_K(u_i)) \quad \text{a.e. in } Q_T,$$

as $n \to +\infty$, and by (8) and Lebesgue's theorem, we obtain

$$a(x,t,T_K(u_{i,n}),\nabla T_K(u_i)) \to a(x,t,T_K(u_i),\nabla T_K(u_i)) \quad \text{strongly in } (L_{\overline{M}}(Q_T))^N.$$
(76)

Using (67), (43), (39) and (76), we can pass to the lim-sup as $n \to +\infty$ in (75) to obtain (68).

To finish this step, we prove this lemma:

Lemma 7 For i = 1, 2 and fixed $K \ge 0$, we have

$$X_{i,K} = a(xt, T_K(u_i), \nabla T_K(u_i)) \quad \text{a.e. in } Q.$$
(77)

Also, as $n \to +\infty$,

$$a(x,t,T_K(u_{i,n}),\nabla T_K(u_{i,n}))\nabla T_K(u_{i,n}) \rightharpoonup a(x,t,T_K(u_i),DT_K(u_i))\nabla T_K(u_i),$$
(78)

weakly in $L^1(Q_T)$.

Proof Proof of (77): It's easy to see that

$$a_n(x, t, T_K(u_{i,n}), \xi) = a(x, t, T_K(u_{i,n}), \xi) = a_K(x, t, T_K(u_{i,n}), \xi)$$
 a.e. in Q_T

for any $K \ge 0$, any n > K and any $\xi \in \mathbb{R}^N$. In view of (39), (68) and (76) we obtain

$$\lim_{n \to +\infty} \int_{Q_T} a_K \Big(x, t, T_K(u_{i,n}), \nabla T_K(u_{i,n}) \Big) \nabla T_K(u_{i,n}) \, dx \, dt$$

$$= \int_{Q_T} X_{i,K} \nabla T_K(u_i) \, dx \, dt.$$
(79)

Since (4), (8) and (43), imply that the function $a_K(x, s, \xi)$ is continuous and bounded with respect to s. Then we conclude that (77).

Proof of (78):

Using (10) and (68), for any $K \ge 0$ and any T' < T, we have

$$\begin{bmatrix} a(x,t,T_K(u_{i,n},\nabla T_K(u_{i,n})) - a(x,t,T_K(u_{i,n}),\nabla T_K(u)) \end{bmatrix} \begin{bmatrix} \nabla T_K(u_{i,n}) - \nabla T_K(u_i) \end{bmatrix} \to 0$$
(80)

strongly in $L^1(Q_{T'})$ as $n \to +\infty$.

On the other hand with (43), (39), (76) and (77), we get

$$a\Big(x,t,T_K(u_{i,n}),\nabla T_K(u_{i,n})\Big)\nabla T_K(u_i) \rightharpoonup a\Big(x,t,T_K(u_i),\nabla T_K(u_i)\Big)\nabla T_K(u_i)$$

weakly in $L^1(Q_T)$,

$$a\left(x,t,T_{K}(u_{i,n}),\nabla T_{K}(u_{i})\right)\nabla T_{K}(u_{i,n}) \rightharpoonup a\left(x,t,T_{K}(u_{i}),\nabla T_{K}(u_{i})\right)\nabla T_{K}(u_{i})$$

weakly in $L^1(Q_T)$,

$$a\Big(x,t,T_K(u_{i,n}),\nabla T_K(u_i)\Big)\nabla T_K(u_i) \to a\Big(x,t,T_K(u_i),\nabla T_K(u_i)\Big)\nabla T_K(u_i),$$

strongly in $L^1(Q)$, as $n \to +\infty$.

It's results from (80), for any $K \ge 0$ and any T' < T,

$$a\left(x,t,T_{K}(u_{i,n}),\nabla T_{K}(u_{i,n})\right)\nabla T_{K}(u_{i,n}) \rightharpoonup a\left(x,t,T_{K}(u_{i}),\nabla T_{K}(u_{i})\right)\nabla T_{K}(u_{i})$$
(81)

weakly in $L^1(Q_{T'})$ as $n \to +\infty$.then for T' = T, we have (78).

Finally we should prove that u_i satisfies (18). Step 4: Pass to the limit. we first show that u satisfies (18)

$$\begin{split} &\int_{m \le |u_{i,n}| \le m+1\}} a(x,t,u_{i,n},\nabla u_{i,n}) \nabla u_{i,n} \, dx \, dt \\ &= \int_{Q_T} a_n(x,t,u_{i,n},\nabla u_{i,n}) \Big[\nabla T_{m+1}(u_{i,n}) - \nabla T_m(u_{i,n}) \Big] \, dx \, dt \\ &= \int_{Q_T} a_n \Big(x,t,T_{m+1}(u_{i,n}), \nabla T_{m+1}(u_{i,n}) \Big) \nabla T_{m+1}(u_{i,n}) \, dx \, dt \\ &- \int_{Q_T} a_n \Big(x,t,T_m(u_{i,n}), \nabla T_m(u_{i,n}) \Big) \nabla T_m(u_{i,n}) \, dx \, dt \end{split}$$

for n>m+1. According to (78), one can pass to the limit as $n\to+\infty$; for fixed $m\ge 0$ to obtain

$$\lim_{n \to +\infty} \int_{m \le |u_{i,n}| \le m+1\}} a_n(x,t,u_{i,n},\nabla u_{i,n})\nabla u_{i,n} \, dx \, dt$$

$$= \int_Q a\Big(x,t,T_{m+1}(u_i),\nabla T_{m+1}(u_i)\Big)\nabla T_{m+1}(u_i) \, dx \, dt$$

$$- \int_Q a\Big(x,t,T_m(u_i),\nabla T_m(u_i)\Big)\nabla T_m(u_i) \, dx \, dt$$

$$= \int_{m \le |u_i| \le m+1\}} a(x,t,u_i,\nabla u_i)\nabla u_i \, dx \, dt$$
(82)

Pass to limit as m tends to $+\infty$ in (82) and using (40) show that u_i satisfies (18). Now we shown that u_i to satisfy (19) and (20).

Let S be a function in $W^{2,\infty}(R)$ such that S' has a compact support. Let K be a positive real number such that $\operatorname{supp} S' \subset [-K, K]$. the Pointwise multiplication of the approximate equation (1) by $S'(u_{i,n})$ leads to

$$\frac{\partial B_{i,S}^{n}(u_{i,n})}{\partial t} - \operatorname{div}\left(S'(u_{i,n})a_{n}(x, u_{i,n}, \nabla u_{i,n})\right) + S''(u_{i,n})a_{n}(x, u_{i,n}, \nabla u_{i,n})\nabla u_{i,n} - \operatorname{div}\left(S'(u_{i,n})\Phi_{i,n}(x, t, u_{i,n})\right) + S''(u_{i,n})\Phi_{i,n}(x, t, u_{i,n})\nabla u_{i,n} = f_{i,n}(x, u_{1,n}, u_{1,n})S'(u_{i,n})$$
(83)

in $D'(Q_T)$, for i = 1, 2.

Now we pass to the limit in each term of (83).

Limit of $\frac{\partial B_{i,S}^{n}(u_{i,n})}{\partial t}$: Since $B_{i,S}^{n}(u_{i,n})$ converges to $B_{i,S}(u_{i})$ a.e. in Q_{T} and in $L^{\infty}(Q_{T})$ weak \star and S is bounded and continuous. Then $\frac{\partial B_{i,S}^{n}(u_{i,n})}{\partial t}$ converges to $\frac{\partial b_{i,S}(u_{i})}{\partial t}$ in $D'(Q_{T})$ as n tends to $+\infty$.

Limit of $div(S'(u_{i,n})a_n(x,t,u_{i,n},\nabla u_{i,n}))$: Since supp $S' \subset [-K,K]$, for n > K, we have

$$S'(u_{i,n})a_n(x,t,u_{i,n},\nabla u_{i,n}) = S'(u_{i,n})a_n\Big(x,t,T_K(u_{i,n}),\nabla T_K(u_{i,n})\Big) \quad \text{a.e. in } Q_T.$$

Using the pointwise convergence of $u_{i,n}$, (59),(39) and (77), imply that

$$S'(u_{i,n})a_n\left(x,t,T_K(u_{i,n}),\nabla T_K(u_{i,n})\right) \rightharpoonup S'(u_i)a\left(x,t,T_K(u_i),\nabla T_K(u_i)\right)$$

weakly in $(L_{\overline{M}}(Q_T))^N$, for $\sigma(\Pi L_{\overline{M}}, \Pi E_M)$ as $n \to +\infty$, since $S'(u_i) = 0$ for $|u_i| \ge K$ a.e. in Q_T . And

$$S'(u_i)a\Big(x,t,T_K(u_i),\nabla T_K(u_i)\Big) = S'(u_i)a(x,t,u_i,\nabla u_i) \quad \text{a.e. in } Q_T.$$

Limit of $S''(u_{i,n})a_n(x,t,u_{i,n},\nabla u_{i,n})\nabla u_{i,n}$. Since supp $S'' \subset [-K,K]$, for n > K, we have

$$S''(u_{i,n})a_n(x,t,u_{i,n},\nabla u_{i,n})\nabla u_{i,n} = S''(u_{i,n})a_n\Big(x,t,T_K(u_{i,n}),\nabla T_K(u_{i,n})\Big)\nabla T_K(u_{i,n}) \quad \text{a.e. in } Q_T.$$

The pointwise convergence of $S''(u_{i,n})$ to $S''(u_i)$ as $n \to +\infty$, (59) and (78) we have

$$S''(u_{i,n})a_n(x,t,u_{i,n},\nabla u_{i,n})\nabla u_{i,n} \rightharpoonup S''(u_i)a\Big(x,t,T_K(u_i),\nabla T_K(u_i)\Big)\nabla T_K(u_i)$$

weakly in $L^1(Q_T)$, as $n \to +\infty$. And

$$S''(u_i)a\Big(x,t,T_K(u_i),\nabla T_K(u_i)\Big)\nabla T_K(u_i) = S''(u_i)a(x,t,u_i,\nabla u_i)\nabla u_i \quad \text{a.e. in } Q_T.$$

Limit of $S'(u_{i,n})\Phi_{i,n}(x,t,u_{i,n})$: We have $S'(u_{i,n})\Phi_{i,n}(x,t,u_{i,n}) = S'(u_{i,n})\Phi_{i,n}(x,t,T_K(u_{i,n}))$ a.e. in Q_T ,Since supp $S' \subset [-K, K]$.Using (11), (45) and (37), it's easy to see that $S'(u_{i,n})\Phi_{i,n}(x,t,u_{i,n}) \rightarrow S'(u_i)\Phi_i(x,t,T_K(u_i))$ weakly for $\sigma(\Pi L_{\overline{M}},\Pi L_M)$ as $n \rightarrow +\infty$. And $S'(u_i)\Phi_i(x,t,T_K(u_i)) = S'(u_i)\Phi_i(x,t,u_i)$ a.e. in Q_T . Limit of $S''(u_{i,n})\Phi_{i,n}(x,t,u_{i,n})\nabla u_{i,n}$: Since $S' \in W^{1,\infty}(R)$ with supp $S' \subset [-K,K]$, we have $S''(u_{i,n})\Phi_{i,n}(x,t,u_{i,n})\nabla u_{i,n} = \Phi_{i,n}(x,t,T_K(u_{i,n}))\nabla S'(T_K(u_{i,n}))$ a.e. in Q_T . The weakly convergence of truncation allows us to prove that

$$S''(u_{i,n})\Phi_{i,n}(x,t,u_{i,n})\nabla u_{i,n} \rightharpoonup \Phi_i(x,t,u_i)\nabla S'(u_i)$$
 strongly in $L^1(Q_T)$.

Limit of $f_{i,n}(x, u_{1,n}, u_{2,n})S'(u_{i,n})$: Using (14), (15), (26) and (27), we have $f_{i,n}(x, u_{1,n}, u_{2,n})S'(u_{i,n}) \to f_i(x, u_1, u_2)S'(u_i)$ strongly in $L^1(Q_T)$, as $n \to +\infty$. It remains to show that $B_S(x, u_i)$ satisfies the initial condition (20) for i=1,2. To this end, firstly remark that, in view of the definition of S'_M , we have $B_M(x, u_{i,n})$ is bounded in $L^{\infty}(Q_T)$.

Secondly, by (62) we show that $\frac{\partial B_M(x, u_{i,n})}{\partial t}$ is bounded in $L^1(Q_T) + W^{-1,x}L_{\overline{M}}(Q_T)$). As a consequence, an Aubin's type Lemma (see e.g., [14], Corollary 4) implies that $B_M(x, u_{i,n})$ lies in a compact set of $C^0([0, T]; L^1(\Omega))$. It follows that, on one hand $B_M(x, u, n)(t = 0)$ converges to $B_M(x, u_i)(t = 0)$.

It follows that, on one hand, $B_M(x, u_i, n)(t = 0)$ converges to $B_M(x, u_i)(t = 0)$ strongly in $L^1(\Omega)$. On the order hand, the smoothness of B_M imply that $B_M(x, u_{i,n})(t = 0)$ converges to $B_M(x, u_i)(t = 0)$ strongly in $L^1(\Omega)$, we conclude that $B_M(x, u_{i,n})(t = 0)$

172

0) = $B_M(x, u_{i,0n})$ converges to $B_M(x, u_i)(t = 0)$ strongly in $L^1(\Omega)$, we obtain $B_M(x, u_i)(t = 0) = B_M(x, u_{i,0})$ a.e. in Ω and for all M > 0, now letting M to $+\infty$, we conclude that $b(x, u_i)(t = 0) = b(x, u_{i,0})$ a.e. in Ω .

As a conclusion, the proof of Theorem (4) is complete.

References

- [1] R. A. Adams, Sobolev Spaces, New York 1975.
- [2] A. Aberqi, J. Bennouna and H. Redwane, Existence result for a class of doubly nonlinear parabolic systems, Appl. Math.(Warsaw),1 - 11. 2014.
- [3] L. Aharouch, J. Bennouna and A. Touzani, Existence of renormalized solutions of some elliptic problems in Orlicz spaces, Rev. Mat. complut. 22, N 1, 91-110. 2009.
- [4] Y. Akdim, J. Bennouna, M. Mekkour and H. Redwane, Strongly nonlinear parabolic inequality in Orlicz spaces via a sequence of penalized equations. Afrika Mat. (03), pp.1-25. 2014.
- [5] E. Azroul, H. Redwane and M. Rhoudaf, Existence of a renormalized solution for a class of nonlinear parabolic equations in Orlicz spaces. Port. Math. 66, no. 1, 29-63. 2009.
- [6] E. Azroul, H. Redwane and M. Rhoudaf, Existence of solutions for nonlinear parabolic systems via weak convergence of truncations Electron. J. Differential Equations, 66, no. 1, 1-18. 2010.
- [7] A. Benkirane and J. Bennouna, Existence of entropy solutions for some nonlinear problems in orlicz spaces. Nonlinear Analysis 54, 85-102. 2001.
- [8] D. Blanchard, F. Murat and H. Redwane, Existence et unicite de la solution reormalisee d'un probleme parabolique assez general, C. R. Acad. Sci. Paris Ser., I329, 575-580. 2011.
- [9] Di Nardo, R. Guibé, F. Feo and O. Guibé, Existence result for nonlinear parabolic equations with lower order terms. Anal. Appl. (Singap.) 9, no. 2, 161-186. 2011.
- [10] Ge. Dong and Fang Xiaochun, Existence results for some nonlinear elliptic equations with measure data in Orlicz-Sobolev spaces., Bound. Value Probl., 18, 22 pp. 2015.
- [11] J. P. Gossez, Some approximation properties in Orlicz-Sobolev spaces, Studia Math, 74, no. 1, 17-24. 1982.
- [12] H. Redwane, Existence of a solution for a class of nonlinear parabolic systems, Electron. J. Qual. Theory Differ. Equ., 24, 18pp. 2007.
- [13] H. Redwane, Existence of a solution for a class of parabolic equations with three unbounded nonlinearities, Adv. Dyn. Syst. Appl. 2, no. 2, 241-264. 2007.
- [14] J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4) 146, 65-96. 1987.

A. Aberqi

 $\label{eq:university} \mbox{ OF Fez, National School of Applied Sciences Fez, Morocco} $E-mail address: aberqi_ahmed@yahoo.fr$

J. Bennouna

UNIVERSITY OF FEZ, FACULTY OF SCIENCES DHAR EL MAHRAZ,, LABORATORY LAMA, DEPARTMENT OF MATHEMATICS,, B.P 1796 ATLAS FEZ, MOROCCO

E-mail address: jbennouna@hotmail.com

M. Elmassoudi

University of Fez, Faculty of Sciences Dhar El Mahraz, Laboratory LAMA, Department of Mathematics, B.P 1796 Atlas Fez, Morocco

E-mail address: elmassoudi09@gmail.com