LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS RELATED THE q-GAMMA AND THE q-DIGAMMA FUNCTIONS WITH APPLICATIONS

KHALED MEHREZ

Abstract

In this paper we present several new classes of logarithmically completely monotonic functions. Our functions have in common that they are defined in terms of the q-gamma and q-digamma functions. As an application of these results, some inequalities for the q-gamma and the q-digamma functions are established. Some of the given results generalize theorems due to Alzer and Berg and C.-P. Chen and F. Qi.

1. Introduction

It is well-known that the classical Euler gamma function may be defined by

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

for $x>0$. The logarithmic derivative of $\Gamma(x)$, denoted $\psi(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$, is called the psi or digamma function, and $\psi^{(k)}(x)$ for $k \in \mathbb{N}$ are called the polygamma functions. The functions $\Gamma(x)$ and $\psi^{(k)}(x)$ for $k \in \mathbb{N}$ are of fundamental importance in mathematics and have been extensively studied by many authors; see for example ($[1,2,3,5,8]$) and the references within.

The q-analogue of Γ is defined [[4], pp. 493-496] for $x>0$ by

$$
\begin{equation*}
\Gamma_{q}(x)=(1-q)^{1-x} \prod_{j=0}^{\infty} \frac{1-q^{j+1}}{1-q^{j+x}}, 0<q<1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{q}(x)=(q-1)^{1-x} q^{\frac{x(x-1)}{2}} \prod_{j=0}^{\infty} \frac{1-q^{-(j+1)}}{1-q^{-(j+x)}}, q>1 \tag{2}
\end{equation*}
$$

The q-gamma function $\Gamma_{q}(z)$ has the following basic properties:

$$
\begin{equation*}
\lim _{q \longrightarrow 1^{-}} \Gamma_{q}(z)=\lim _{q \longrightarrow 1^{+}} \Gamma_{q}(z)=\Gamma(z) \tag{3}
\end{equation*}
$$

2010 Mathematics Subject Classification. 33D05, 26D07, 26A48.
Key words and phrases. Completely monotonic functions, Logarithmically completely monotonic functions, q-gamma function, q-digamma function, Inequalities.

Submitted December 16, 2015.
and

$$
\begin{equation*}
\Gamma_{q}(z)=q^{\frac{(x-1)(x-2)}{2}} \Gamma_{\frac{1}{q}}(z) \tag{4}
\end{equation*}
$$

The q-digamma function ψ_{q}, the q-analogue of the psi or digamma function ψ is defined by

$$
\begin{align*}
\psi_{q}(x) & =\frac{\Gamma_{q}^{\prime}(x)}{\Gamma_{q}(z)} \\
& =-\ln (1-q)+\ln q \sum_{k=0}^{\infty} \frac{q^{k+x}}{1-q^{k+x}} \tag{5}\\
& =-\ln (1-q)+\ln q \sum_{k=1}^{\infty} \frac{q^{k x}}{1-q^{k}} \\
& =-\ln (1-q)-\int_{0}^{\infty} \frac{e^{-x t}}{1-e^{-t}} d \gamma_{q}(t)
\end{align*}
$$

for $0<q<1$, where $d \gamma_{q}(t)$ is a discrete measure with positive masses $-\ln q$ at the positive points $-k \ln q$ for $k \in \mathbb{N}$, more accurately, (see [9])

$$
\begin{equation*}
\gamma_{q}(t)=\sum_{k=1}^{\infty} \delta(t+k \ln q), 0<q<1 \tag{6}
\end{equation*}
$$

For $q>1$ and $x>0$, the q-digamma function ψ_{q} is defined by

$$
\begin{aligned}
\psi_{q}(x) & =-\ln (q-1)+\ln q\left[x-\frac{1}{2}-\sum_{k=0}^{\infty} \frac{q^{-(k+x)}}{1-q^{-(k+x)}}\right] \\
& =-\ln (q-1)+\ln q\left[x-\frac{1}{2}-\sum_{k=1}^{\infty} \frac{q^{-k x}}{1-q^{-k}}\right]
\end{aligned}
$$

Krattenthaler and Srivastava [10] proved that $\psi_{q}(x)$ tends to $\psi(x)$ on letting $q \longrightarrow 1$ where $\psi(x)$ is the the ordinary psi (digamma) function. Before we present the main results of this paper we recall some definitions, which will be used in the sequel.

A function f is said to be completely monotonic on an interval I if f has derivatives of all orders on I and

$$
\begin{equation*}
(-1)^{n} f^{(n)}(x) \geq 0 \tag{7}
\end{equation*}
$$

for all $x \in I$ and $n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$, where \mathbb{N} the set of all positive integers.
If the inequality (7) is strict, then f is said to be strictly completely monotonic function.

A positive function f is said to be logarithmically completely monotonic on an interval I if its logarithm $\ln f$ satisfies

$$
(-1)^{n}(\ln f(x))^{(n)}(x) \geq 0
$$

for all $x \in I$ and $n \in \mathbb{N}$.
A positive function f is said to be logarithmically convex on an interval I, or simply \log-convex, if its natural $\operatorname{logarithm} \ln f$ is convex, that is, for all $x, y \in I$ and $\lambda \in[0,1]$ we have

$$
f(\lambda x+(1-\lambda) y) \leq[f(x)]^{\lambda}[f(y)]^{1-\lambda}
$$

We note that every logarithmically completely monotonic function is log-convex. From the definition of $\psi_{q}(x)$, direct differentiation, and the induction we get

$$
\begin{equation*}
(-1)^{n} \psi_{q}^{(n+1)}(x)=(-1)^{n}(\ln q)^{n+2} \sum_{k=1}^{n} \frac{k^{n+1} q^{k x}}{1-q^{k}}>0 \tag{8}
\end{equation*}
$$

which implies that the function ψ_{q}^{\prime} is strictly completely monotonic function on $(0, \infty)$, for $q \in(0,1)$. The relation (4) and the definition of the q-digamma function (5) give

$$
\begin{equation*}
\psi_{q}(x)=\psi_{\frac{1}{q}}(x)+\frac{2 x-3}{2} \ln q \tag{9}
\end{equation*}
$$

for $q>1$. Thus, implies that the function $\psi_{q}^{\prime}(x)$ is strictly completely monotonic in $(0, \infty)$ for $q>1$, and consequently the function $\psi_{q}(x)$ is strictly increasing on $(0, \infty)$.

It is the aim of this paper to provide several new classes of logarithmically completely monotonic functions. The functions we study have in common that they are defined in terms of q-gamma and q-digamma functions. In the next section we collect some lemmas. Our monotonicity theorems are stated and proved in sections 3 .

2. Useful lemmas

We begin this section with the following useful lemmas which are needed to complete the proof of the main theorems.

The following monotonicity theorem is proved in [1].
Lemma 1. Let n be a natural number and c be a real number. The function $x^{c}\left|\psi^{n}(x)\right|$ is decreasing on $(0, \infty)$ if and only if $c \leq n$.

Lemma 2. [12] Let $f, g:[a, b] \longrightarrow \mathbb{R}$ be two continuous functions which are differentiable on (a, b). Further, let $g^{\prime} \neq 0$ on (a, b). If $\frac{f^{\prime}}{g^{\prime}}$ is increasing (or decreasing) on (a, b), then the functions $\frac{f(x)-f(a)}{g(x)-g(a)}$ and $\frac{f(x)-f(b)}{g(x)-g(b)}$ are also increasing (or decreasing) on (a, b).

The next lemma is given in $[2,15]$.
Lemma 3. The function $\psi_{q}, q>0$ has a uniquely determined positive zero, which we denoted by $x_{0}=x_{0}(q) \in(1,2)$.

A proof for the following lemma can be found in [7].
Lemma 4. Let f be a positive function. If f^{\prime} is completely monotonic function, then $\frac{1}{f}$ is logarithmically completely monotonic function.

3. The main results

In 1997, Merkle [13] proved that the function $\frac{(\Gamma(x))^{2}}{\Gamma(2 x)}$ is log-convex on $(0, \infty)$. Recently, Alzer and Berg [3], presented a substantial generalization. They established that the function

$$
\begin{equation*}
\frac{(\Gamma(a x))^{\alpha}}{(\Gamma(b x))^{\beta}}, 0<b<a \tag{10}
\end{equation*}
$$

is completely monotonic on $(0, \infty)$, if and only if, $\alpha \leq 0$ and $\alpha a=\beta b$. The main objective of the next Theorem extend and generalize this results. An application
of their result leads to sharp upper and lower bounds for $\frac{\Gamma_{q}^{2}(x)}{\Gamma_{q}(2 x)}$ in terms of the ψ_{q}-function.

Theorem 1. Let $0<q<1$ and $0<b<a$. Then the function $\frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}$ is logarithmically completely monotonic on $(0, \infty)$, if and only if $\alpha a=\beta b$ and $\alpha \leq 0$.

Proof. Let $q \in(0,1)$. Assume that the function $\frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}$ is logarithmically completely monotonic on $(0, \infty)$. By definition, we have for all $x>0$

$$
\begin{align*}
f(x)=\left(\ln \frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}\right)^{\prime} & =\alpha a \psi_{q}(a x)-\beta b \psi_{q}(b x) \\
& =\alpha a\left(\psi_{q}(a x)-\ln \left(\frac{1-q^{a x}}{1-q}\right)\right)-\beta b\left(\psi_{q}(b x)-\ln \left(\frac{1-q^{b x}}{1-q}\right)\right) \\
& +\alpha a \ln \left(\frac{1-q^{x a}}{1-q}\right)-\beta b \ln \left(\frac{1-q^{x b}}{1-q}\right) \tag{11}
\end{align*}
$$

It is worth mentioning that, Moak [14] proved the following approximation for the q-digamma function

$$
\begin{equation*}
\psi_{q}(x)=\ln \left(\frac{1-q^{x}}{1-q}\right)+\frac{1}{2} \frac{\ln q q^{x}}{1-q^{x}}+O\left(\frac{\ln ^{2} q q^{2 x}}{\left(1-q^{x}\right)^{2}}\right) \tag{12}
\end{equation*}
$$

holds for $q>0$ and $x>0$. So, if $\alpha a-\beta b>0$, then $\lim _{x \rightarrow \infty} f(x)=(\beta b-\alpha a) \ln (1-$ $q) \geq 0$ for $0<q<1$ and if $\alpha a-\beta b<0$, then $\lim _{x \rightarrow \infty} f(x)=(\beta b-\alpha a) \ln (1-q) \leq 0$ for $0<q<1$. Thus, $\alpha a=\beta b$, and consequently

$$
f(x)=\alpha a\left(\psi_{q}(a x)-\psi_{q}(b x)\right)
$$

Since ψ_{q} is increasing on $(0, \infty)$ and $f(x) \leq 0$ by definition, we conclude that that $\alpha \leq 0$.

Conversely, We show that the function $\frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}$ is logarithmically completely monotonic on $(0, \infty)$ for $\alpha \leq 0,0<b<a$ such that $\alpha a=\beta b$. Let $n=1$, since the function $\psi_{q}(x)$ is strictly increasing on $(0, \infty)$ we have

$$
\begin{equation*}
(-1)\left(\ln \frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}\right)^{\prime}=\alpha a\left(\psi_{q}(b x)-\psi_{q}(a x)\right) \geq 0 \tag{13}
\end{equation*}
$$

For $n \geq 1$, we get

$$
\begin{equation*}
(-1)^{n+1}\left(\ln \frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}\right)^{(n+1)}=(-1)^{n} \alpha a\left(b^{n} \psi_{q}^{(n)}(b x)-a^{n} \psi_{q}^{(n)}(a x)\right) \tag{14}
\end{equation*}
$$

Since the function $\psi_{q}^{\prime}(x)$ is strictly completely monotonic on $(0, \infty)$, we have for $n \in \mathbb{N}$ and $q>0$

$$
\begin{equation*}
\left|\psi_{q}^{(n)}(x)\right|=(-1)^{n+1} \psi_{q}^{(n)}(x) \tag{15}
\end{equation*}
$$

Thus

$$
\begin{aligned}
(-1)^{n+1} x^{n}\left(\ln \frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}\right)^{(n+1)} & =(-1)^{n} \alpha a x^{n}\left(b^{n} \psi_{q}^{(n)}(b x)-a^{n} \psi_{q}^{(n)}(a x)\right) \\
& =(-1)^{n} \alpha a\left((x b)^{n}(-1)^{n}\left|\psi_{q}^{(n)}(b x)\right|-(a x)^{n}(-1)^{n}\left|\psi_{q}^{(n)}(a x)\right|\right) \\
& =\alpha a\left((a x)^{n}\left|\psi_{q}^{(n)}(a x)\right|-(b x)^{n}\left|\psi_{q}^{(n)}(b x)\right|\right)
\end{aligned}
$$

and the last expression is nonnegative by Lemma 1 . Hence, for $q \in(0,1)$ and $n \in \mathbb{N}$

$$
(-1)^{n}\left(\ln \frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}\right)^{(n)} \geq 0
$$

The proof of Theorem 1 is complete.
Remark 1. We note that if interchanging the roles of a and b leads to changing the sign on α.
Corollary 1. Let $q>1$ and $0<a<b$. If, $\alpha \geq 0$ and $\alpha a=\beta b$., Then the function $\frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}$ is logarithmically completely monotonic on $(0, \infty)$.
Proof. Follows immediately by Theorem 1 and equality (9).
Corollary 2. Let $q>0$ and $0<a<b$, the following inequalities

$$
\begin{equation*}
\exp \left[\alpha a\left(x-x_{1}\right)\left(\psi_{q}\left(a x_{1}\right)-\psi_{q}\left(b x_{1}\right)\right)\right] \leq \frac{\left(\Gamma_{q}\left(b x_{1}\right)\right)^{\beta}}{\left(\Gamma_{q}\left(a x_{1}\right)\right)^{\alpha}} \frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}} \leq 1 \tag{16}
\end{equation*}
$$

holds for all $\alpha, \beta \geq 0$ such that $\alpha a=\beta b$. and $x>x_{1}>0$. In particular, the following inequalities holds true for every integer $n \geq 1$:

$$
\begin{equation*}
\exp \left[2 q(n-1) \frac{\ln q}{1-q}\right] \leq \frac{\Gamma_{q}^{2}(n)}{\Gamma_{q}(2 n)} \leq 1 \tag{17}
\end{equation*}
$$

Proof. Let $q>0$ and $0<a<b$. We suppose that $\alpha, \beta \geq 0$ such that $\alpha a=\beta b$ and define the function $h_{\alpha, \beta}(q ; x)$ by

$$
h_{\alpha, \beta}(q ; x)=\frac{\left(\Gamma_{q}\left(b x_{1}\right)\right)^{\beta}}{\left(\Gamma_{q}\left(a x_{1}\right)\right)^{\alpha}} \frac{\left(\Gamma_{q}(a x)\right)^{\alpha}}{\left(\Gamma_{q}(b x)\right)^{\beta}}
$$

where $0<x_{1}<x$, and $H_{\alpha, \beta, q}(x)=\ln h_{\alpha, \beta}(q ; x)$. Since the function $h_{\alpha, \beta}(q ; x)$ is logarithmically completely monoyonic on $(0, \infty)$ for $\alpha \geq 0$ and $\alpha a=\beta b$, we conclude that the logarithmic derivative $\frac{\left(h_{\alpha, \beta}(q ; x)\right)^{\prime}}{h_{\alpha, \beta}(q ; x)}$ is increasing on $(0, \infty)$. By Lemma 2 we deduce that the function $\frac{H_{\alpha, \beta}(q ; x)}{x-x_{1}}$ is increasing for all $0<x_{1}<x$. By l'Hospital's rule and (11) it is easy to deduce that

$$
\lim _{x \longrightarrow x_{1}} \frac{H_{\alpha, \beta}(q ; x)}{x-x_{1}}=\alpha a\left(\psi_{q}\left(a x_{1}\right)-\psi_{q}\left(b x_{1}\right)\right),
$$

from which follows the right side inequality of (16).
As $h_{\alpha, \beta}(q ; x)$ is logarithmically completely monotonic on $(0, \infty)$, we deduce that $h_{\alpha, \beta}(q ; x)$ is decreasing on $(0, \infty)$. The following inequality hold true for all $0<$ $x_{1}<x$:

$$
h_{\alpha, \beta}(q ; x) \leq h_{\alpha, \beta}\left(q ; x_{1}\right)=1,
$$

we conclude the left side inequality of (16).
Taking $\alpha=b=2, \beta=a=1$ and $x_{1}=1$ in (16) and using the recurrence formula of ψ_{q} [[8], p. 1245, Theorem 4.4]

$$
\begin{equation*}
\psi_{q}^{(n-1)}(x+1)-\psi_{q}^{(n-1)}(x)=-\frac{d^{n-1}}{d x^{n-1}}\left(\frac{q^{x}}{1-q^{x}}\right) \ln q \tag{18}
\end{equation*}
$$

we obtain the inequalities (17).
The main purpose of the next Theorem is to present monotonicity properties of the function

$$
\begin{equation*}
g_{\beta}(q ; x)=\frac{1}{1+q}\left[\frac{\Gamma_{q^{2}}\left(x+\frac{1}{2}\right)}{\Gamma_{q^{2}}(x+1)}\right]^{2} \exp \left[\frac{\beta\left(1-q^{2}\right) q^{2 x}}{2\left(1-q^{2 x}\right)}+\psi_{q}(2 x)\right] \tag{19}
\end{equation*}
$$

where $q \in(0,1)$ and $x>0$.
It is worth mentioning that $\mathrm{Ai}-\mathrm{Jun} \mathrm{Li}$ and Chao-Ping Chen [11] considered the function

$$
\begin{equation*}
g_{\beta}(x)=\frac{1}{2}\left[\frac{\Gamma\left(x+\frac{1}{2}\right)}{\Gamma(x+1)}\right]^{2} \exp \left[\frac{\beta}{2 x}+\psi(2 x)\right] \tag{20}
\end{equation*}
$$

which is a special case of the function $g_{\beta}(q ; x)$ on letting $q \longrightarrow 1$ and proved that $g_{\beta}(x)$ is logarithmically completely monotonic on $(0, \infty)$ if $\beta \geq \frac{13}{12}$. The objective of this Theorem is to generalize this result.

Theorem 2. Let $q \in(0,1)$. The function $g_{\beta}(q ; x)$ defined by (19) is logarithmically completely monotonic on $(0, \infty)$ if $\beta \geq \frac{-13 \ln q}{6\left(1-q^{2}\right)}$.
Proof. It is clear that
$\ln g_{\beta}(q ; x)=2 \ln \Gamma_{q^{2}}\left(x+\frac{1}{2}\right)-2 \ln \Gamma_{q^{2}}(x+1)+\psi_{q}(2 x)+\frac{\beta\left(1-q^{2}\right) q^{2 x}}{2\left(1-q^{2 x}\right)}-\ln (q+1)$.
Using the q-analogue of Legendre's duplication formula [5]

$$
\begin{equation*}
\Gamma_{q}(2 x) \Gamma_{q^{2}}\left(\frac{1}{2}\right)=(1+q)^{2 x+1} \Gamma_{q^{2}}(x) \Gamma_{q^{2}}\left(x+\frac{1}{2}\right) \tag{21}
\end{equation*}
$$

we get
$\ln g_{\beta}(q ; x)=2 \ln \Gamma_{q^{2}}\left(x+\frac{1}{2}\right)-2 \ln \Gamma_{q^{2}}(x+1)+\frac{1}{2} \psi_{q^{2}}(x)+\frac{1}{2} \psi_{q^{2}}\left(x+\frac{1}{2}\right)+\frac{\beta\left(1-q^{2}\right) q^{2 x}}{2\left(1-q^{2 x}\right)}$.
In view of (18) and (5) we obtain that

$$
\begin{aligned}
(-1)^{n}\left(\ln g_{\beta}(q ; x)\right)^{(n)} & =(-1)^{n}\left[2 \psi_{q^{2}}^{(n-1)}\left(x+\frac{1}{2}\right)-2 \psi_{q^{2}}^{(n-1)}(x+1)+\frac{1}{2} \psi_{q^{2}}^{(n)}(x)+\frac{1}{2} \psi_{q^{2}}^{(n)}\left(x+\frac{1}{2}\right)\right. \\
& \left.-\frac{\beta\left(1-q^{2}\right)}{4 \ln q}\left(\psi_{q^{2}}^{(n)}(x+1)-\psi_{q^{2}}^{(n)}(x)\right)\right] \\
& =\frac{1}{2} \int_{0}^{\infty} \frac{e^{-x t}}{e^{t}-1} \Phi_{\beta, q}(t) d \gamma_{q^{2}}(t)
\end{aligned}
$$

where

$$
\begin{aligned}
\Phi_{\beta, q}(t) & =\left(\frac{-\beta\left(1-q^{2}\right)}{2 \ln q}-1\right) t e^{t}+(4-t) e^{\frac{t}{2}}+\frac{\beta\left(1-q^{2}\right)}{2 \ln q} t-4 \\
& =\sum_{n=0}^{\infty} \frac{t^{n+1}}{n!}\left[\frac{-\beta\left(1-q^{2}\right)}{2 \ln q}-1-\frac{1}{2^{n}}\right]+4 \sum_{n=1}^{\infty} \frac{t^{n}}{2^{n} n!}+\frac{\beta\left(1-q^{2}\right)}{2 \ln q} t \\
& =\sum_{n=1}^{\infty} \frac{t^{n+1}}{n!}\left[\frac{-\beta\left(1-q^{2}\right)}{2 \ln q}-1-\frac{1}{2^{n}}\right]+4 \sum_{n=0}^{\infty} \frac{t^{n+1}}{2^{n+1}(n+1)!}-2 t \\
& =\sum_{n=1}^{\infty} \frac{t^{n+1}}{n!}\left[\frac{-\beta\left(1-q^{2}\right)}{2 \ln q}-1-\frac{1}{2^{n}}+\frac{1}{(n+1) 2^{n-1}}\right]
\end{aligned}
$$

Since the $\max \left(\frac{1}{2^{n}}+\frac{1}{(n+1) 2^{n-1}}\right)=\frac{1}{12}$, we conclude that $\beta \geq \frac{-13 \ln q}{6\left(1-q^{2}\right)}$. The proof is completed.

Theorem 3. Let $q>0$, the function $\frac{1}{\psi_{q}(x)}$ is Logarithmically completely monotonic on $\left(x_{0}, \infty\right)$.

Proof. Since the function ψ_{q}^{\prime} is completely monotonic function on $(0, \infty)$, and the function ψ_{q} is increasing on $(0, \infty)$ and a uniquely determined zero on $(0, \infty)$ by Lemma 3. We conclude that the function $\psi_{q}(x)>0$ for all $x>x_{0}$, and consequently the function $\frac{1}{\psi_{q}(x)}$ is Logarithmically completely monotonic on $\left(x_{0}, \infty\right)$, by Lemma 4.

Corollary 3. Let $q>0$ and $a>1$. The following inequality

$$
\begin{equation*}
\left[\psi_{q}(x)\right]^{\frac{1}{a}}\left[\psi_{q}(y)\right]^{1-\frac{1}{a}} \leq \psi_{q}\left[\frac{x}{a}+\left(1-\frac{1}{a}\right) y\right] \tag{22}
\end{equation*}
$$

holds for all $x>x_{0}$ and $y>x_{0}$. In particular, the following inequality holds

$$
\begin{equation*}
\left[\psi_{q}(2)\right]^{a-1} \leq \frac{\left[\psi_{q}(u+1)\right]^{a}}{\psi_{q}(a(x-1)+2)} \tag{23}
\end{equation*}
$$

for all $a>1$ and $u>\frac{-2}{a}+1$.
Proof. Let $q \in(0,1), a>1, x>x_{0}$ and $y>x_{0}$. By theorem 3 we obtain that the function $\frac{1}{\psi_{q}(x)}$ is log-convex on $\left(x_{0}, \infty\right)$. Thus,

$$
\left[\psi_{q}(x)\right]^{\frac{1}{p}}\left[\psi_{q}(y)\right]^{\frac{1}{q}} \leq \psi_{q}\left[\frac{x}{p}+\frac{y}{q}\right]
$$

where $p>1, q>1, \frac{1}{p}+\frac{1}{q}=1$. If $p=a$ and $q=\frac{a}{a-1}$. Then we get the inequality (22). Now, let $y=2$ and $x=a(u-1)+2$ we obtain the inequality (23).

Remark 2. Replacing u by $n \in \mathbb{N}$ and a by 2 in inequality (23) and using the identity

$$
\psi_{q}(n+1)=\frac{\ln q}{1-q} \gamma_{q}-\ln q H_{n, q}
$$

where $\gamma_{q}=\frac{1-q}{\ln q} \psi_{q}(1)$ is the $q-$ analogue of the Euler-Mascheroni constant [16] and $H_{n, q}$ is the q-analogue of Harmonic number is defined by [17] as

$$
H_{n, q}=\sum_{k=1}^{n} \frac{q^{k}}{1-q^{k}}, n \in \mathbb{N}
$$

we obtain

$$
\begin{equation*}
\psi_{q}^{2}(2) \psi_{q}(2 n) \leq\left[\frac{\ln q}{1-q} \gamma_{q}-\ln q H_{n, q}\right]^{2}, n \in \mathbb{N} . \tag{24}
\end{equation*}
$$

Theorem 4. Let $q>0$ The function $\Gamma_{q}(x)$ is logarithmically completely monotonic on $\left(x_{0}, \infty\right)$. So, the following inequality

$$
\begin{equation*}
\Gamma_{q}\left(\frac{x+y}{2}\right) \leq \Gamma_{q}(x) \Gamma_{q}(y) \tag{25}
\end{equation*}
$$

holds for all $x, y>x_{0}$.
Proof. Proving by induction that

$$
(-1)^{n}\left(\ln \Gamma_{q}(x)\right)^{(n)} \geq 0, \text { for all } n \in \mathbb{N} .
$$

For $n=1$, we get

$$
(-1)\left(\ln \Gamma_{q}(x)\right)^{\prime}=\psi_{q}(x) \geq 0, \text { for all } x>x_{0}
$$

Suppose that

$$
(-1)^{k}\left(\ln \Gamma_{q}(x)\right)^{(k)} \geq 0, \text { for all } 1 \leq k \leq n \text { and } x \in\left(x_{0}, \infty\right)
$$

Since the function ψ_{q}^{\prime} is completely monotonic on $(0, \infty)$, for $q>0$ we get

$$
(-1)^{n+1}\left(\ln \Gamma_{q}(x)\right)^{(n+1)}=(-1)^{n} \psi_{q}^{(n+1)}(x) \geq 0
$$

We note that every logarithmically completely monotonic function is log-convex on $(0, \infty)$, that is, for all $x, y>x_{0}$ and $t \in[0,1]$, we have

$$
\Gamma_{q}(t x+(1-t) y) \leq \Gamma_{q}(x)^{t} \Gamma_{q}(y)^{1-t}
$$

Choosing $\mathrm{t}=1 / 2$ in the above inequality we obtain the desired result. The proof of Thoerem 4 is completes.

References

[1] H. Alzer, ?ean-value inequalities for the polygamma functions,?Aequat. Math. 61 (2001), 151-161.
[2] H. Alzer, A.Z. Grinshpan, Inequalities for the gamma and q-gamma functions, Journal of Approximation Theory 144 (2007) 67-83.
[3] H. Alzer and C. Berg, ?ome classes of completely monotonic functions II? Ramanujan J (2006) 11: 225-248. 445-460.
[4] G. E. Andrews, R. A. Askey, and R. Roy, Special Functions, Cambridge University Press, Cambridge, 1999
[5] R. Askey, The q-Gamma and q-Beta functions, Applicable Analysis: An International Journal, 2013.
[6] C. Berg, Integral representation of some functions related to the gamma function, Mediterranean Journal of Mathematics 1(4) (2004) 433-439.
[7] J. El Kamel, K. Mehrez, A Function Class of strictly positive definite and logarithmically completely monotonic functions related to the modified Bessel functions. arXiv:1205.1112v1.
[8] B.-N. Guo, F. Qi, Properties and applications of a functions involving exponential functions, Commun. Pure Appl. Anal. 8 (2009).
[9] M. E. H. Ismail and M. E. Muldoon, Inequalities and monotonicity properties for gamma and q-gamma functions, available online at http://arxiv.org/abs/1301.1749.
[10] C. Krattenthaler, H.M. Srivastava, Summations for basic hypergeometric series involving a q-analogue of the digamma function, Computers and Mathematics with Applications 32 (2) (1996) 73-91.
[11] A.-J. Li, C.-P. Chen, Some completely monotonic functions involving the Gamma and Polygamma functions, J. Korean Math. Soc. 45 (2008), No. 1, pp. 273-287.
[12] K. Mehrez, Redheffer type inequalities for modified Bessel functions, Arab. J. Math. Sci, 2015; avaible online at: http://dx.doi.org/10.1016/j.ajmsc.2015.03.001
[13] M. Merkle, ?n log-convexity of a ratio of gamma functions,?Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 8 (1997), 114-119.
[14] D. S. Moak, The q-analogue of Stirlings formula, Rocky Mountain J. Math. 14 (1984) 403412.
[15] A. Salem, Ceratin class of approximation for the q-digamma function,Rocky Mountain Journal of Mathematics, (To appear).
[16] A. Salem, Some Properties and Expansions Associated with q-Digamma Function, Quaestiones math- ematicae, (To appear)
[17] C. Wei, Q. Gu, q-Generalizations of a family of harmonic number identities, Advances in Applied Mathematics, Vol. 45 (2010) 24-27.

Khaled Mehrez
Département de Mathématiques ISSAT Kasserine,
Université de Kairouan, Tunisia
E-mail address: k.mehrez@yahoo.fr, mehrezkhaled23@yahoo.com

