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ON K-ATOMIC DECOMPOSITIONS IN BANACH SPACES

K.T. POUMAI AND S. JAHAN

Abstract. L.Gavruta [9] first introduced frames for an operator K called K-

frames in Hilbert spaces. In this paper, we define K-atomic decompositions for
Banach spaces and obtain various results related to the existence of K-atomic
decompositions. Also, we discuss several methods for constructing K-atomic
decompositions together with perturbation results for K-atomic decomposi-

tions.

1. Introduction

Danis Gabör [8] introduced a fundamental approach to signal decomposition
in terms of elementary signals. Duffin and Schaeffer [6] while addressing some
deep problems in non-harmonic Fourier series, abstracted Gabor’s method to de-
fine frames for Hilbert space. Feichtinger and Gröcheing [7] extended the notion of
atomic decomposition to Banach space. Gröcheing [10] introduced a more general
concept for Banach spaces called Banach frame. Banach frames and atomic decom-
positions were further studied in [4].
Christensen [3] proved perturbation results for Banach frames and atomic decom-
positions. Casazza et al. [2] studied Xd-frames and Xd-Bessel sequences in Banach
spaces. Stoeva [5] gave some perturbation results for Xd-frames and atomic de-
compositions. Gavruta [9] introduced the notion of atomic system for an operator
K and the notion of K-frame in a Hilbert space. X.Xiao et al. [16] discussed re-
lationship between K-frames and ordinary frames in Hilbert spaces. Terekhin [15]
introduced and studied frames in Banach spaces.

In the present paper, we define K-atomic decomposition for a Banach space
and prove some results on the existence of K-atomic decompositions. Also, we
discuss several methods to construct K-atomic decomposition for Banach Spaces
and finally obtain some perturbation results for K-atomic decompositions.

2. Preliminaries

Throughout this paper, E will denote a Banach space over the scalar field K(R
or C), E∗ the dual space of E, Ed a BK-space and L(E) will denote the set of all
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bounded linear operators from E into E. For T ∈ L(E), T ∗ denotes the adjoint of
T , π : E −→ E∗∗ is the natural canonical projection from E onto E∗∗.

Definition 2.1. [10] Let E be a Banach space and Ed be a BK-space. A sequence
(xn, fn)({xn} ⊂ E, {fn} ⊂ E∗) is called an atomic decomposition for E with respect
to Ed if the following statements hold:

(a) {fn(x)} ∈ Ed, for all x ∈ E.
(b) There exist constants A and B with 0 < A ≤ B < ∞ such that

A∥x∥E ≤ ∥{fn(x)}∥Ed
≤ B∥x∥E , for all x ∈ E (1)

(c) x =
∞∑

n=1
fn(x)xn, for all x ∈ E.

Definition 2.2. [2] A sequence {fn} ⊆ E∗ is called an Ed-frame for E if

(a) {fn(x)} ∈ Ed, for all x ∈ E.
(b) There exist constants A and B with 0 < A ≤ B < ∞ such that

A ∥ x ∥E ≤∥ {fn(x)} ∥Ed
≤ B ∥ x ∥E , for all x ∈ E. (2)

The constants A and B are called Ed-frame bounds. If atleast (a) and the upper
bound condition in (2.2) are satisfied, then {fn} is called an Ed-Bessel sequence for
E.

If {fn} is an Ed-frame for E and if there exists a bounded linear operator T :
Ed −→ E such that T ({fn(x)}) = x, for all x ∈ E, then ({fn}, T ) is called a
Banach frame for E with respect to Ed.

Definition 2.3. [12] Let T ∈ L(E). We say that an operator S ∈ L(E) is a pseudo
inverse of T if TST = T . Also, S ∈ L(E) is called the generalized inverse of T if
TST = T and STS = S.

Next, we state some results in the form of lemmas which will be used in the
subsequent results.

Lemma 2.4. [14, 17] Let X, Y be Banach spaces and T : X −→ Y be a bounded
linear operator. Then, the following conditions are equivalent:

(a) There exist two continuous projection operators P : X → X and Q : Y → Y
such that

P (X) = kerT and Q(Y ) = T (X). (3)

(b) T has a pseudo inverse operator T+.

If two continuous projection operators P : X → X and Q : Y → Y satisfies (2.3),
then there exists a pseudo inverse operator T+ of T such that T+T = IX −P and
TT+ = Q, where IX is the identity operator on X.

Lemma 2.5. [1, 13] Let E be a Banach space. If T ∈ L(E) has a generalized inverse
S∈ L(E), then TS, ST are projections and TS(E) = T (E) and ST (E) = S(E).

Lemma 2.6. [11] Let E be a Banach space and {fn} ⊂ E∗ be a sequence such
that {x ∈ E : fn(x) = 0, for all n ∈ N} = {0}. Then E is linearly isomet-
ric to the Banach space Xd = {{fn(x)} : x ∈ E}, where the norm is given by
∥{fn(x)}∥Xd

=∥x∥E, x ∈ E.
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3. K-Atomic Decompositions

Definition 3.1. Let E be a Banach Space, {xn} ⊂ E, {fn} ⊂ E∗ and K ∈ L(E).
A pair (xn, fn) is called a K-atomic decomposition for E with respect to Ed if

(a) {fn(x)} ∈ Ed, for all x ∈ E.
(b) There exist constants A and B with 0 < A ≤ B < ∞ such that

A ∥ K(x) ∥E ≤ ∥ {fn(x)}∥Ed
≤ B ∥ x ∥E , for all x ∈ E.

(c)
∞∑

n=1
fn(x)xn converges for all x ∈ E and K(x) =

∞∑
n=1

fn(x)xn.

The constants A and B are called lower and upper bounds of the K-atomic
decomposition (xn, fn).

Remark 3.2. Let (xn, fn) be a K-atomic decomposition for E with respect to Ed

and with bounds A and B.

(I). If K = IE , then (xn, fn) is an atomic decomposition for E with respect to Ed

with bounds A and B.

(II). If K is invertible, then (K−1(xn), fn) is an atomic decomposition for E with
respect to Ed.

(III). If K is invertible, then there exists a bounded linear operator T : Ed −→ E
such that ({fn}, T ) is a Banach frame with respect to some BK-space Ed.

In the following example, we show the existence of K-atomic decomposition for
a Banach space E with respect to an associated BK space Ed .

Example 3.3. Let E be a Banach Space. Let{xn} ⊆ E, {fn} ⊆ E∗ such

that
∞∑

n=1
fn(x)xn converges for all x ∈ E and xn ̸= 0, for all n ∈ N. Also, let

Ed = {{αn}|
∞∑

n=1
αnxn converges}. Then Ed is a BK-space with norm ∥{αn}∥Ed

=

sup
1≤n<∞

∥
n∑

k=1

αkxk ∥. Define T : Ed −→ E as T{αn} =
∞∑

n=1
αnxn and S : E −→ Ed

as S(x) = {fn(x)}, x ∈ E. Take K = TS. Then K : E −→ E is such that

K(x) = TS(x) =
∞∑

n=1
fn(x)xn, for all x ∈ E. Clearly, {fn(x)} ∈ Ed and

∥K(x)∥E =

∥∥∥∥ ∞∑
n=1

fn(x)xn

∥∥∥∥ ≤ sup
1≤n<∞

∥∥∥∥ n∑
k=1

fk(x)xk

∥∥∥∥
= ∥{fn(x)}∥Ed

≤ σ ∥ x ∥E , for all x ∈ E,

where Sn(x) =
n∑

k=1

fk(x)xk and σ = sup
1≤n<∞

∥ Sn ∥ .

Hence, (xn, fn) is a K-atomic decomposition for E with respect to Ed.

Next, we give an example of a K-atomic decomposition for E which is not an
atomic decomposition for E.

Example 3.4. Let E = c0 and Ed = l∞. Let {xn} ⊂ E be the sequence of
standard unit vectors in E and {fn} ⊆ E∗ be such that for x = {αn} ∈ E, f1(x) =

0, f2(x) = α2, ..., fn(x) = αn, .... It is clear that
∞∑

n=1
fn(x)xn converges for x ∈ E.



186 K. T. POUMAI, AND S. JAHAN EJMAA-2018/6(1)

Define K : E −→ E by K(x) =
∞∑

n=1
fn(x)xn , x ∈ E. Then {fn(x)} ∈ Ed is such

that (xn, fn) is a K-atomic decomposition for E with respect to Ed. But (xn, fn)
is not an atomic decomposition for E.

Next, we give several methods to construct K-atomic decompositions for E.

Theorem 3.5. Let (xn, fn) be an atomic decomposition for E with respect to Ed

with bounds A and B. Let K ∈ L(E) with K ̸= 0. Then
(a) (Kxn, fn) is a K-atomic decomposition for E with respect to Ed.
(b) (xn,K

∗(fn)) is a K-atomic decomposition for E with respect to Ed.

Proof. (a) For each x ∈ E, K(x) =
∞∑

n=1
fn(x)K(xn). Also, we have ∥ K(x) ∥E ≤ ∥

K ∥∥ x ∥E , for all x ∈ E. This gives

A

∥ K ∥
∥ K(x) ∥E ≤ ∥ {fn(x)}∥Ed

≤ B ∥ x ∥E , for all x ∈ E.

(b) For each x ∈ E and n ∈ N, we have

K(x) =
∞∑

n=1

fn(K(x))xn =
∞∑

n=1

gn(x)xn,

where gn = K∗fn, n ∈ N. Also
{gn(x)} = {(K∗fn)(x)} = {fn(K(x))} ∈ Ed, for all x ∈ E.

Note that

A∥K(x)∥E ≤∥ {fn(K(x))∥Ed
= ∥{K∗fn(x)}∥Ed

, for all x ∈ E.

and

∥{(K∗fn)(x)}∥Ed
= ∥{fn(K(x))}∥Ed

≤ B∥K(x)∥E , for all x ∈ E.

Hence

A∥K(x)∥E ≤∥ {gn(x)}∥Ed
≤ B′ ∥ x ∥E , for all x ∈ E,

where B′ = B∥K∥. �

Theorem 3.6. Let (xn, fn) be a K-atomic decomposition for E with respect to Ed

and T ∈ L(E). Then

(a) (Txn, fn) is a TK-atomic decomposition for E with respect to Ed.
(b) (xn, T

∗fn) is a KT -atomic decomposition for E with respect to Ed.

Proof. (a)Straight forward.

(b)Since (xn, fn) is an K-atomic decomposition for E,

KT (x) =

∞∑
n=1

(T ∗fn)(x)xn =

∞∑
n=1

gn(x)xn,

where gn = T ∗fn and x ∈ E. Also, we have

{gn(x)} = {fn(T (x))} ∈ Ed, for all x ∈ E.

Further, for x ∈ E, we have

∥{gn(x)}∥Ed
= ∥{fn(T (x))}∥Ed

≤ B∥T∥∥x∥E .
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and

A∥KT (x)∥E ≤ ∥{fn(T (x))}Ed
= ∥{(T ∗fn)(x)}∥Ed

= ∥{gn(x)}∥Ed
.

Hence

A∥KT (x)∥E ≤ ∥{gn(x)}∥Ed
≤ B∥T∥∥x∥E , x ∈ E.

�

Theorem 3.7. If (xn, fn) is a K-atomic decomposition for E with respect to Ed

and K has pseudo inverse K+, then there exists {gn} ⊆ E∗ such that (xn, gn) is a
K-atomic decomposition for E with respect to Ed.

Proof. Let A and B be positive constants such that

A∥K(x)∥E ≤ ∥{fn(x)}∥Ed
≤ B∥x∥E , x ∈ E.

Also, for each x ∈ E, we have

K(x) =
∞∑

n=1

fn(K
+K(x))xn =

∞∑
n=1

((K+K)∗(fn))(x)xn.

For each n ∈ N, define gn = (K+K)∗(fn). Then

∥K(x)∥E ≤ 1

A
∥ {fn(K+K(x))}∥Ed

=
1

A
∥{gn(x)}∥Ed

, x ∈ E

and

∥{gn(x)}∥Ed
= ∥{fn(K+K(x))}∥Ed

≤ B∥K+∥∥K∥∥x∥E , x ∈ E.

Hence, we conclude that (xn, gn) is a K-atomic decomposition for E with respect
to Ed. �

In the next two results, we give necessary conditions under which an Ed frame
gives rise to a bounded operator K with respect to which there is a K-atomic
decomposition for E.

Theorem 3.8. Let {fn} ⊆ E∗ be an Ed-frame for E with bounds A and B. Let

{xn} ⊆ E with sup
1≤n<∞

∥xn∥ < ∞ and let
∞∑

n=1
|fn(x)| < ∞, for all x ∈ E. Then

there exists an operator K ∈ L(E) such that (xn, fn) is a K-atomic decomposition
for E with respect to Ed.

Proof. Let n,m ∈ N with n ≤ m.Then

∥
m∑

k=n

fk(x)xk∥E ≤ sup
1≤j<∞

∥xj∥E
m∑

k=n

|fk(x)|, for all x ∈ E.

Hence
∞∑

n=1
fn(x)xn converges for all x ∈ E.

Define K : E −→ E by K(x) =
∞∑

n=1
fn(x)xn, x ∈ E. Then K is a bounded linear

operator such that

∥K(x)∥E ≤ sup
1≤n<∞

∥
n∑

k=1

fk(x)xk∥E ≤ σ∥x∥E ,
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where σ = sup
1≤n<∞

n∑
k=1

fk(x)xk. Thus

A

σ
∥K(x)∥E ≤∥ {fn(x)}∥Ed

≤ B ∥ x ∥E , for all x ∈ E.

Hence, (xn, fn) is a K-atomic decomposition for E with respect to Ed with bounds
A

σ
and B. �

Theorem 3.9. Let {fn} ⊆ E∗ be an Ed-frame with bounds A, B and let {xn} ⊆
E. Let T : Ed −→ E given by T ({αn}) =

∞∑
n=1

αnxn be a well defined operator.

Then, there exists a linear operator K ∈ L(E) such that (xn, fn) is a K-atomic
decomposition for E with respect to Ed.

Proof. Define U : E −→ Ed by U(x) = {fn(x)}, x ∈ E. Then U is well defined

and ∥U∥ ≤ B. Take K = TU . Then K(x) =
∞∑

n=1
fn(x)xn, x ∈ E. Therefore, by

uniform boundedness principle, we have

∥K(x)∥E ≤ sup
1≤n<∞

∥
n∑

k=1

fk(x)xk∥E ≤ σ∥x∥E , x ∈ E,

where σ = sup
1≤n<∞

∥
n∑

k=1

fk(x)xk∥E . Thus, we have

A

σ
∥K(x)∥ ≤ ∥ {fn(x)}∥ ≤ B ∥ x ∥, for all x ∈ E.

Hence (xn, fn) is a K-atomic decomposition for E with respect to Ed with bounds
A

σ
and B. �

Next, we give the existence of a K-atomic decomposition from an Ed Bessel
sequence.

Theorem 3.10. Let E be a reflexive Banach space and Ed be a BK-space which
has a sequence of canonical unit vectors {en} as a basis. Let {fn} ⊆ E∗ be an
Ed-Bessel sequence with bound B and let {xn} ⊆ E. If {f(xn)} ∈ (Ed)

∗ for all
f ∈ E∗, then there exists a bounded linear operator K ∈ L(E) such that (xn, fn) is
a K-atomic decomposition for E with respect to Ed.

Proof. Clearly U : E −→ Ed given by U(x) = {fn(x)}, x ∈ E is well defined.
Define a map R : E∗ −→ (Ed)

∗ by R(f) = {f(xn)}, x ∈ E. Then, its adjoint
R∗ : (Ed)

∗∗ −→ E∗∗ is given by R∗(ej)(f) = ej(R(f)) = f(xj). Let T = (R∗)|Ed

and {αn} ∈ Ed. Then

T ({αn}) =
∞∑

n=1

αnT (en) =
∞∑

n=1

αnxn.

But {fn(x)} ∈ Ed. So T ({fn(x)}) =
∞∑

n=1
fn(x)xn. Take K = TU . Then K ∈

L(E) and K(x) =
∞∑

n=1
fn(x)xn. Moreover, T is a bounded linear operator such that



EJMAA-2018/6(1) ON K-ATOMIC DECOMPOSITIONS IN BANACH SPACES 189

∥K(x)∥ ≤ ∥T∥∥{fn(x)}∥. Hence
1

∥T∥
∥K(x)∥ ≤ ∥{fn(x)}∥ ≤ B∥x∥, x ∈ E

�

Next, we construct a K∗-atomic decomposition for E∗ from a given K-atomic
decomposition for E.

Theorem 3.11. Let Ed be a BK-space with dual (Ed)
∗ and let Ed and (Ed)

∗ have
sequences of canonical unit vectors {en} and {vn} respectively as basis. Let (xn, fn)
be a K-atomic decomposition for E with respect to Ed. Let S : Ed −→ E given by

S({dn}) =
∞∑

n=1
dnxn be a well defined mapping. Then, (fn, π(xn)) is a K∗-atomic

decomposition for E∗ with respect to (Ed)
∗.

Proof. For each x ∈ E, K(x) =
∞∑

n=1
fn(x)xn. Thus f(K(x)) =

∞∑
n=1

fn(x)f(xn).

Take n, m ∈ N with m ≤ n. Then for f ∈ E∗

∥
n∑

k=m

f(xk)fk∥ = sup
x∈E,∥x∥=1

|
n∑

k=m

f(xk)fk(x)|.

Therefore,
∞∑

n=1
f(xn)fn converges for all f ∈ E∗. Also, for x ∈ E, we have

(K∗(f))(x) = f(
∞∑

n=1

fn(x)xn) = (
∞∑

n=1

f(xn)fn)(x).

This gives K∗(f) =
∞∑

n=1
f(xn)fn, for f ∈ E∗. Note that

S∗(f)(ej) = f(S(ej)) = f(xj), f ∈ E∗. So, S∗(f) = {f(xn)} and {f(xn)} =
{f(S(en))} ∈ (Ed)

∗, f ∈ E∗. Also

∥{f(xn)}∥(Ed)∗ = ∥S∗(f)∥ ≤ ∥S∥∥f∥E∗ , f ∈ E∗.

Define R : E −→ Ed by R(x) = {fn(x)}, x ∈ E. Then, R∗(vj)(x) = vj(R(x)) =
fj(x), x ∈ E. So, R∗(vj) = fj , for all j ∈ N and for {αn} ∈ (Ed)

∗ we have

R∗({αn}) = R∗(
∞∑

n=1

αnvn) =
∞∑

n=1

αnR
∗(vn) =

∞∑
n=1

αnfn.

Therefore, we have

R∗S∗(f) = R∗({f(xn)}) =
∞∑

n=1

f(xn)fn, f ∈ E∗.

Moreover, K∗ = R∗S∗ and so

∥K∗(f)∥E∗ = ∥R∗S∗(f)∥E∗ ≤ ∥R∗∥∥{f(xn)}∥(Ed)∗ , f ∈ E∗.

This gives

1

∥R∗∥
∥K∗(f)∥E∗ ≤ ∥{f(xn)}∥(Ed)∗ ≤ ∥S∥∥f∥E∗ , f ∈ E∗. (4)

Hence, (fn, π(xn)) is a K∗-atomic decomposition for E∗ with respect to (Ed)
∗. �
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Next, we give the following result characterizing the class of K-atomic decom-
positions.

Theorem 3.12. Let (xn, fn) be a K-atomic decomposition for E with respect to

Ed with bounds A and B. Let T : Ed −→ E given by T ({αn}) =
∞∑

n=1
αnxn is

well defined for {αn} ∈ Ed and let U : E −→ Ed be the mapping given by U(x) =
{fn(x)}. If K is invertible, then the following statements are equivalent.

(a) T is the pseudo inverse of U .
(b) (xn, fn) is an atomic decomposition for E with respect to Ed.
(c) T is a linear extension of U−1 : U(E) −→ E.
(d) U(E) is a complemented subspace of Ed.
(e) KerT is a complemented subspace of Ed and T is surjective.

Proof. (a) ⇒ (b) By hypothesis, {x ∈ E : fn(x) = 0, for all n ∈ N} = {0}. So,
KerU = {0}. Since T is the pseudo inverse of U , by Lemma 2.4 there exists a
continuous projection operator θ : E −→ E such that TU = IE − θ and kerU =
θ(E). Thus, for each x ∈ E, we have

TU(x) = (IE − θ)(x) = x, x ∈ E.

Hence, for every x ∈ E,
∞∑

n=1
fn(x)xn = x.

(b) ⇒ (a) For x ∈ E, we have

UTU(x) = UT ({fn(x)}) = U(
∞∑

n=1

fn(x)xn) = U(x).

Hence, UTU = U .
(c) ⇒ (b) If T is a linear extension of U−1 : U(E) −→ E, then TU : E −→ E is

the identity map on E. So, TU(x) = x and
∞∑

n=1
fn(x)xn = x.

(c) ⇒ (a) Obvious, since UTU = UIE = U.
(d)⇒(b) Suppose Ed = U(E)⊕G, where G is a closed subspace of Ed. Let P be
a projection of Ed onto U(E) along G.

Then, P({αn}) = {fn(
∞∑
k=1

αkxk)}, for all {αn} ∈ Ed. Therefore

U−1 ◦ P({αn}) = U−1{fn(
∞∑
k=1

αkxk)} =
∞∑
k=1

αnxn

= T ({αn}), for all {αn} ∈ Ed.

This gives, T=U−1 ◦ P and

T ({fn(x)}) = U−1 ◦ P({fn(x)}) = U−1({fn(x)}.

Hence, x =
∞∑

n=1
fn(x)xn, for all x ∈ E.

(b)⇒(d) Obvious.
(e)⇒(b) Let Ed = kerT ⊕ M , where M is a closed subspace of Ed. Take Υ =
kerT ⊕ U(E). Let Q : Ed −→ M be a projection from Ed onto M along kerT .
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Define L : Ed −→ Υ by L(α) = (α − Q(α), UT (α)), for α = {αn} ∈ Ed. Let
L(α) = 0. This gives Q(α) = α. So α ∈ M . Let UT (α) = 0. Then

U(
∞∑

n=1

αnxn) = {fn(
∞∑
k=1

αkxk)} = 0, for n ∈ N.

This gives
∞∑

n=1
αnxn = 0 and so, α ∈ kerT . Thus, α ∈ kerT ∩M = {0}. Hence, L

is one-one.
Let (α0, U(x)) ∈ kerT ⊕ U(E), for α0 ∈ kerU and U(x) ∈ U(E).
Since, T is onto, for each x ∈ E, there exists β ∈ Ed such that T (β) = x and this
gives UT (β) = U(x). Take α = α0 + Q(β). Then Q(α) = Q(α0) + Q2(β) = Q(β)
and α0 = α−Q(α). Also, we have

UT (α) = UT (α− α0) = UT (Q(β)) = UT (β) = U(x). (5)

Thus L(α) = (α0, UT (x)) and L is an isomorphism from Ed onto Υ. So, there is a
projection P = UT : Ed −→ U(E) onto U(E) along kerT . This gives

U−1 ◦ P = T and U−1 ◦ P({fn(x)}) = T ({fn(x)}).
Finally, we have

U−1({fn(x)}) =
∞∑

n=1

fn(x)xn and x =

∞∑
n=1

fn(x)xn.

Therefore, (xn, fn) is an atomic decomposition for E with respect to Ed.
(b)⇒(e) Obvious. �

Next, we prove a duality type result for a K-atomic decomposition for E.

Theorem 3.13. Let Ed be a reflexive BK-space with its dual (Ed)
∗ and let se-

quences of canonical unit vectors {en} and {vn} be bases for Ed and (Ed)
∗, respec-

tively. Let (fn, π(xn)) be a K-atomic Decomposition for E∗ with respect to (Ed)
∗ .

If S : (Ed)
∗ −→ E∗ given by S({dn}) =

∞∑
n=1

dnfn is well defined for {dn} ∈ E∗
d , then

there exists a linear operator L ∈ L(E) such that (xn, fn) is L-atomic decomposition
for E with respect to Ed.

Proof. For f ∈ E∗, we have K(f) =
∞∑

n=1
f(xn)fn. Let m, n ∈ N with m ≤ n and

x ∈ E. Then

∥
n∑

k=m

fk(x)xk∥E = sup
f∈E∗,∥f∥=1

|
n∑

k=m

fk(x)f(xk)|

Thus,
∞∑

n=1
fn(x)xn converges, for all x ∈ E. DefineL : E −→ E by L(x) =

∞∑
n=1

fn(x)xn, x ∈ E. Note that S(vn) = fn, n ∈ N and for x ∈ E, the linear

bounded operator S∗ : E∗∗ −→ (Ed)
∗∗ satisfies

S∗(π(x))(vn) = π(x)S(vn) = fn(x).

So, {fn(x)} is identified with S∗(π(x)) ∈ (Ed)
∗∗ = Ed. Further, we have

∥{fn(x)}∥Ed
= ∥S∗(π(x))∥Ed

≤∥ S ∥∥ x ∥E , x ∈ E. (6)
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Letting U = S∗ |E , we have U(x) ={fn(x)} and ∥U∥ ≤ ∥S∥.
Define R : E∗ −→ (Ed)

∗ by R(f) = {f(xn)}, f ∈ E∗. Then

R∗(ej)(f) = ej(R(f)) = f(xj), f ∈ E∗.

So, R∗(ej) = xj , for all j ∈ N. Take T = (R∗)|Ed
. Then, for {αn} ∈ Ed we have

T ({αn}) = T (

∞∑
n=1

αnen) =

∞∑
n=1

αnT (en) =

∞∑
n=1

αnxn.

Thus, TU(x) =
∞∑

n=1
fn(x)xn, for all x ∈ E and this gives TU = L on E. Therefore,

1

∥T∥
∥L(x)∥E ≤ ∥{fn(x)}∥Ed

. Then

1

∥T∥
∥L(x)∥E ≤ ∥{fn(x)}∥Ed

≤ ∥S∥∥x∥E .

Hence, (xn, fn) is L-atomic decomposition for E with respect to Ed. �

Next, we give the results related to perturbation of K-atomic decomposition for
E.

Theorem 3.14. Let (xn, fn) be an atomic decomposition for E with respect to Ed

with bounds A and B. Let (yn, fn) be a K-atomic decomposition for E with respect

to Ed with bounds C and D. If there exists λ > 0 with
λD

C
< 1, then there exist

a sequence {gn} ⊆ E∗ such that (xn + λyn, gn) is an atomic decomposition for E

with respect to Ed with bounds
AC

C + λA
and

DC

C − λD
.

Proof. Take L = IE + λK. Then, L : E −→ E is given by

L(x) =
∞∑

n=1
fn(x)(xn + λyn). Also, we have

∥L(x)∥E = ∥(IE + λK)(x)∥E ≤ ∥x∥E + λ∥K(x)∥E

≤ C + λA

AC
∥{fn(x)}∥Ed

and ∥L∥ ≤ D(C + λA)

AC
. This yields

AC

C + λA
∥L(x)∥E ≤ ∥{fn(x)}∥Ed

≤ D∥x∥E .

So, (xn + λyn, fn) is an L-atomic decomposition with respect to Ed with bounds
AC

C + λA
and D. Also, since (yn, fn) is a K-atomic decomposition, we have:

∥(IE − L)(x)∥E = λ∥
∞∑

n=1

fn(x)yn∥E = λ∥K(x)∥E ≤ λD

C
∥x∥E .

This gives ∥IE − L∥ ≤ 1. Thus L is invertible.

Also, ∥x∥E − ∥L(x)∥E ≤ λD

C
∥x∥E (7)
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So, ∥L−1∥ ≤ C

C − λD
. For n ∈ N, take gn = (L−1)∗fn. Then, for x ∈ E, we have

x = LL−1(x) = L(L−1(x)) =
∞∑

n=1

fn(L
−1(x))(xn + λyn)

=
∞∑

n=1

((L−1)∗(fn))(x)(xn + λyn) =
∞∑

n=1

gn(x)(xn + λyn).

For x ∈ E, {gn(x)} = {fn(L−1(x))} ∈ Ed.
Also, if x ∈ E, then

AC

C + λA
∥x∥E =

AC

C + λA
∥L(L−1(x))∥ ≤ ∥{fn(L−1(x))}∥Ed

.

and

∥{gn(x)}∥Ed
= ∥{fn(L−1(x))}∥Ed

≤ D∥L−1(x)∥E ≤ D∥L−1∥∥x∥E

≤ DC

C − λD
∥x∥.

Thus, for x ∈ E, we have

AC

C + λA
∥x∥E ≤ ∥{gn(x)}∥Ed

≤ DC

C − λD
∥x∥E .

Hence, (xn + λyn, gn) is an atomic decomposition for E with respect to Ed with

bounds
AC

C + λA
and

DC

C − λD
. �

Theorem 3.15. Let Ed be a BK-space with a sequence of canonical vectors as
basis. Let (xn, fn) be a K-atomic decomposition for E with respect to Ed with
bounds A, B and let K has a generalized inverse K+. Let α, β, γ ∈ [0,∞) with
max{β, (α+ γB∥K+∥∥K∥)} < 1 and {yn} ⊆ E. If

∥
n∑

k=1

dk(xk−yk)∥E ≤ α∥
n∑

k=1

dkxk∥E+β∥
n∑

k=1

dkyk∥E+γ∥{dk}nk=1∥Ed
for any finite

scalars d1, d2, d3, ..., dn, n ∈ N,then there exists {gn} ⊆ E∗ and a linear operator
T ∈ L(E) such that (yn, gn) is a T -atomic decomposition for E with respect to Ed

with bounds
A(1− β)

1 + α+ γB∥K+∥∥K∥
and

B(1 + β)∥T∥∥K+∥∥K∥
[1− (α+ γB∥K+∥∥K∥)]

.

Proof. For x ∈ E, K(x) =
∞∑

n=1
fn(x)xn. Also,

∞∑
n=1

fn(x)yn converges for all x ∈ E.

Let L : E −→ E be defined by L(x) =
∞∑

n=1
fn(x)yn, x ∈ E. For x ∈ E, we have

∥K(x)− L(x)∥E = ∥
∞∑

n=1

fn(x)(xn − yn)∥E

≤ α∥K(x)∥E + β∥L(x)∥E (8)

+ γ∥{fn(x)}∥Ed

Also, for x ∈ K(E), we have

∥x∥E = ∥KK+(x)∥E = ∥KK+K(x)∥E ≤ ∥K∥∥K+∥∥K(x)∥E
and

∥{fn(x)}∥Ed
≤ B∥x∥E ≤ B∥K∥∥K+∥∥K(x)∥E . (9)
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From 8 and 9, we have

∥K(x)− L(x)∥E ≤ (α+ γB∥K∥∥K+∥)∥K(x)∥E + β∥L(x)∥E .

Thus, for any x ∈ K(E), we have

1− (α+ γB∥K∥∥K+∥)
1 + β

∥K(x)∥E ≤ ∥L(x)∥E

≤ 1 + α+ γB∥K∥∥K+∥
1− β

∥K(x)∥E

and

[1− (α+ γB∥K∥∥K+∥)]
(1 + β)∥K∥∥K+∥

∥x∥ ≤ ∥L(x)∥ ≤ [1 + α+ γB∥K∥∥K+∥]
(1− β)AB−1

∥x∥ (10)

Take V = L|K(E). We shall show that V (K(E)) is closed. Let {sn} ⊆ V (K(E))
such that sn → s ∈ E. For each sn, there exists tn ∈ K(E) such that sn = V (tn),
for all n ∈ N. Now, we have

∥tn+m − tn∥ ≤ C−1∥V (tn+m − tn)∥ ≤ C−1∥sn+m − sn∥,

where C =
[1− (α+ γB∥K∥∥K+∥)]∥K∥−1∥K+∥−1

1 + β
. Since {sn} is a Cauchy se-

quence, it follows that {tn} is also a Cauchy sequence. But K(E) is closed. So,
there exists t ∈ K(E) such that tn → t and

s = lim
n→∞

sn = lim
n→∞

V (tn) = V (t) ∈ V (K(E)).

From (10), we conclude that V is injective on K(E). Therefore, V : K(E) −→
V (K(E)) is invertible. Let T : E −→ V (K(E)) be an orthogonal projection from
E to V (K(E)). Define gn = (V −1T )∗fn, n ∈ N. Then for x ∈ E, we have

T (x) = V V −1(T (x)) = V (V −1T (x)) =
∞∑

n=1

fn((V
−1T )(x))yn

=
∞∑

n=1

((V −1T )∗fn)(x)yn =
∞∑

n=1

gn(x)yn.

Also, for x ∈ E we have {gn(x)} = {(fn(L−1T ))(x)} ∈ Ed and

∥T (x)∥E = ∥V (V −1T (x))∥E

≤ 1 + α+ γB∥K∥∥K+∥
1− β

∥K(V −1T (x)∥E .

≤ 1 + α+ γB∥K∥∥K+∥
A(1− β)

∥{fn(V −1T (x))}∥Ed

For x ∈ E we have

∥{gn(x)}∥Ed
= ∥{fn(V −1T (x))}∥Ed

≤ B∥V −1T (x)∥E (11)

Also, for y ∈ V (K(E)), we have

∥V −1(y)∥E ≤ (1 + β)∥K∥∥K+∥
1− (α+ γB∥K∥∥K+∥)

∥y∥E . (12)
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From (11) and (12), we conclude that

∥{gn(x)}∥Ed
≤ B(1 + β)∥K∥∥K+∥

1− (α+ γB∥K∥∥K+∥)
∥T (x)∥E

≤ B(1 + β)∥K∥∥K+∥
1− (α+ γB∥K∥∥K+∥)

∥T∥∥x∥E , x ∈ E

Hence

A(1− β)

1 + α+ γB∥K∥∥K+∥
∥T (x)∥E ≤ ∥{gn(x)}∥Ed

≤ B(1 + β)∥T∥∥K∥∥K+∥
1− (α+ γB∥K∥∥K+∥)

∥x∥E .

�

Finally, we prove the following result related to the perturbation of an atomic
decomposition for E.

Theorem 3.16. Let (xn, fn) be an atomic decomposition for E with respect to Ed

with bounds A and B. Let (xn, gn) be a K-atomic decomposition for E with respect

to Ed with bounds C and D. Let T : Ed −→ E given by T ({αn}) =
∞∑

n=1
αnxn be

a well defined map for {αn} ∈ Ed. If there exists λ > 0 such that
λD

C
< 1, then

there exists {yn} ⊆ E such that (yn, fn + λgn) is an atomic decomposition for E

with respect to Ed with bounds
C − λD

C∥T∥
and B + λD.

Proof. Define an operator L = IE + λK : E −→ E by

L(x) =
∞∑

n=1
(fn + λgn)(x)xn, for all x ∈ E. Then

{(fn + λgn)(x)} = {fn(x)}+ λ{gn(x)} ∈ Ed

and

∥{(fn + λgn)(x)}∥Ed
≤ ∥{fn(x)}∥Ed

+ λ∥{gn(x)}∥Ed

≤ (B + λD)∥x∥E .
Now define U : E −→ Ed by U(x) = {(fn + λgn)(x)}. Then, U is well defined and
∥U∥ ≤ B + λD. Since

TU(x) = T ({(fn + λgn)(x)}) =
∞∑

n=1

(fn + λgn)(x)xn, x ∈ E,

we conclude that L = TU . Moreover, we have

∥L(x)∥E = ∥TU(x)∥E ≤ ∥T∥∥{(fn + λgn)(x)}∥Ed
.

Thus

1

∥T∥
∥L(x)∥E ≤ ∥{(fn + λgn)(x)}∥Ed

≤ (B + λD)∥x∥E , x ∈ E.

Therefore, (xn, fn+λgn) is L-atomic decomposition for E with respect to Ed. Since

∥(IE − L)(x)∥E = λ∥K(x)∥E ≤ λD

C
∥x∥E , x ∈ E,
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L is invertible. Thus, we have

∥x∥E − ∥L(x)∥E ≤ λD

C
∥x∥E , x ∈ E.

This gives, ∥L−1∥ ≤ C

C − λD
. Define yn = L−1(xn), for n ∈ N. Then, for x ∈ E,

we have

x = L−1L(x) = L−1(
∞∑

n=1

(fn + λgn)(x)xn)

=
∞∑

n=1

(fn + λgn)(x)L
−1(xn) =

∞∑
n=1

(fn + λgn)(x)yn.

So

∥x∥E = ∥L−1L(x)∥E ≤ ∥L−1∥∥T∥∥{(fn + λgn)(x)}∥Ed
, x ∈ E

≤ C

C − λD
∥T∥∥{(fn + λgn)(x)}∥Ed

Therefore

C − λD

C∥T∥
∥x∥E ≤ ∥{(fn + λgn}∥Ed

≤ (B + λD)∥x∥E , x ∈ E.

Hence, (yn, fn + λgn) is an atomic decomposition for E with respect to Ed with

bounds
C − λD

C∥T∥
and B + λD.

�
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