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LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS

RELATED THE q−GAMMA AND THE q−DIGAMMA

FUNCTIONS WITH APPLICATIONS

KHALED MEHREZ

Abstract. In this paper we present several new classes of logarithmically
completely monotonic functions. Our functions have in common that they are
defined in terms of the q−gamma and q−digamma functions. As an applica-

tion of these results, some inequalities for the q−gamma and the q−digamma
functions are established. Some of the given results generalize theorems due
to Alzer and Berg and C.-P. Chen and F. Qi.

1. Introduction

It is well-known that the classical Euler gamma function may be defined by

Γ(x) =

∫ ∞

0

tx−1e−tdt,

for x > 0. The logarithmic derivative of Γ(x), denoted ψ(x) = Γ
′
(x)

Γ(x) , is called

the psi or digamma function, and ψ(k)(x) for k ∈ N are called the polygamma
functions. The functions Γ(x) and ψ(k)(x) for k ∈ N are of fundamental importance
in mathematics and have been extensively studied by many authors; see for example
([1, 2, 3, 5, 8]) and the references within.

The q−analogue of Γ is defined [[4], pp. 493-496] for x > 0 by

Γq(x) = (1− q)1−x
∞∏
j=0

1− qj+1

1− qj+x
, 0 < q < 1, (1)

and

Γq(x) = (q − 1)1−xq
x(x−1)

2

∞∏
j=0

1− q−(j+1)

1− q−(j+x)
, q > 1. (2)

The q−gamma function Γq(z) has the following basic properties:

lim
q−→1−

Γq(z) = lim
q−→1+

Γq(z) = Γ(z), (3)
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and

Γq(z) = q
(x−1)(x−2)

2 Γ 1
q
(z). (4)

The q−digamma function ψq, the q−analogue of the psi or digamma function ψ is
defined by

ψq(x) =
Γ

′

q(x)

Γq(z)

= − ln(1− q) + ln q
∞∑
k=0

qk+x

1− qk+x

= − ln(1− q) + ln q

∞∑
k=1

qkx

1− qk

= − ln(1− q)−
∫ ∞

0

e−xt

1− e−t
dγq(t),

(5)

for 0 < q < 1, where dγq(t) is a discrete measure with positive masses − ln q at the
positive points −k ln q for k ∈ N, more accurately, (see [9])

γq(t) =
∞∑
k=1

δ(t+ k ln q), 0 < q < 1. (6)

For q > 1 and x > 0, the q−digamma function ψq is defined by

ψq(x) = − ln(q − 1) + ln q

[
x− 1

2
−

∞∑
k=0

q−(k+x)

1− q−(k+x)

]

= − ln(q − 1) + ln q

[
x− 1

2
−

∞∑
k=1

q−kx

1− q−k

]
Krattenthaler and Srivastava [10] proved that ψq(x) tends to ψ(x) on letting q −→ 1
where ψ(x) is the the ordinary psi (digamma) function. Before we present the main
results of this paper we recall some definitions, which will be used in the sequel.

A function f is said to be completely monotonic on an interval I if f has deriva-
tives of all orders on I and

(−1)nf (n)(x) ≥ 0, (7)

for all x ∈ I and n ∈ N0 = N ∪ {0}, where N the set of all positive integers.
If the inequality (7) is strict, then f is said to be strictly completely monotonic

function.
A positive function f is said to be logarithmically completely monotonic on an

interval I if its logarithm ln f satisfies

(−1)n
(
ln f(x)

)(n)
(x) ≥ 0,

for all x ∈ I and n ∈ N.
A positive function f is said to be logarithmically convex on an interval I, or

simply log-convex, if its natural logarithm ln f is convex, that is, for all x, y ∈ I
and λ ∈ [0, 1] we have

f (λx+ (1− λ)y) ≤ [f(x)]
λ
[f(y)]

1−λ
.
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We note that every logarithmically completely monotonic function is log-convex.
From the definition of ψq(x), direct differentiation, and the induction we get

(−1)nψ(n+1)
q (x) = (−1)n(ln q)n+2

n∑
k=1

kn+1qkx

1− qk
> 0, (8)

which implies that the function ψ
′

q is strictly completely monotonic function on
(0,∞), for q ∈ (0, 1). The relation (4) and the definition of the q−digamma function
(5) give

ψq(x) = ψ 1
q
(x) +

2x− 3

2
ln q, (9)

for q > 1. Thus, implies that the function ψ
′

q(x) is strictly completely monotonic
in (0,∞) for q > 1, and consequently the function ψq(x) is strictly increasing on
(0,∞).

It is the aim of this paper to provide several new classes of logarithmically
completely monotonic functions. The functions we study have in common that
they are defined in terms of q−gamma and q−digamma functions. In the next
section we collect some lemmas. Our monotonicity theorems are stated and proved
in sections 3.

2. Useful lemmas

We begin this section with the following useful lemmas which are needed to
complete the proof of the main theorems.

The following monotonicity theorem is proved in [1].

Lemma 1. Let n be a natural number and c be a real number. The function
xc|ψn(x)| is decreasing on (0,∞) if and only if c ≤ n.

Lemma 2. [12] Let f, g : [a, b] −→ R be two continuous functions which are differ-

entiable on (a, b). Further, let g′ ̸= 0 on (a, b). If f
′

g′ is increasing (or decreasing) on

(a, b), then the functions f(x)−f(a)
g(x)−g(a) and f(x)−f(b)

g(x)−g(b) are also increasing (or decreasing)

on (a, b).

The next lemma is given in [2, 15].

Lemma 3. The function ψq, q > 0 has a uniquely determined positive zero, which
we denoted by x0 = x0(q) ∈ (1, 2).

A proof for the following lemma can be found in [7].

Lemma 4. Let f be a positive function. If f
′
is completely monotonic function,

then 1
f is logarithmically completely monotonic function.

3. The main results

In 1997, Merkle [13] proved that the function (Γ(x))2

Γ(2x) is log-convex on (0,∞). Re-

cently, Alzer and Berg [3], presented a substantial generalization. They established
that the function

(Γ(ax))
α

(Γ(bx))
β
, 0 < b < a, (10)

is completely monotonic on (0,∞), if and only if, α ≤ 0 and αa = βb. The main
objective of the next Theorem extend and generalize this results. An application
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of their result leads to sharp upper and lower bounds for
Γ2
q(x)

Γq(2x)
in terms of the

ψq-function.

Theorem 1. Let 0 < q < 1 and 0 < b < a. Then the function
(Γq(ax))

α

(Γq(bx))
β is

logarithmically completely monotonic on (0,∞), if and only if αa = βb and α ≤ 0.

Proof. Let q ∈ (0, 1). Assume that the function
(Γq(ax))

α

(Γq(bx))
β is logarithmically com-

pletely monotonic on (0,∞). By definition, we have for all x > 0

f(x) =

(
ln

(Γq(ax))
α

(Γq(bx))
β

)′

= αaψq(ax)− βbψq(bx),

= αa

(
ψq(ax)− ln

(
1− qax

1− q

))
− βb

(
ψq(bx)− ln

(
1− qbx

1− q

))
+ αa ln

(
1− qxa

1− q

)
− βb ln

(
1− qxb

1− q

)
.

(11)

It is worth mentioning that, Moak [14] proved the following approximation for the
q−digamma function

ψq(x) = ln

(
1− qx

1− q

)
+

1

2

ln q qx

1− qx
+O

(
ln2 q q2x

(1− qx)2

)
(12)

holds for q > 0 and x > 0. So, if αa−βb > 0, then limx−→∞ f(x) = (βb−αa) ln(1−
q) ≥ 0 for 0 < q < 1 and if αa−βb < 0, then limx−→∞ f(x) = (βb−αa) ln(1−q) ≤ 0
for 0 < q < 1. Thus, αa = βb, and consequently

f(x) = αa(ψq(ax)− ψq(bx)).

Since ψq is increasing on (0,∞) and f(x) ≤ 0 by definition, we conclude that that
α ≤ 0.

Conversely, We show that the function
(Γq(ax))

α

(Γq(bx))
β is logarithmically completely

monotonic on (0,∞) for α ≤ 0, 0 < b < a such that αa = βb. Let n = 1, since the
function ψq(x) is strictly increasing on (0,∞) we have

(−1)

(
ln

(Γq(ax))
α

(Γq(bx))
β

)′

= αa (ψq(bx)− ψq(ax)) ≥ 0. (13)

For n ≥ 1, we get

(−1)n+1

(
ln

(Γq(ax))
α

(Γq(bx))
β

)(n+1)

= (−1)nαa
(
bnψ(n)

q (bx)− anψ(n)
q (ax)

)
. (14)

Since the function ψ
′

q(x) is strictly completely monotonic on (0,∞), we have for
n ∈ N and q > 0

|ψ(n)
q (x)| = (−1)n+1ψ(n)

q (x). (15)
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Thus

(−1)n+1xn

(
ln

(Γq(ax))
α

(Γq(bx))
β

)(n+1)

= (−1)nαaxn
(
bnψ(n)

q (bx)− anψ(n)
q (ax)

)
= (−1)nαa

(
(xb)n(−1)n|ψ(n)

q (bx)| − (ax)n(−1)n|ψ(n)
q (ax)|

)
= αa

(
(ax)n|ψ(n)

q (ax)| − (bx)n|ψ(n)
q (bx)|

)
,

and the last expression is nonnegative by Lemma 1. Hence, for q ∈ (0, 1) and n ∈ N

(−1)n

(
ln

(Γq(ax))
α

(Γq(bx))
β

)(n)

≥ 0.

The proof of Theorem 1 is complete. �
Remark 1. We note that if interchanging the roles of a and b leads to changing
the sign on α.

Corollary 1. Let q > 1 and 0 < a < b. If, α ≥ 0 and αa = βb., Then the function
(Γq(ax))

α

(Γq(bx))
β is logarithmically completely monotonic on (0,∞).

Proof. Follows immediately by Theorem 1 and equality (9). �
Corollary 2. Let q > 0 and 0 < a < b, the following inequalities

exp [αa(x− x1) (ψq(ax1)− ψq(bx1))] ≤
(Γq(bx1))

β

(Γq(ax1))
α
(Γq(ax))

α

(Γq(bx))
β

≤ 1, (16)

holds for all α, β ≥ 0 such that αa = βb. and x > x1 > 0. In particular, the
following inequalities holds true for every integer n ≥ 1 :

exp

[
2q(n− 1)

ln q

1− q

]
≤

Γ2
q(n)

Γq(2n)
≤ 1. (17)

Proof. Let q > 0 and 0 < a < b. We suppose that α, β ≥ 0 such that αa = βb and
define the function hα,β(q;x) by

hα,β(q;x) =
(Γq(bx1))

β

(Γq(ax1))
α
(Γq(ax))

α

(Γq(bx))
β

where 0 < x1 < x, and Hα,β,q(x) = lnhα,β(q;x). Since the function hα,β(q;x) is
logarithmically completely monoyonic on (0,∞) for α ≥ 0 and αa = βb, we conclude

that the logarithmic derivative
(hα,β(q;x))

′

hα,β(q;x)
is increasing on (0,∞). By Lemma 2 we

deduce that the function
Hα,β(q;x)
x−x1

is increasing for all 0 < x1 < x. By l’Hospital’s

rule and (11) it is easy to deduce that

lim
x−→x1

Hα,β(q;x)

x− x1
= αa(ψq(ax1)− ψq(bx1)),

from which follows the right side inequality of (16).
As hα,β(q;x) is logarithmically completely monotonic on (0,∞), we deduce that

hα,β(q;x) is decreasing on (0,∞). The following inequality hold true for all 0 <
x1 < x :

hα,β(q;x) ≤ hα,β(q;x1) = 1,
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we conclude the left side inequality of (16).
Taking α = b = 2, β = a = 1 and x1 = 1 in (16) and using the recurrence

formula of ψq [[8], p. 1245, Theorem 4.4]

ψ(n−1)
q (x+ 1)− ψ(n−1)

q (x) = − dn−1

dxn−1

(
qx

1− qx

)
ln q (18)

we obtain the inequalities (17). �

The main purpose of the next Theorem is to present monotonicity properties of
the function

gβ(q;x) =
1

1 + q

[
Γq2

(
x+ 1

2

)
Γq2(x+ 1)

]2
exp

[
β(1− q2)q2x

2(1− q2x)
+ ψq(2x)

]
, (19)

where q ∈ (0, 1) and x > 0.
It is worth mentioning that Ai-Jun Li and Chao-Ping Chen [11] considered the

function

gβ(x) =
1

2

[
Γ
(
x+ 1

2

)
Γ(x+ 1)

]2
exp

[
β

2x
+ ψ(2x)

]
(20)

which is a special case of the function gβ(q;x) on letting q −→ 1 and proved that
gβ(x) is logarithmically completely monotonic on (0,∞) if β ≥ 13

12 . The objective
of this Theorem is to generalize this result.

Theorem 2. Let q ∈ (0, 1). The function gβ(q;x) defined by (19) is logarithmically

completely monotonic on (0,∞) if β ≥ −13 ln q
6(1−q2) .

Proof. It is clear that

ln gβ(q;x) = 2 lnΓq2(x+
1

2
)− 2 ln Γq2(x+ 1) + ψq(2x) +

β(1− q2)q2x

2(1− q2x)
− ln(q + 1).

Using the q−analogue of Legendre’s duplication formula [5]

Γq(2x)Γq2(
1

2
) = (1 + q)2x+1Γq2(x)Γq2(x+

1

2
) (21)

we get

ln gβ(q;x) = 2 ln Γq2(x+
1

2
)−2 ln Γq2(x+1)+

1

2
ψq2(x)+

1

2
ψq2(x+

1

2
)+

β(1− q2)q2x

2(1− q2x)
.

In view of (18) and (5) we obtain that

(−1)n (ln gβ(q;x))
(n)

= (−1)n

[
2ψ

(n−1)
q2 (x+

1

2
)− 2ψ

(n−1)
q2 (x+ 1) +

1

2
ψ
(n)
q2 (x) +

1

2
ψ
(n)
q2 (x+

1

2
)

− β(1− q2)

4 ln q

(
ψ
(n)
q2 (x+ 1)− ψ

(n)
q2 (x)

)]

=
1

2

∫ ∞

0

e−xt

et − 1
Φβ,q(t)dγq2(t)
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where

Φβ,q(t) =

(
−β(1− q2)

2 ln q
− 1

)
tet + (4− t)e

t
2 +

β(1− q2)

2 ln q
t− 4

=
∞∑
n=0

tn+1

n!

[
−β(1− q2)

2 ln q
− 1− 1

2n

]
+ 4

∞∑
n=1

tn

2nn!
+
β(1− q2)

2 ln q
t

=
∞∑
n=1

tn+1

n!

[
−β(1− q2)

2 ln q
− 1− 1

2n

]
+ 4

∞∑
n=0

tn+1

2n+1(n+ 1)!
− 2t

=

∞∑
n=1

tn+1

n!

[
−β(1− q2)

2 ln q
− 1− 1

2n
+

1

(n+ 1)2n−1

]

Since the max

(
1
2n + 1

(n+1)2n−1

)
= 1

12 , we conclude that β ≥ −13 ln q
6(1−q2) . The proof is

completed. �

Theorem 3. Let q > 0, the function 1
ψq(x)

is Logarithmically completely monotonic

on (x0,∞).

Proof. Since the function ψ
′

q is completely monotonic function on (0,∞), and the
function ψq is increasing on (0,∞) and a uniquely determined zero on (0,∞) by
Lemma 3. We conclude that the function ψq(x) > 0 for all x > x0, and consequently
the function 1

ψq(x)
is Logarithmically completely monotonic on (x0,∞), by Lemma

4. �

Corollary 3. Let q > 0 and a > 1. The following inequality

[ψq(x)]
1
a [ψq(y)]

1− 1
a ≤ ψq

[
x

a
+

(
1− 1

a

)
y

]
(22)

holds for all x > x0 and y > x0. In particular, the following inequality holds

[ψq(2)]
a−1 ≤ [ψq(u+ 1)]

a

ψq (a(x− 1) + 2)
(23)

for all a > 1 and u > −2
a + 1.

Proof. Let q ∈ (0, 1), a > 1, x > x0 and y > x0. By theorem 3 we obtain that the
function 1

ψq(x)
is log-convex on (x0,∞). Thus,

[ψq(x)]
1
p [ψq(y)]

1
q ≤ ψq

[
x

p
+
y

q

]
,

where p > 1, q > 1, 1
p + 1

q = 1. If p = a and q = a
a−1 . Then we get the inequality

(22). Now, let y = 2 and x = a(u− 1) + 2 we obtain the inequality (23). �

Remark 2. Replacing u by n ∈ N and a by 2 in inequality (23) and using the
identity

ψq(n+ 1) =
ln q

1− q
γq − ln qHn,q
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where γq =
1−q
ln q ψq(1) is the q−analogue of the Euler-Mascheroni constant [16] and

Hn,q is the q-analogue of Harmonic number is defined by [17] as

Hn,q =
n∑
k=1

qk

1− qk
, n ∈ N,

we obtain

ψ2
q (2)ψq (2n) ≤

[
ln q

1− q
γq − ln qHn,q

]2
, n ∈ N. (24)

Theorem 4. Let q > 0 The function Γq(x) is logarithmically completely monotonic
on (x0,∞). So, the following inequality

Γq

(
x+ y

2

)
≤ Γq(x)Γq(y). (25)

holds for all x, y > x0.

Proof. Proving by induction that

(−1)n(ln Γq(x))
(n) ≥ 0, for all n ∈ N.

For n = 1, we get

(−1)(ln Γq(x))
′ = ψq(x) ≥ 0, for all x > x0.

Suppose that

(−1)k(ln Γq(x))
(k) ≥ 0, for all 1 ≤ k ≤ n and x ∈ (x0,∞).

Since the function ψ′
q is completely monotonic on (0,∞), for q > 0 we get

(−1)n+1(ln Γq(x))
(n+1) = (−1)nψ(n+1)

q (x) ≥ 0.

We note that every logarithmically completely monotonic function is log-convex
on (0,∞), that is, for all x, y > x0 and t ∈ [0, 1], we have

Γq(tx+ (1− t)y) ≤ Γq(x)
tΓq(y)

1−t.

Choosing t=1/2 in the above inequality we obtain the desired result. The proof of
Thoerem 4 is completes. �
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