ON K-ATOMIC DECOMPOSITIONS IN BANACH SPACES

K.T. POUMAI AND S. JAHAN

Abstract

L.Gavruta [9] first introduced frames for an operator K called K frames in Hilbert spaces. In this paper, we define K-atomic decompositions for Banach spaces and obtain various results related to the existence of K-atomic decompositions. Also, we discuss several methods for constructing K-atomic decompositions together with perturbation results for K-atomic decompositions.

1. Introduction

Danis Gabör [8] introduced a fundamental approach to signal decomposition in terms of elementary signals. Duffin and Schaeffer [6] while addressing some deep problems in non-harmonic Fourier series, abstracted Gabor's method to define frames for Hilbert space. Feichtinger and Gröcheing [7] extended the notion of atomic decomposition to Banach space. Gröcheing [10] introduced a more general concept for Banach spaces called Banach frame. Banach frames and atomic decompositions were further studied in [4].
Christensen [3] proved perturbation results for Banach frames and atomic decompositions. Casazza et al. [2] studied X_{d}-frames and X_{d}-Bessel sequences in Banach spaces. Stoeva [5] gave some perturbation results for X_{d}-frames and atomic decompositions. Gavruta [9] introduced the notion of atomic system for an operator K and the notion of K-frame in a Hilbert space. X.Xiao et al. [16] discussed relationship between K-frames and ordinary frames in Hilbert spaces. Terekhin [15] introduced and studied frames in Banach spaces.

In the present paper, we define K-atomic decomposition for a Banach space and prove some results on the existence of K-atomic decompositions. Also, we discuss several methods to construct K-atomic decomposition for Banach Spaces and finally obtain some perturbation results for K-atomic decompositions.

2. Preliminaries

Throughout this paper, E will denote a Banach space over the scalar field $\mathrm{K}(\mathbb{R}$ or $\mathbb{C}), E^{*}$ the dual space of E, E_{d} a BK-space and $L(E)$ will denote the set of all

[^0]bounded linear operators from E into E. For $T \in L(E), T^{*}$ denotes the adjoint of $T, \pi: E \longrightarrow E^{* *}$ is the natural canonical projection from E onto $E^{* *}$.

Definition 2.1. [10] Let E be a Banach space and E_{d} be a BK-space. A sequence $\left(x_{n}, f_{n}\right)\left(\left\{x_{n}\right\} \subset E,\left\{f_{n}\right\} \subset E^{*}\right)$ is called an atomic decomposition for E with respect to E_{d} if the following statements hold:
(a) $\left\{f_{n}(x)\right\} \in E_{d}$, for all $x \in E$.
(b) There exist constants A and B with $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\|x\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq B\|x\|_{E}, \text { for all } x \in E \tag{1}
\end{equation*}
$$

(c) $x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$, for all $x \in E$.

Definition 2.2. [2] A sequence $\left\{f_{n}\right\} \subseteq E^{*}$ is called an E_{d}-frame for E if
(a) $\left\{f_{n}(x)\right\} \in E_{d}$, for all $x \in E$.
(b) There exist constants A and B with $0<A \leq B<\infty$ such that

$$
\begin{equation*}
A\|x\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq B\|x\|_{E}, \text { for all } x \in E \tag{2}
\end{equation*}
$$

The constants A and B are called E_{d}-frame bounds. If atleast (a) and the upper bound condition in (2.2) are satisfied, then $\left\{f_{n}\right\}$ is called an E_{d}-Bessel sequence for E.

If $\left\{f_{n}\right\}$ is an E_{d}-frame for E and if there exists a bounded linear operator T : $E_{d} \longrightarrow E$ such that $T\left(\left\{f_{n}(x)\right\}\right)=x$, for all $x \in E$, then $\left(\left\{f_{n}\right\}, T\right)$ is called a Banach frame for E with respect to E_{d}.

Definition 2.3. [12] Let $T \in L(E)$. We say that an operator $S \in L(E)$ is a pseudo inverse of T if $T S T=T$. Also, $S \in L(E)$ is called the generalized inverse of T if $T S T=T$ and $S T S=S$.

Next, we state some results in the form of lemmas which will be used in the subsequent results.

Lemma 2.4. [14, 17] Let X, Y be Banach spaces and $T: X \longrightarrow Y$ be a bounded linear operator. Then, the following conditions are equivalent:
(a) There exist two continuous projection operators $P: X \rightarrow X$ and $Q: Y \rightarrow Y$ such that

$$
\begin{equation*}
P(X)=k e r T \text { and } Q(Y)=T(X) \tag{3}
\end{equation*}
$$

(b) T has a pseudo inverse operator T^{+}.

If two continuous projection operators $P: X \rightarrow X$ and $Q: Y \rightarrow Y$ satisfies (2.3), then there exists a pseudo inverse operator T^{+}of T such that $T^{+} T=I_{X}-P$ and $T T^{+}=Q$, where I_{X} is the identity operator on X.

Lemma 2.5. [1,13] Let E be a Banach space. If $T \in L(E)$ has a generalized inverse $S \in L(E)$, then $T S, S T$ are projections and $T S(E)=T(E)$ and $S T(E)=S(E)$.

Lemma 2.6. [11] Let E be a Banach space and $\left\{f_{n}\right\} \subset E^{*}$ be a sequence such that $\left\{x \in E: f_{n}(x)=0\right.$, for all $\left.n \in \mathbb{N}\right\}=\{0\}$. Then E is linearly isometric to the Banach space $X_{d}=\left\{\left\{f_{n}(x)\right\}: x \in E\right\}$, where the norm is given by $\left\|\left\{f_{n}(x)\right\}\right\|_{X_{d}}=\|x\|_{E}, x \in E$.

3. K-Atomic Decompositions

Definition 3.1. Let E be a Banach Space, $\left\{x_{n}\right\} \subset E,\left\{f_{n}\right\} \subset E^{*}$ and $K \in L(E)$. A pair $\left(x_{n}, f_{n}\right)$ is called a K-atomic decomposition for E with respect to E_{d} if
(a) $\left\{f_{n}(x)\right\} \in E_{d}$, for all $x \in E$.
(b) There exist constants A and B with $0<A \leq B<\infty$ such that

$$
A\|K(x)\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq B\|x\|_{E}, \text { for all } x \in E
$$

(c) $\sum_{n=1}^{\infty} f_{n}(x) x_{n}$ converges for all $x \in E$ and $K(x)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$.

The constants A and B are called lower and upper bounds of the K-atomic decomposition $\left(x_{n}, f_{n}\right)$.

Remark 3.2. Let $\left(x_{n}, f_{n}\right)$ be a K-atomic decomposition for E with respect to E_{d} and with bounds A and B.
(I). If $K=I_{E}$, then $\left(x_{n}, f_{n}\right)$ is an atomic decomposition for E with respect to E_{d} with bounds A and B.
(II). If K is invertible, then $\left(K^{-1}\left(x_{n}\right), f_{n}\right)$ is an atomic decomposition for E with respect to E_{d}.
(III). If K is invertible, then there exists a bounded linear operator $T: E_{d} \longrightarrow E$ such that $\left(\left\{f_{n}\right\}, T\right)$ is a Banach frame with respect to some BK-space E_{d}.

In the following example, we show the existence of K-atomic decomposition for a Banach space E with respect to an associated BK space E_{d}.

Example 3.3. Let E be a Banach Space. Let $\left\{x_{n}\right\} \subseteq E$, $\left\{f_{n}\right\} \subseteq E^{*}$ such that $\sum_{n=1}^{\infty} f_{n}(x) x_{n}$ converges for all $x \in E$ and $x_{n} \neq 0$, for all $n \in \mathbb{N}$. Also, let $E_{d}=\left\{\left\{\alpha_{n}\right\} \mid \sum_{n=1}^{\infty} \alpha_{n} x_{n}\right.$ converges $\}$. Then E_{d} is a BK-space with norm $\left\|\left\{\alpha_{n}\right\}\right\|_{E_{d}}=$ $\sup _{1 \leq n<\infty}\left\|\sum_{k=1}^{n} \alpha_{k} x_{k}\right\|$. Define $T: E_{d} \longrightarrow E$ as $T\left\{\alpha_{n}\right\}=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ and $S: E \longrightarrow E_{d}$ as $S(x)=\left\{f_{n}(x)\right\}, x \in E$. Take $K=T S$. Then $K: E \longrightarrow E$ is such that $K(x)=T S(x)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$, for all $x \in E$. Clearly, $\left\{f_{n}(x)\right\} \in E_{d}$ and

$$
\begin{aligned}
\|K(x)\|_{E} & =\left\|\sum_{n=1}^{\infty} f_{n}(x) x_{n}\right\| \leq \sup _{1 \leq n<\infty}\left\|\sum_{k=1}^{n} f_{k}(x) x_{k}\right\| \\
& =\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq \sigma\|x\|_{E}, \text { for all } x \in E
\end{aligned}
$$

where $S_{n}(x)=\sum_{k=1}^{n} f_{k}(x) x_{k}$ and $\sigma=\sup _{1 \leq n<\infty}\left\|S_{n}\right\|$.
Hence, $\left(x_{n}, f_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d}.
Next, we give an example of a K-atomic decomposition for E which is not an atomic decomposition for E.

Example 3.4. Let $E=c_{0}$ and $E_{d}=l_{\infty}$. Let $\left\{x_{n}\right\} \subset E$ be the sequence of standard unit vectors in E and $\left\{f_{n}\right\} \subseteq E^{*}$ be such that for $x=\left\{\alpha_{n}\right\} \in E, f_{1}(x)=$ $0, f_{2}(x)=\alpha_{2}, \ldots, f_{n}(x)=\alpha_{n}, \ldots$. It is clear that $\sum_{n=1}^{\infty} f_{n}(x) x_{n}$ converges for $x \in E$.

Define $K: E \longrightarrow E$ by $K(x)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}, x \in E$. Then $\left\{f_{n}(x)\right\} \in E_{d}$ is such that $\left(x_{n}, f_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d}. But $\left(x_{n}, f_{n}\right)$ is not an atomic decomposition for E.

Next, we give several methods to construct K-atomic decompositions for E.
Theorem 3.5. Let $\left(x_{n}, f_{n}\right)$ be an atomic decomposition for E with respect to E_{d} with bounds A and B. Let $K \in L(E)$ with $K \neq 0$. Then
(a) $\left(K x_{n}, f_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d}.
(b) $\left(x_{n}, K^{*}\left(f_{n}\right)\right)$ is a K-atomic decomposition for E with respect to E_{d}.

Proof. (a) For each $x \in E, K(x)=\sum_{n=1}^{\infty} f_{n}(x) K\left(x_{n}\right)$. Also, we have $\|K(x)\|_{E} \leq \|$ $K\left\|\|x\|_{E}\right.$, for all $x \in E$. This gives

$$
\frac{A}{\|K\|}\|K(x)\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq B\|x\|_{E}, \text { for all } x \in E
$$

(b) For each $x \in E$ and $n \in \mathbb{N}$, we have

$$
K(x)=\sum_{n=1}^{\infty} f_{n}(K(x)) x_{n}=\sum_{n=1}^{\infty} g_{n}(x) x_{n}
$$

where $g_{n}=K^{*} f_{n}, n \in \mathbb{N}$. Also

$$
\left\{g_{n}(x)\right\}=\left\{\left(K^{*} f_{n}\right)(x)\right\}=\left\{f_{n}(K(x))\right\} \in E_{d}, \text { for all } x \in E
$$

Note that

$$
A\|K(x)\|_{E} \leq \|\left\{f_{n}(K(x))\left\|_{E_{d}}=\right\|\left\{K^{*} f_{n}(x)\right\} \|_{E_{d}}, \text { for all } x \in E\right.
$$

and

$$
\left\|\left\{\left(K^{*} f_{n}\right)(x)\right\}\right\|_{E_{d}}=\left\|\left\{f_{n}(K(x))\right\}\right\|_{E_{d}} \leq B\|K(x)\|_{E}, \text { for all } x \in E
$$

Hence

$$
A\|K(x)\|_{E} \leq\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}} \leq B^{\prime}\|x\|_{E}, \text { for all } x \in E
$$

where $B^{\prime}=B\|K\|$.
Theorem 3.6. Let $\left(x_{n}, f_{n}\right)$ be a K-atomic decomposition for E with respect to E_{d} and $T \in L(E)$. Then
(a) $\left(T x_{n}, f_{n}\right)$ is a $T K$-atomic decomposition for E with respect to E_{d}.
(b) $\left(x_{n}, T^{*} f_{n}\right)$ is a $K T$-atomic decomposition for E with respect to E_{d}.

Proof. (a)Straight forward.
(b)Since $\left(x_{n}, f_{n}\right)$ is an K-atomic decomposition for E,

$$
K T(x)=\sum_{n=1}^{\infty}\left(T^{*} f_{n}\right)(x) x_{n}=\sum_{n=1}^{\infty} g_{n}(x) x_{n}
$$

where $g_{n}=T^{*} f_{n}$ and $x \in E$. Also, we have

$$
\left\{g_{n}(x)\right\}=\left\{f_{n}(T(x))\right\} \in E_{d}, \text { for all } x \in E
$$

Further, for $x \in E$, we have

$$
\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}}=\left\|\left\{f_{n}(T(x))\right\}\right\|_{E_{d}} \leq B\|T\|\|x\|_{E}
$$

and

$$
A\|K T(x)\|_{E} \leq\left\|\left\{f_{n}(T(x))\right\}_{E_{d}}=\right\|\left\{\left(T^{*} f_{n}\right)(x)\right\}\left\|_{E_{d}}=\right\|\left\{g_{n}(x)\right\} \|_{E_{d}}
$$

Hence

$$
A\|K T(x)\|_{E} \leq\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}} \leq B\|T\|\|x\|_{E}, x \in E
$$

Theorem 3.7. If $\left(x_{n}, f_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d} and K has pseudo inverse K^{+}, then there exists $\left\{g_{n}\right\} \subseteq E^{*}$ such that $\left(x_{n}, g_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d}.

Proof. Let A and B be positive constants such that

$$
A\|K(x)\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq B\|x\|_{E}, x \in E
$$

Also, for each $x \in E$, we have

$$
K(x)=\sum_{n=1}^{\infty} f_{n}\left(K^{+} K(x)\right) x_{n}=\sum_{n=1}^{\infty}\left(\left(K^{+} K\right)^{*}\left(f_{n}\right)\right)(x) x_{n}
$$

For each $n \in \mathbb{N}$, define $g_{n}=\left(K^{+} K\right)^{*}\left(f_{n}\right)$. Then

$$
\|K(x)\|_{E} \leq \frac{1}{A}\left\|\left\{f_{n}\left(K^{+} K(x)\right)\right\}\right\|_{E_{d}}=\frac{1}{A}\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}}, x \in E
$$

and

$$
\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}}=\left\|\left\{f_{n}\left(K^{+} K(x)\right)\right\}\right\|_{E_{d}} \leq B\left\|K^{+}\right\|\|K\|\|x\|_{E}, x \in E
$$

Hence, we conclude that $\left(x_{n}, g_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d}.

In the next two results, we give necessary conditions under which an E_{d} frame gives rise to a bounded operator K with respect to which there is a K-atomic decomposition for E.

Theorem 3.8. Let $\left\{f_{n}\right\} \subseteq E^{*}$ be an E_{d}-frame for E with bounds A and B. Let $\left\{x_{n}\right\} \subseteq E$ with $\sup _{1 \leq n<\infty}\left\|x_{n}\right\|<\infty$ and let $\sum_{n=1}^{\infty}\left|f_{n}(x)\right|<\infty$, for all $x \in E$. Then there exists an operator $K \in L(E)$ such that $\left(x_{n}, f_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d}.

Proof. Let $n, m \in \mathbb{N}$ with $n \leq m$.Then

$$
\left\|\sum_{k=n}^{m} f_{k}(x) x_{k}\right\|_{E} \leq \sup _{1 \leq j<\infty}\left\|x_{j}\right\|_{E} \sum_{k=n}^{m}\left|f_{k}(x)\right|, \text { for all } x \in E
$$

Hence $\sum_{n=1}^{\infty} f_{n}(x) x_{n}$ converges for all $x \in E$.
Define $K: E \longrightarrow E$ by $K(x)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}, x \in E$. Then K is a bounded linear operator such that

$$
\|K(x)\|_{E} \leq \sup _{1 \leq n<\infty}\left\|\sum_{k=1}^{n} f_{k}(x) x_{k}\right\|_{E} \leq \sigma\|x\|_{E}
$$

where $\sigma=\sup _{1 \leq n<\infty} \sum_{k=1}^{n} f_{k}(x) x_{k}$. Thus

$$
\frac{A}{\sigma}\|K(x)\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq B\|x\|_{E}, \text { for all } x \in E
$$

Hence, $\left(x_{n}, f_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d} with bounds $\frac{A}{\sigma}$ and B.

Theorem 3.9. Let $\left\{f_{n}\right\} \subseteq E^{*}$ be an E_{d}-frame with bounds A, B and let $\left\{x_{n}\right\} \subseteq$ E. Let $T: E_{d} \longrightarrow E$ given by $T\left(\left\{\alpha_{n}\right\}\right)=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ be a well defined operator. Then, there exists a linear operator $K \in L(E)$ such that $\left(x_{n}, f_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d}.

Proof. Define $U: E \longrightarrow E_{d}$ by $U(x)=\left\{f_{n}(x)\right\}, x \in E$. Then U is well defined and $\|U\| \leq B$. Take $K=T U$. Then $K(x)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}, x \in E$. Therefore, by uniform boundedness principle, we have

$$
\|K(x)\|_{E} \leq \sup _{1 \leq n<\infty}\left\|\sum_{k=1}^{n} f_{k}(x) x_{k}\right\|_{E} \leq \sigma\|x\|_{E}, x \in E
$$

where $\sigma=\sup _{1 \leq n<\infty}\left\|\sum_{k=1}^{n} f_{k}(x) x_{k}\right\|_{E}$. Thus, we have

$$
\frac{A}{\sigma}\|K(x)\| \leq\left\|\left\{f_{n}(x)\right\}\right\| \leq B\|x\|, \text { for all } x \in E
$$

Hence $\left(x_{n}, f_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d} with bounds $\frac{A}{\sigma}$ and B.

Next, we give the existence of a K-atomic decomposition from an E_{d} Bessel sequence.

Theorem 3.10. Let E be a reflexive Banach space and E_{d} be a BK-space which has a sequence of canonical unit vectors $\left\{e_{n}\right\}$ as a basis. Let $\left\{f_{n}\right\} \subseteq E^{*}$ be an E_{d}-Bessel sequence with bound B and let $\left\{x_{n}\right\} \subseteq E$. If $\left\{f\left(x_{n}\right)\right\} \in\left(E_{d}\right)^{*}$ for all $f \in E^{*}$, then there exists a bounded linear operator $K \in L(E)$ such that $\left(x_{n}, f_{n}\right)$ is a K-atomic decomposition for E with respect to E_{d}.

Proof. Clearly $U: E \longrightarrow E_{d}$ given by $U(x)=\left\{f_{n}(x)\right\}, x \in E$ is well defined. Define a $\operatorname{map} R: E^{*} \longrightarrow\left(E_{d}\right)^{*}$ by $R(f)=\left\{f\left(x_{n}\right)\right\}, x \in E$. Then, its adjoint $R^{*}:\left(E_{d}\right)^{* *} \longrightarrow E^{* *}$ is given by $R^{*}\left(e_{j}\right)(f)=e_{j}(R(f))=f\left(x_{j}\right)$. Let $T=\left.\left(R^{*}\right)\right|_{E_{d}}$ and $\left\{\alpha_{n}\right\} \in E_{d}$. Then

$$
T\left(\left\{\alpha_{n}\right\}\right)=\sum_{n=1}^{\infty} \alpha_{n} T\left(e_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n} x_{n}
$$

But $\left\{f_{n}(x)\right\} \in E_{d}$. So $T\left(\left\{f_{n}(x)\right\}\right)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$. Take $K=T U$. Then $K \in$ $L(E)$ and $K(x)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$. Moreover, T is a bounded linear operator such that
$\|K(x)\| \leq\|T\|\left\|\left\{f_{n}(x)\right\}\right\|$. Hence

$$
\frac{1}{\|T\|}\|K(x)\| \leq\left\|\left\{f_{n}(x)\right\}\right\| \leq B\|x\|, x \in E
$$

Next, we construct a K^{*}-atomic decomposition for E^{*} from a given K-atomic decomposition for E.

Theorem 3.11. Let E_{d} be a BK-space with dual $\left(E_{d}\right)^{*}$ and let E_{d} and $\left(E_{d}\right)^{*}$ have sequences of canonical unit vectors $\left\{e_{n}\right\}$ and $\left\{v_{n}\right\}$ respectively as basis. Let $\left(x_{n}, f_{n}\right)$ be a K-atomic decomposition for E with respect to E_{d}. Let $S: E_{d} \longrightarrow E$ given by $S\left(\left\{d_{n}\right\}\right)=\sum_{n=1}^{\infty} d_{n} x_{n}$ be a well defined mapping. Then, $\left(f_{n}, \pi\left(x_{n}\right)\right)$ is a K^{*}-atomic decomposition for E^{*} with respect to $\left(E_{d}\right)^{*}$.

Proof. For each $x \in E, K(x)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$. Thus $f(K(x))=\sum_{n=1}^{\infty} f_{n}(x) f\left(x_{n}\right)$.
Take $n, m \in \mathbb{N}$ with $m \leq n$. Then for $f \in E^{*}$

$$
\left\|\sum_{k=m}^{n} f\left(x_{k}\right) f_{k}\right\|=\sup _{x \in E,\|x\|=1}\left|\sum_{k=m}^{n} f\left(x_{k}\right) f_{k}(x)\right| .
$$

Therefore, $\sum_{n=1}^{\infty} f\left(x_{n}\right) f_{n}$ converges for all $f \in E^{*}$. Also, for $x \in E$, we have

$$
\left(K^{*}(f)\right)(x)=f\left(\sum_{n=1}^{\infty} f_{n}(x) x_{n}\right)=\left(\sum_{n=1}^{\infty} f\left(x_{n}\right) f_{n}\right)(x)
$$

This gives $K^{*}(f)=\sum_{n=1}^{\infty} f\left(x_{n}\right) f_{n}$, for $f \in E^{*}$. Note that $S^{*}(f)\left(e_{j}\right)=f\left(S\left(e_{j}\right)\right)=f\left(x_{j}\right), f \in E^{*}$. So, $S^{*}(f)=\left\{f\left(x_{n}\right)\right\}$ and $\left\{f\left(x_{n}\right)\right\}=$ $\left\{f\left(S\left(e_{n}\right)\right)\right\} \in\left(E_{d}\right)^{*}, f \in E^{*}$. Also

$$
\left\|\left\{f\left(x_{n}\right)\right\}\right\|_{\left(E_{d}\right)^{*}}=\left\|S^{*}(f)\right\| \leq\|S\|\|f\|_{E^{*}}, f \in E^{*}
$$

Define $R: E \longrightarrow E_{d}$ by $R(x)=\left\{f_{n}(x)\right\}, x \in E$. Then, $R^{*}\left(v_{j}\right)(x)=v_{j}(R(x))=$ $f_{j}(x), x \in E$. So, $R^{*}\left(v_{j}\right)=f_{j}$, for all $j \in \mathbb{N}$ and for $\left\{\alpha_{n}\right\} \in\left(E_{d}\right)^{*}$ we have

$$
R^{*}\left(\left\{\alpha_{n}\right\}\right)=R^{*}\left(\sum_{n=1}^{\infty} \alpha_{n} v_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n} R^{*}\left(v_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n} f_{n} .
$$

Therefore, we have

$$
R^{*} S^{*}(f)=R^{*}\left(\left\{f\left(x_{n}\right)\right\}\right)=\sum_{n=1}^{\infty} f\left(x_{n}\right) f_{n}, f \in E^{*}
$$

Moreover, $K^{*}=R^{*} S^{*}$ and so

$$
\left\|K^{*}(f)\right\|_{E^{*}}=\left\|R^{*} S^{*}(f)\right\|_{E^{*}} \leq\left\|R^{*}\right\|\left\|\left\{f\left(x_{n}\right)\right\}\right\|_{\left(E_{d}\right)^{*}}, f \in E^{*}
$$

This gives

$$
\begin{equation*}
\frac{1}{\left\|R^{*}\right\|}\left\|K^{*}(f)\right\|_{E^{*}} \leq\left\|\left\{f\left(x_{n}\right)\right\}\right\|_{\left(E_{d}\right)^{*}} \leq\|S\|\|f\|_{E^{*}}, f \in E^{*} \tag{4}
\end{equation*}
$$

Hence, $\left(f_{n}, \pi\left(x_{n}\right)\right)$ is a K^{*}-atomic decomposition for E^{*} with respect to $\left(E_{d}\right)^{*}$.

Next, we give the following result characterizing the class of K-atomic decompositions.

Theorem 3.12. Let $\left(x_{n}, f_{n}\right)$ be a K-atomic decomposition for E with respect to E_{d} with bounds A and B. Let $T: E_{d} \longrightarrow E$ given by $T\left(\left\{\alpha_{n}\right\}\right)=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ is well defined for $\left\{\alpha_{n}\right\} \in E_{d}$ and let $U: E \longrightarrow E_{d}$ be the mapping given by $U(x)=$ $\left\{f_{n}(x)\right\}$. If K is invertible, then the following statements are equivalent.
(a) T is the pseudo inverse of U.
(b) $\left(x_{n}, f_{n}\right)$ is an atomic decomposition for E with respect to E_{d}.
(c) T is a linear extension of $U^{-1}: U(E) \longrightarrow E$.
(d) $U(E)$ is a complemented subspace of E_{d}.
(e) $\operatorname{Ker} T$ is a complemented subspace of E_{d} and T is surjective.

Proof. $(a) \Rightarrow(b)$ By hypothesis, $\left\{x \in E: f_{n}(x)=0\right.$, for all $\left.n \in \mathbb{N}\right\}=\{0\}$. So, $\operatorname{Ker} U=\{0\}$. Since T is the pseudo inverse of U, by Lemma 2.4 there exists a continuous projection operator $\theta: E \longrightarrow E$ such that $T U=I_{E}-\theta$ and $\operatorname{ker} U=$ $\theta(E)$. Thus, for each $x \in E$, we have

$$
T U(x)=\left(I_{E}-\theta\right)(x)=x, x \in E
$$

Hence, for every $x \in E, \sum_{n=1}^{\infty} f_{n}(x) x_{n}=x$. $(b) \Rightarrow(a)$ For $x \in E$, we have

$$
U T U(x)=U T\left(\left\{f_{n}(x)\right\}\right)=U\left(\sum_{n=1}^{\infty} f_{n}(x) x_{n}\right)=U(x)
$$

Hence, $U T U=U$.
$(c) \Rightarrow(b)$ If T is a linear extension of $U^{-1}: U(E) \longrightarrow E$, then $T U: E \longrightarrow E$ is the identity map on E. So, $T U(x)=x$ and $\sum_{n=1}^{\infty} f_{n}(x) x_{n}=x$.
$(c) \Rightarrow(a)$ Obvious, since $U T U=U I_{E}=U$.
$(\mathrm{d}) \Rightarrow(\mathrm{b})$ Suppose $E_{d}=U(E) \oplus G$, where G is a closed subspace of E_{d}. Let P be a projection of E_{d} onto $U(E)$ along G.
Then, $P\left(\left\{\alpha_{n}\right\}\right)=\left\{f_{n}\left(\sum_{k=1}^{\infty} \alpha_{k} x_{k}\right)\right\}$, for all $\left\{\alpha_{n}\right\} \in E_{d}$. Therefore

$$
\begin{aligned}
U^{-1} \circ P\left(\left\{\alpha_{n}\right\}\right) & =U^{-1}\left\{f_{n}\left(\sum_{k=1}^{\infty} \alpha_{k} x_{k}\right)\right\}=\sum_{k=1}^{\infty} \alpha_{n} x_{n} \\
& =T\left(\left\{\alpha_{n}\right\}\right), \text { for all }\left\{\alpha_{n}\right\} \in E_{d}
\end{aligned}
$$

This gives, $\mathrm{T}=U^{-1} \circ P$ and

$$
T\left(\left\{f_{n}(x)\right\}\right)=U^{-1} \circ P\left(\left\{f_{n}(x)\right\}\right)=U^{-1}\left(\left\{f_{n}(x)\right\}\right.
$$

Hence, $x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$, for all $x \in E$.
$(\mathrm{b}) \Rightarrow(\mathrm{d})$ Obvious.
$(\mathrm{e}) \Rightarrow(\mathrm{b})$ Let $E_{d}=\operatorname{ker} T \oplus M$, where M is a closed subspace of E_{d}. Take $\Upsilon=$ ker $T \oplus U(E)$. Let $Q: E_{d} \longrightarrow M$ be a projection from E_{d} onto M along ker T.

Define $L: E_{d} \longrightarrow \Upsilon$ by $L(\alpha)=(\alpha-Q(\alpha), U T(\alpha))$, for $\alpha=\left\{\alpha_{n}\right\} \in E_{d}$. Let $L(\alpha)=0$. This gives $Q(\alpha)=\alpha$. So $\alpha \in M$. Let $U T(\alpha)=0$. Then

$$
U\left(\sum_{n=1}^{\infty} \alpha_{n} x_{n}\right)=\left\{f_{n}\left(\sum_{k=1}^{\infty} \alpha_{k} x_{k}\right)\right\}=0, \text { for } n \in \mathbb{N}
$$

This gives $\sum_{n=1}^{\infty} \alpha_{n} x_{n}=0$ and so, $\alpha \in \operatorname{ker} T$. Thus, $\alpha \in \operatorname{ker} T \cap M=\{0\}$. Hence, L is one-one.
Let $\left(\alpha_{0}, U(x)\right) \in k e r T \oplus U(E)$, for $\alpha_{0} \in k e r U$ and $U(x) \in U(E)$.
Since, T is onto, for each $x \in E$, there exists $\beta \in E_{d}$ such that $T(\beta)=x$ and this gives $U T(\beta)=U(x)$. Take $\alpha=\alpha_{0}+Q(\beta)$. Then $Q(\alpha)=Q\left(\alpha_{0}\right)+Q^{2}(\beta)=Q(\beta)$ and $\alpha_{0}=\alpha-Q(\alpha)$. Also, we have

$$
\begin{equation*}
U T(\alpha)=U T\left(\alpha-\alpha_{0}\right)=U T(Q(\beta))=U T(\beta)=U(x) \tag{5}
\end{equation*}
$$

Thus $L(\alpha)=\left(\alpha_{0}, U T(x)\right)$ and L is an isomorphism from E_{d} onto Υ. So, there is a projection $P=U T: E_{d} \longrightarrow U(E)$ onto $U(E)$ along kerT. This gives

$$
U^{-1} \circ P=T \text { and } U^{-1} \circ P\left(\left\{f_{n}(x)\right\}\right)=T\left(\left\{f_{n}(x)\right\}\right) .
$$

Finally, we have

$$
U^{-1}\left(\left\{f_{n}(x)\right\}\right)=\sum_{n=1}^{\infty} f_{n}(x) x_{n} \text { and } x=\sum_{n=1}^{\infty} f_{n}(x) x_{n}
$$

Therefore, $\left(x_{n}, f_{n}\right)$ is an atomic decomposition for E with respect to E_{d}. (b) \Rightarrow (e) Obvious.

Next, we prove a duality type result for a K-atomic decomposition for E.
Theorem 3.13. Let E_{d} be a reflexive $B K$-space with its dual $\left(E_{d}\right)^{*}$ and let sequences of canonical unit vectors $\left\{e_{n}\right\}$ and $\left\{v_{n}\right\}$ be bases for E_{d} and $\left(E_{d}\right)^{*}$, respectively. Let $\left(f_{n}, \pi\left(x_{n}\right)\right)$ be a K-atomic Decomposition for E^{*} with respect to $\left(E_{d}\right)^{*}$. If $S:\left(E_{d}\right)^{*} \longrightarrow E^{*}$ given by $S\left(\left\{d_{n}\right\}\right)=\sum_{n=1}^{\infty} d_{n} f_{n}$ is well defined for $\left\{d_{n}\right\} \in E_{d}^{*}$, then there exists a linear operator $L \in L(E)$ such that $\left(x_{n}, f_{n}\right)$ is L-atomic decomposition for E with respect to E_{d}.

Proof. For $f \in E^{*}$, we have $K(f)=\sum_{n=1}^{\infty} f\left(x_{n}\right) f_{n}$. Let $m, n \in \mathbb{N}$ with $m \leq n$ and $x \in E$. Then

$$
\left\|\sum_{k=m}^{n} f_{k}(x) x_{k}\right\|_{E}=\sup _{f \in E^{*},\|f\|=1}\left|\sum_{k=m}^{n} f_{k}(x) f\left(x_{k}\right)\right|
$$

Thus, $\sum_{n=1}^{\infty} f_{n}(x) x_{n}$ converges, for all $x \in E$. Define $L: E \longrightarrow E$ by $L(x)=$ $\sum_{n=1}^{\infty} f_{n}(x) x_{n}, x \in E$. Note that $S\left(v_{n}\right)=f_{n}, n \in \mathbb{N}$ and for $x \in E$, the linear bounded operator $S^{*}: E^{* *} \longrightarrow\left(E_{d}\right)^{* *}$ satisfies

$$
S^{*}(\pi(x))\left(v_{n}\right)=\pi(x) S\left(v_{n}\right)=f_{n}(x)
$$

So, $\left\{f_{n}(x)\right\}$ is identified with $S^{*}(\pi(x)) \in\left(E_{d}\right)^{* *}=E_{d}$. Further, we have

$$
\begin{equation*}
\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}}=\left\|S^{*}(\pi(x))\right\|_{E_{d}} \leq\|S\|\|x\|_{E}, x \in E \tag{6}
\end{equation*}
$$

Letting $U=\left.S^{*}\right|_{E}$, we have $U(x)=\left\{f_{n}(x)\right\}$ and $\|U\| \leq\|S\|$.
Define $R: E^{*} \longrightarrow\left(E_{d}\right)^{*}$ by $R(f)=\left\{f\left(x_{n}\right)\right\}, f \in E^{*}$. Then

$$
R^{*}\left(e_{j}\right)(f)=e_{j}(R(f))=f\left(x_{j}\right), \quad f \in E^{*}
$$

So, $R^{*}\left(e_{j}\right)=x_{j}$, for all $j \in \mathbb{N}$. Take $T=\left.\left(R^{*}\right)\right|_{E_{d}}$. Then, for $\left\{\alpha_{n}\right\} \in E_{d}$ we have

$$
T\left(\left\{\alpha_{n}\right\}\right)=T\left(\sum_{n=1}^{\infty} \alpha_{n} e_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n} T\left(e_{n}\right)=\sum_{n=1}^{\infty} \alpha_{n} x_{n}
$$

Thus, $T U(x)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$, for all $x \in E$ and this gives $T U=L$ on E. Therefore, $\frac{1}{\|T\|}\|L(x)\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}}$. Then

$$
\frac{1}{\|T\|}\|L(x)\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq\|S\|\|x\|_{E}
$$

Hence, $\left(x_{n}, f_{n}\right)$ is L-atomic decomposition for E with respect to E_{d}.
Next, we give the results related to perturbation of K-atomic decomposition for E.

Theorem 3.14. Let $\left(x_{n}, f_{n}\right)$ be an atomic decomposition for E with respect to E_{d} with bounds A and B. Let $\left(y_{n}, f_{n}\right)$ be a K-atomic decomposition for E with respect to E_{d} with bounds C and D. If there exists $\lambda>0$ with $\frac{\lambda D}{C}<1$, then there exist a sequence $\left\{g_{n}\right\} \subseteq E^{*}$ such that $\left(x_{n}+\lambda y_{n}, g_{n}\right)$ is an atomic decomposition for E with respect to E_{d} with bounds $\frac{A C}{C+\lambda A}$ and $\frac{D C}{C-\lambda D}$.

Proof. Take $L=I_{E}+\lambda K$. Then, $L: E \longrightarrow E$ is given by $L(x)=\sum_{n=1}^{\infty} f_{n}(x)\left(x_{n}+\lambda y_{n}\right)$. Also, we have

$$
\begin{aligned}
\|L(x)\|_{E}=\left\|\left(I_{E}+\lambda K\right)(x)\right\|_{E} & \leq\|x\|_{E}+\lambda\|K(x)\|_{E} \\
& \leq \frac{C+\lambda A}{A C}\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}}
\end{aligned}
$$

and $\|L\| \leq \frac{D(C+\lambda A)}{A C}$. This yields

$$
\frac{A C}{C+\lambda A}\|L(x)\|_{E} \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq D\|x\|_{E}
$$

So, $\left(x_{n}+\lambda y_{n}, f_{n}\right)$ is an L-atomic decomposition with respect to E_{d} with bounds $\frac{A C}{C+\lambda A}$ and D. Also, since $\left(y_{n}, f_{n}\right)$ is a K-atomic decomposition, we have:

$$
\left\|\left(I_{E}-L\right)(x)\right\|_{E}=\lambda\left\|\sum_{n=1}^{\infty} f_{n}(x) y_{n}\right\|_{E}=\lambda\|K(x)\|_{E} \leq \frac{\lambda D}{C}\|x\|_{E}
$$

This gives $\left\|I_{E}-L\right\| \leq 1$. Thus L is invertible.

$$
\begin{equation*}
\text { Also, }\|x\|_{E}-\|L(x)\|_{E} \leq \frac{\lambda D}{C}\|x\|_{E} \tag{7}
\end{equation*}
$$

So, $\left\|L^{-1}\right\| \leq \frac{C}{C-\lambda D}$. For $n \in \mathbb{N}$, take $g_{n}=\left(L^{-1}\right)^{*} f_{n}$. Then, for $x \in E$, we have

$$
\begin{aligned}
x & =L L^{-1}(x)=L\left(L^{-1}(x)\right)=\sum_{n=1}^{\infty} f_{n}\left(L^{-1}(x)\right)\left(x_{n}+\lambda y_{n}\right) \\
& =\sum_{n=1}^{\infty}\left(\left(L^{-1}\right)^{*}\left(f_{n}\right)\right)(x)\left(x_{n}+\lambda y_{n}\right)=\sum_{n=1}^{\infty} g_{n}(x)\left(x_{n}+\lambda y_{n}\right)
\end{aligned}
$$

For $x \in E,\left\{g_{n}(x)\right\}=\left\{f_{n}\left(L^{-1}(x)\right)\right\} \in E_{d}$.
Also, if $x \in E$, then

$$
\frac{A C}{C+\lambda A}\|x\|_{E}=\frac{A C}{C+\lambda A}\left\|L\left(L^{-1}(x)\right)\right\| \leq\left\|\left\{f_{n}\left(L^{-1}(x)\right)\right\}\right\|_{E_{d}}
$$

and

$$
\begin{aligned}
\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}} & =\left\|\left\{f_{n}\left(L^{-1}(x)\right)\right\}\right\|_{E_{d}} \leq D\left\|L^{-1}(x)\right\|_{E} \leq D\left\|L^{-1}\right\|\|x\|_{E} \\
& \leq \frac{D C}{C-\lambda D}\|x\|
\end{aligned}
$$

Thus, for $x \in E$, we have

$$
\frac{A C}{C+\lambda A}\|x\|_{E} \leq\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}} \leq \frac{D C}{C-\lambda D}\|x\|_{E}
$$

Hence, $\left(x_{n}+\lambda y_{n}, g_{n}\right)$ is an atomic decomposition for E with respect to E_{d} with bounds $\frac{A C}{C+\lambda A}$ and $\frac{D C}{C-\lambda D}$.
Theorem 3.15. Let E_{d} be a BK-space with a sequence of canonical vectors as basis. Let $\left(x_{n}, f_{n}\right)$ be a K-atomic decomposition for E with respect to E_{d} with bounds A, B and let K has a generalized inverse K^{+}. Let $\alpha, \beta, \gamma \in[0, \infty)$ with $\max \left\{\beta,\left(\alpha+\gamma B\left\|K^{+}\right\|\|K\|\right)\right\}<1$ and $\left\{y_{n}\right\} \subseteq E$. If
$\left\|\sum_{k=1}^{n} d_{k}\left(x_{k}-y_{k}\right)\right\|_{E} \leq \alpha\left\|\sum_{k=1}^{n} d_{k} x_{k}\right\|_{E}+\beta\left\|\sum_{k=1}^{n} d_{k} y_{k}\right\|_{E}+\gamma\left\|\left\{d_{k}\right\}_{k=1}^{n}\right\|_{E_{d}}$ for any finite scalars $d_{1}, d_{2}, d_{3}, \ldots, d_{n}, n \in \mathbb{N}$, then there exists $\left\{g_{n}\right\} \subseteq E^{*}$ and a linear operator $T \in L(E)$ such that $\left(y_{n}, g_{n}\right)$ is a T-atomic decomposition for E with respect to E_{d} with bounds $\frac{A(1-\beta)}{1+\alpha+\gamma B\left\|K^{+}\right\|\|K\|}$ and $\frac{B(1+\beta)\|T\|\left\|K^{+}\right\|\|K\|}{\left[1-\left(\alpha+\gamma B\left\|K^{+}\right\|\|K\|\right)\right]}$.

Proof. For $x \in E, K(x)=\sum_{n=1}^{\infty} f_{n}(x) x_{n}$. Also, $\sum_{n=1}^{\infty} f_{n}(x) y_{n}$ converges for all $x \in E$. Let $L: E \longrightarrow E$ be defined by $L(x)=\sum_{n=1}^{\infty} f_{n}(x) y_{n}, x \in E$. For $x \in E$, we have

$$
\begin{align*}
\|K(x)-L(x)\|_{E} & =\left\|\sum_{n=1}^{\infty} f_{n}(x)\left(x_{n}-y_{n}\right)\right\|_{E} \\
& \leq \alpha\|K(x)\|_{E}+\beta\|L(x)\|_{E} \tag{8}\\
& +\gamma\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}}
\end{align*}
$$

Also, for $x \in K(E)$, we have

$$
\|x\|_{E}=\left\|K K^{+}(x)\right\|_{E}=\left\|K K^{+} K(x)\right\|_{E} \leq\|K\|\left\|K^{+}\right\|\|K(x)\|_{E}
$$

and

$$
\begin{equation*}
\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}} \leq B\|x\|_{E} \leq B\|K\|\left\|K^{+}\right\|\|K(x)\|_{E} \tag{9}
\end{equation*}
$$

From 8 and 9, we have

$$
\|K(x)-L(x)\|_{E} \leq\left(\alpha+\gamma B\|K\|\left\|K^{+}\right\|\right)\|K(x)\|_{E}+\beta\|L(x)\|_{E}
$$

Thus, for any $x \in K(E)$, we have

$$
\begin{aligned}
\frac{1-\left(\alpha+\gamma B\|K\|\left\|K^{+}\right\|\right)}{1+\beta}\|K(x)\|_{E} & \leq\|L(x)\|_{E} \\
& \leq \frac{1+\alpha+\gamma B\|K\|\left\|K^{+}\right\|}{1-\beta}\|K(x)\|_{E}
\end{aligned}
$$

and

$$
\begin{equation*}
\frac{\left[1-\left(\alpha+\gamma B\|K\|\left\|K^{+}\right\|\right)\right]}{(1+\beta)\|K\|\left\|K^{+}\right\|}\|x\| \leq\|L(x)\| \leq \frac{\left[1+\alpha+\gamma B\|K\|\left\|K^{+}\right\|\right]}{(1-\beta) A B^{-1}}\|x\| \tag{10}
\end{equation*}
$$

Take $V=\left.L\right|_{K(E)}$. We shall show that $V(K(E))$ is closed. Let $\left\{s_{n}\right\} \subseteq V(K(E))$ such that $s_{n} \rightarrow s \in E$. For each s_{n}, there exists $t_{n} \in K(E)$ such that $s_{n}=V\left(t_{n}\right)$, for all $n \in \mathbb{N}$. Now, we have

$$
\left\|t_{n+m}-t_{n}\right\| \leq C^{-1}\left\|V\left(t_{n+m}-t_{n}\right)\right\| \leq C^{-1}\left\|s_{n+m}-s_{n}\right\|
$$

where $C=\frac{\left[1-\left(\alpha+\gamma B\|K\|\left\|K^{+}\right\|\right)\right]\|K\|^{-1}\left\|K^{+}\right\|^{-1}}{1+\beta}$. Since $\left\{s_{n}\right\}$ is a Cauchy sequence, it follows that $\left\{t_{n}\right\}$ is also a Cauchy sequence. But $K(E)$ is closed. So, there exists $t \in K(E)$ such that $t_{n} \rightarrow t$ and

$$
s=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} V\left(t_{n}\right)=V(t) \in V(K(E))
$$

From (10), we conclude that V is injective on $K(E)$. Therefore, $V: K(E) \longrightarrow$ $V(K(E))$ is invertible. Let $T: E \longrightarrow V(K(E))$ be an orthogonal projection from E to $V(K(E))$. Define $g_{n}=\left(V^{-1} T\right)^{*} f_{n}, n \in \mathbb{N}$. Then for $x \in E$, we have

$$
\begin{aligned}
T(x) & =V V^{-1}(T(x))=V\left(V^{-1} T(x)\right)=\sum_{n=1}^{\infty} f_{n}\left(\left(V^{-1} T\right)(x)\right) y_{n} \\
& =\sum_{n=1}^{\infty}\left(\left(V^{-1} T\right)^{*} f_{n}\right)(x) y_{n}=\sum_{n=1}^{\infty} g_{n}(x) y_{n}
\end{aligned}
$$

Also, for $x \in E$ we have $\left\{g_{n}(x)\right\}=\left\{\left(f_{n}\left(L^{-1} T\right)\right)(x)\right\} \in E_{d}$ and

$$
\begin{aligned}
\|T(x)\|_{E} & =\left\|V\left(V^{-1} T(x)\right)\right\|_{E} \\
& \leq \frac{1+\alpha+\gamma B\|K\|\left\|K^{+}\right\|}{1-\beta} \| K\left(V^{-1} T(x) \|_{E}\right. \\
& \leq \frac{1+\alpha+\gamma B\|K\|\left\|K^{+}\right\|}{A(1-\beta)}\left\|\left\{f_{n}\left(V^{-1} T(x)\right)\right\}\right\|_{E_{d}}
\end{aligned}
$$

For $x \in E$ we have

$$
\begin{equation*}
\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}}=\left\|\left\{f_{n}\left(V^{-1} T(x)\right)\right\}\right\|_{E_{d}} \leq B\left\|V^{-1} T(x)\right\|_{E} \tag{11}
\end{equation*}
$$

Also, for $y \in V(K(E))$, we have

$$
\begin{equation*}
\left\|V^{-1}(y)\right\|_{E} \leq \frac{(1+\beta)\|K\|\left\|K^{+}\right\|}{1-\left(\alpha+\gamma B\|K\|\left\|K^{+}\right\|\right)}\|y\|_{E} \tag{12}
\end{equation*}
$$

From (11) and (12), we conclude that

$$
\begin{aligned}
\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}} & \leq \frac{B(1+\beta)\|K\|\left\|K^{+}\right\|}{1-\left(\alpha+\gamma B\|K\|\left\|K^{+}\right\|\right)}\|T(x)\|_{E} \\
& \leq \frac{B(1+\beta)\|K\|\left\|K^{+}\right\|}{1-\left(\alpha+\gamma B\|K\|\left\|K^{+}\right\|\right)}\|T\|\|x\|_{E}, x \in E
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{A(1-\beta)}{1+\alpha+\gamma B\|K\|\left\|K^{+}\right\|}\|T(x)\|_{E} & \leq\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}} \\
& \leq \frac{B(1+\beta)\|T\|\|K\|\left\|K^{+}\right\|}{1-\left(\alpha+\gamma B\|K\|\left\|K^{+}\right\|\right)}\|x\|_{E}
\end{aligned}
$$

Finally, we prove the following result related to the perturbation of an atomic decomposition for E.

Theorem 3.16. Let $\left(x_{n}, f_{n}\right)$ be an atomic decomposition for E with respect to E_{d} with bounds A and B. Let $\left(x_{n}, g_{n}\right)$ be a K-atomic decomposition for E with respect to E_{d} with bounds C and D. Let $T: E_{d} \longrightarrow E$ given by $T\left(\left\{\alpha_{n}\right\}\right)=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ be a well defined map for $\left\{\alpha_{n}\right\} \in E_{d}$. If there exists $\lambda>0$ such that $\frac{\lambda D}{C}<1$, then there exists $\left\{y_{n}\right\} \subseteq E$ such that $\left(y_{n}, f_{n}+\lambda g_{n}\right)$ is an atomic decomposition for E with respect to E_{d} with bounds $\frac{C-\lambda D}{C\|T\|}$ and $B+\lambda D$.
Proof. Define an operator $L=I_{E}+\lambda K: E \longrightarrow E$ by $L(x)=\sum_{n=1}^{\infty}\left(f_{n}+\lambda g_{n}\right)(x) x_{n}$, for all $x \in E$. Then

$$
\left\{\left(f_{n}+\lambda g_{n}\right)(x)\right\}=\left\{f_{n}(x)\right\}+\lambda\left\{g_{n}(x)\right\} \in E_{d}
$$

and

$$
\begin{aligned}
\left\|\left\{\left(f_{n}+\lambda g_{n}\right)(x)\right\}\right\|_{E_{d}} & \leq\left\|\left\{f_{n}(x)\right\}\right\|_{E_{d}}+\lambda\left\|\left\{g_{n}(x)\right\}\right\|_{E_{d}} \\
& \leq(B+\lambda D)\|x\|_{E}
\end{aligned}
$$

Now define $U: E \longrightarrow E_{d}$ by $U(x)=\left\{\left(f_{n}+\lambda g_{n}\right)(x)\right\}$. Then, U is well defined and $\|U\| \leq B+\lambda D$. Since

$$
T U(x)=T\left(\left\{\left(f_{n}+\lambda g_{n}\right)(x)\right\}\right)=\sum_{n=1}^{\infty}\left(f_{n}+\lambda g_{n}\right)(x) x_{n}, x \in E
$$

we conclude that $L=T U$. Moreover, we have

$$
\|L(x)\|_{E}=\|T U(x)\|_{E} \leq\|T\|\left\|\left\{\left(f_{n}+\lambda g_{n}\right)(x)\right\}\right\|_{E_{d}} .
$$

Thus

$$
\frac{1}{\|T\|}\|L(x)\|_{E} \leq\left\|\left\{\left(f_{n}+\lambda g_{n}\right)(x)\right\}\right\|_{E_{d}} \leq(B+\lambda D)\|x\|_{E}, x \in E
$$

Therefore, $\left(x_{n}, f_{n}+\lambda g_{n}\right)$ is L-atomic decomposition for E with respect to E_{d}. Since

$$
\left\|\left(I_{E}-L\right)(x)\right\|_{E}=\lambda\|K(x)\|_{E} \leq \frac{\lambda D}{C}\|x\|_{E}, x \in E
$$

L is invertible. Thus, we have

$$
\|x\|_{E}-\|L(x)\|_{E} \leq \frac{\lambda D}{C}\|x\|_{E}, x \in E
$$

This gives, $\left\|L^{-1}\right\| \leq \frac{C}{C-\lambda D}$. Define $y_{n}=L^{-1}\left(x_{n}\right)$, for $n \in \mathbb{N}$. Then, for $x \in E$, we have

$$
\begin{aligned}
x & =L^{-1} L(x)=L^{-1}\left(\sum_{n=1}^{\infty}\left(f_{n}+\lambda g_{n}\right)(x) x_{n}\right) \\
& =\sum_{n=1}^{\infty}\left(f_{n}+\lambda g_{n}\right)(x) L^{-1}\left(x_{n}\right)=\sum_{n=1}^{\infty}\left(f_{n}+\lambda g_{n}\right)(x) y_{n}
\end{aligned}
$$

So

$$
\begin{aligned}
\|x\|_{E} & =\left\|L^{-1} L(x)\right\|_{E} \leq\left\|L^{-1}\right\|\|T\|\left\|\left\{\left(f_{n}+\lambda g_{n}\right)(x)\right\}\right\|_{E_{d}}, x \in E \\
& \leq \frac{C}{C-\lambda D}\|T\|\left\|\left\{\left(f_{n}+\lambda g_{n}\right)(x)\right\}\right\|_{E_{d}}
\end{aligned}
$$

Therefore

$$
\frac{C-\lambda D}{C\|T\|}\|x\|_{E} \leq \|\left\{\left(f_{n}+\lambda g_{n}\right\}\left\|_{E_{d}} \leq(B+\lambda D)\right\| x \|_{E}, x \in E .\right.
$$

Hence, $\left(y_{n}, f_{n}+\lambda g_{n}\right)$ is an atomic decomposition for E with respect to E_{d} with bounds $\frac{C-\lambda D}{C\|T\|}$ and $B+\lambda D$.

Acknowledgement

The authors sincerely thanks the referee for his observations and remarks for the improvement of the paper.

References

[1] S. R. Caradus, Generalized inverses and operator theory. Queen's Papers in Pure and Applied Mathematics, 50. Queen's University, Kingston, Ont.,206, 1978.
[2] P. Casazza, O. Christensen, D. T. Stoeva, Frame expansions in separable Banach spaces. J. Math. Anal. Appl. 307, 2, 710-723, 2005.
[3] O. Christensen, C. Heil, Perturbations of Banach frames and atomic decompositions. Math. Nachr. 185, 33-47, 1997.
[4] O. Christensen, An introduction to frames and Riesz bases. Applied and Numerical Harmonic Analysis. Birkh?user Boston, Inc., Boston, MA, xxii+440 pp. ISBN: 0-8176-4295-1 2003.
[5] D. T. Stoeva, Perturbation of frames in Banach spaces. Asian-Eur. J. Math. 5, 1, 1250011, 15pages 2012.
[6] R. J. Duffin, A. C. Schaeffer, A class of nonharmonic Fourier series. Trans. Amer. Math. Soc. 72, 341-366, 1952.
[7] H. G. Feichtinger, K. Grŏchenig, A unified approach to atomic decompositions via integrable group representations. In: Function spaces and applications. Springer, Berlin, Heidelberg, 52-73, 1988.
[8] D. Gabor, Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93.26: 429-441, 1946.
[9] L. Găvruţa, Frames for operators. Appl. Comput. Harmon. Anal. 32, 1, 139-144, 2012.
[10] K. Grŏchenig, Describing functions: atomic decompositions versus frames. Monatshefte fr Mathematik, 112.1: 1-42, 1991.
[11] S. K. Kaushik, Some results concerning frames in Banach spaces. Tamkang J. Math. 38, 3, 267-276, 2007.
[12] M. Mbekhta, Partial isometries and generalized inverses. Acta Sci. Math. (Szeged) 70, 3-4, 767-781, 2004.
[13] C. Schmoeger, Partial isometries on Banach spaces. Mathematisches Institut I, Universitt Karlsruhe, 2005.
[14] A. E. Taylor, D. C. Lay, Introduction to functional analysis. Second edition. John Wiley \& Sons, New York-Chichester-Brisbane, xi+467 pp. ISBN: 0-471-84646-5, 1980.
[15] P. A. Terekhin, Frames in a Banach space. (Russian) ; translated from Funktsional. Anal. i Prilozhen. Funct. Anal. Appl. 44, 3, 199-208, 2010.
[16] X. Xiao, Y. Zhu, L. Găvruţa, Some properties of K-frames in Hilbert spaces. Results Math. 63, 3-4, 1243-1255, 2013.
[17] Y. C. Zhu, S. Y. Wang, The stability of Banach frames in Banach spaces. Acta Math. Sin. (Engl. Ser.) 26, 12, 2369-2376, 2010.
K. T. Poumai

Department Of Mathematics, Motilal Nehru college, University of Delhi, Delhi-110021, India

E-mail address: kholetim@yahoo.com.in
S. Jahan

Department of Mathematics, University of Delhi, Delhi-110007, India
E-mail address: chowdharyshahjahan@gmail.com

[^0]: 2010 Mathematics Subject Classification. 42C15, 42A38.
 Key words and phrases. Atomic decomposition, E_{d}-frames, Frames, K-Frames.
 Submitted December 28, 2016.

