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ON K-ATOMIC DECOMPOSITIONS IN BANACH SPACES

K.T. POUMAI AND S. JAHAN

ABSTRACT. L.Gavruta [9] first introduced frames for an operator K called K-
frames in Hilbert spaces. In this paper, we define K-atomic decompositions for
Banach spaces and obtain various results related to the existence of K-atomic
decompositions. Also, we discuss several methods for constructing K-atomic
decompositions together with perturbation results for K-atomic decomposi-
tions.

1. INTRODUCTION

Danis Gabor [8] introduced a fundamental approach to signal decomposition

in terms of elementary signals. Duffin and Schaeffer [6] while addressing some
deep problems in non-harmonic Fourier series, abstracted Gabor’s method to de-
fine frames for Hilbert space. Feichtinger and Grécheing [7] extended the notion of
atomic decomposition to Banach space. Grocheing [10] introduced a more general
concept for Banach spaces called Banach frame. Banach frames and atomic decom-
positions were further studied in [4].
Christensen [3] proved perturbation results for Banach frames and atomic decom-
positions. Casazza et al. [2] studied X4-frames and X 4-Bessel sequences in Banach
spaces. Stoeva [5] gave some perturbation results for X -frames and atomic de-
compositions. Gavruta [9] introduced the notion of atomic system for an operator
K and the notion of K-frame in a Hilbert space. X.Xiao et al. [16] discussed re-
lationship between K-frames and ordinary frames in Hilbert spaces. Terekhin [15]
introduced and studied frames in Banach spaces.

In the present paper, we define K-atomic decomposition for a Banach space
and prove some results on the existence of K-atomic decompositions. Also, we
discuss several methods to construct K-atomic decomposition for Banach Spaces
and finally obtain some perturbation results for K-atomic decompositions.

2. PRELIMINARIES

Throughout this paper, E will denote a Banach space over the scalar field K(R
or C), E* the dual space of FE, E; a BK-space and L(E) will denote the set of all
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bounded linear operators from E into E. For T € L(FE), T* denotes the adjoint of
T, m: FE — E** is the natural canonical projection from E onto E**.

Definition 2.1. [10] Let E be a Banach space and E; be a BK-space. A sequence
(Tns fr){zn} C E,{fn} C E*)is called an atomic decomposition for E with respect
to Ey if the following statements hold:

(a) {fu(x)} € Ey, for all x € E.
(b) There exist constants A and B with 0 < A < B < oo such that

Alzls < 1@ m, < Blalp, forall o € B 1)
(c) x= > fulx)y, foral x € E.
n=1

Definition 2.2. [2] A sequence {f,} C E* is called an FE;-frame for E if

(a) {fu(x)} € Eq, for all x € E.
(b) There exist constants A and B with 0 < A < B < oo such that

Allz e <[ {fa(@)} le, < B |z [|g, for allz € E. (2)

The constants A and B are called E4-frame bounds. If atleast (a) and the upper
bound condition in (2.2) are satisfied, then {f,} is called an F;-Bessel sequence for
E.

If {f,} is an E4-frame for E and if there exists a bounded linear operator T :
E; — FE such that T({f.(x)}) = =z, for all z € E, then ({f.},T) is called a
Banach frame for E with respect to Ejy.

Definition 2.3. [12] Let T' € L(E). We say that an operator S € L(FE) is a pseudo
inverse of T if TST = T. Also, S € L(E) is called the generalized inverse of T if
TST =T and STS = 5.

Next, we state some results in the form of lemmas which will be used in the
subsequent results.

Lemma 2.4. [14,17] Let X, Y be Banach spaces and T : X — Y be a bounded
linear operator. Then, the following conditions are equivalent:

(a) There exist two continuous projection operators P : X — X and Q : Y =Y
such that

P(X)=kerT and Q(Y) =T(X). (3)

(b) T has a pseudo inverse operator T.

If two continuous projection operators P: X — X and Q :' Y — Y satisfies (2.3),
then there exists a pseudo inverse operator T of T' such that TTT = Ix — P and
TTY = Q, where Ix is the identity operator on X.

Lemma 2.5. [1,13] Let E be a Banach space. If T € L(E) has a generalized inverse
Se L(E), then TS, ST are projections and TS(E) = T(E) and ST(E) = S(E).

Lemma 2.6. [11] Let E be a Banach space and {f,} C E* be a sequence such
that {x € E : fo(x) = 0, for all n € N} = {0}. Then E is linearly isomet-
ric to the Banach space Xg = {{fn(x)} : © € E}, where the norm is given by

{fn@)H x,=lzlE, z € E.
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3. K-AToMIC DECOMPOSITIONS

Definition 3.1. Let E be a Banach Space, {z,} C E,{f,} C E* and K € L(E).
A pair (x,, fn) is called a K-atomic decomposition for E with respect to Ey if

(a) {fu(x)} € Ey, forall x € E.
(b) There exist constants A and B with 0 < A < B < oo such that

Al K(z) [z < [ {fn(@)}e, < B = [lg, foralzeE.
(¢) Y fo(x)my, converges for all x € F and K (z) = >, fo(x)zp.
n=1 n=1

The constants A and B are called lower and upper bounds of the K-atomic
decomposition (@, fr)-

Remark 3.2. Let (z,, f,) be a K-atomic decomposition for E with respect to Ey
and with bounds A and B.

(I). If K = Ig, then (x,, f,) is an atomic decomposition for E with respect to Ey4
with bounds A and B.

(II). 1If K is invertible, then (K ~!(z,), f») is an atomic decomposition for E with
respect to Ejy.

(III). 1f K is invertible, then there exists a bounded linear operator T : Eq — F
such that ({f,},T) is a Banach frame with respect to some BK-space Fj.

In the following example, we show the existence of K-atomic decomposition for
a Banach space E with respect to an associated BK space Ej .

Example 3.3. Let F be a Banach Space. Let{z,} C E, {f,} € E* such
that > fn(z)x, converges for all z € E and x, # 0, for all n € N. Also, let
n=1

E; = {{an}| > anz, converges}. Then Ey is a BK-space with norm ||[{an }H| g, =
n=1

sup || > agxy ||. Define T : Eg — E as T{an} = > apzy, and S: E — Ey
1<n<co k= n=1

1
as S(x) = {fn(z)}, x € E. Take K = TS. Then K : E — E is such that
K(x)=TS(z) = > fo(x)xy, for all z € E. Clearly, {f.(x)} € E4 and

n=1

> ful@)mn
n=1 k=
= H{fa@)}le, <ollz e, forallzeE,
where Sy, (z) = f: fe(@)xp and o = sup || S, | -
k=1

1<n<oo
Hence, (2, fr) is a K-atomic decomposition for E with respect to Ej.

n

|K(z)le = < sup

1<n<oo

Jr(z)zk
1

Next, we give an example of a K-atomic decomposition for £ which is not an
atomic decomposition for F.

Example 3.4. Let F = ¢y and E; = lo. Let {z,} C E be the sequence of
standard unit vectors in E and {f,} C E* be such that for x = {a,} € E, fi(z) =

0, fa(z) = ag, ..., fu(x) = an,.... It is clear that > f,(z)x, converges for z € E.

n=1
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o0
Define K : E — E by K(z) = > fu(z)x, , x € E. Then {f,(x)} € E4 is such
n=1

that (z,, fn) is a K-atomic decomz)osition for E with respect to Ey. But (2, fn)
is not an atomic decomposition for F.

Next, we give several methods to construct K-atomic decompositions for E.

Theorem 3.5. Let (,, fn) be an atomic decomposition for E with respect to Egq
with bounds A and B. Let K € L(E) with K # 0. Then

(a) (Kxp, fr) is a K-atomic decomposition for E with respect to Eq.

(b) (xn, K*(fn)) is a K-atomic decomposition for E with respect to Eq.

Proof. (a) For each x € E, K(z) = 5. fo(2)K(z,). Also, we have || K(z) ||g < |
n=1

K ||| z ||z, for all x € E. This gives

A
TET I K@) |z <[ {fa(@)}e, < Bl # |z, forallze E.

(b) For each € E and n € N, we have

K(z) =Y falK(@)zn =Y gal(@)za,

where g, = K*f,, n € N. Also
{gn(2)} = {(K* fo)(2)} = {fu(K(2))} € Eq,for all x € E.
Note that
A|K (@) <|| {fn(K@)|g, = I{K" fn(z)}|z,, for all x € E.

and
(K" fo) @)} e, = I{fa(K(2)}H e, < BIK(z)|E, forall z € E.
Hence
AK(2)||p < {gn(2)}p, < B || 2 ||p, for all x € E,
where B’ = B||K]|. O

Theorem 3.6. Let (z,, f,) be a K-atomic decomposition for E with respect to Ey4
and T € L(E). Then

(a) (Txy, fn) is a TK-atomic decomposition for E with respect to Ey.
(b) (xn, T*fn) is a KT-atomic decomposition for E with respect to E,.

Proof. (a)Straight forward.

(b)Since (zn, fn) is an K-atomic decomposition for F,

KT(x) =) (T fa)(@)en = Y gu(@)zn,

where g, = T f,, and = € E. Also, we have
{gn(2)} ={fn(T(z))} € Eq, for all z € E.

Further, for x € E, we have

Hgn (@)} ey = {Fn(T (@)} e, < BIT]ll|2] &
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and

AIET (@)l < [{fa(T@)} s = KT fo) (@) H 2o = {90 (2) ]2

Hence

AKT(2)| e < [{gn(@)} e, < BIT |22, = € E.

O

Theorem 3.7. If (z,, fn) is a K-atomic decomposition for E with respect to Ey4
and K has pseudo inverse KT, then there exists {gn} C E* such that (x,,gn) is a
K -atomic decomposition for E with respect to Eq.

Proof. Let A and B be positive constants such that
AlK(@)lle < [{fn(@)}H e, < Bllzlle, =€ E.

Also, for each x € E, we have

an (KTK(x Z (KT K)*(fa))(@)n.

n=1

For each n € N, define g,, = (K™ K)*(f,,). Then

1 1
1K @)lle < 5 (KT K@)}e, = 7 H{gn(@)H s, w € B
and
Han(@)H e, = {fa(ET K (@)}HE, < BIKHIKl|2]E, « € E.
Hence, we conclude that (x,,g,) is a K-atomic decomposition for E with respect

to Ed. O

In the next two results, we give necessary conditions under which an F,; frame
gives rise to a bounded operator K with respect to which there is a K-atomic
decomposition for E.

Theorem 3.8. Let {f,} C E* be an Eg-frame for E with bounds A and B. Let

{zn} € E with sup |z,] < oo and let > |fu(z)| < o0, for all x € E. Then
1<n<oco n=1

there exists an operator K € L(E) such that (xn, fn) is a K-atomic decomposition
for E with respect to E4.

Proof. Let n,m € N with n < m.Then

1> fu(@)alle <  Sup lz;llz Y | fi()], for all @ € E.

<oo k=n

Hence Y fn(x)x, converges for all x € E.
n=1

18

Define K : E — E by K(z) = fn(x)xy, x € E. Then K is a bounded linear

n=1

operator such that

n

1K @)z < sup (1Y ful@)zille < ollels,

1<n<oco k—1
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n
where 0 = sup Y. fr(z)zp. Thus

1<n<oo k=1

A
SIK@)e <l {fal@)HEe. < B 2, for allz € E.

Hence, (z,, f,) is a K-atomic decomposition for F with respect to E4 with bounds

é and B. O
o

Theorem 3.9. Let {f,} C E* be an Eq4 fmme with bounds A, B and let {x,} C
E. Let T : Eq — E given by T({a}) = Z anZn be a well defined operator.

Then, there exists a linear operator K € L( ) such that (x,, f,) is a K-atomic
decomposition for E with respect to Eq.

Proof. Define U : E — E4 by U(z) = {fn(2)}, © € E. Then U is well defined
and |U]| < B. Take K = TU. Then K(z) = Y. fu(x)z,, © € E. Therefore, by
n=1

uniform boundedness principle, we have

n

IE @) < sup 1Y fu(@)zille < ollele, « € E,

1<n<oo h—1

n
where 0 = sup || Y. fx(2)zk||g. Thus, we have
1<n<oco k=1

A
K@ < [{fa(@H < B« |, forallz € E.

Hence (x,, fn) is a K-atomic decomposition for E with respect to F4 with bounds

A
— and B. O
o

Next, we give the existence of a K-atomic decomposition from an E; Bessel
sequence.

Theorem 3.10. Let E be a reflexive Banach space and Eg be a BK-space which
has a sequence of canonical unit vectors {e,} as a basis. Let {f,} C E* be an
E,-Bessel sequence with bound B and let {x,} C E. If {f(z,)} € (Eq)* for all
f € E*, then there exists a bounded linear operator K € L(E) such that (xy,, f,) is
a K-atomic decomposition for E with respect to Eq.

Proof. Clearly U : E — Ey4 given by U(z) = {fn(x
Define a map R : E* — (E4)* by R(f) = {f(zn)}
R* : (Eq)** — E™* is given by R*(e;)(f) = e;(R(f)
and {a,} € E4. Then

)}, @ € E is well defined.
€ E. Then, its adjoint
( i) Let T'= (R")|g,

x

)
{an} Z O[n en Z AnTy.

But {fu(2)} € Ea. So T({fn(x)}) = i:fl fu(@)zn. Take K = TU. Then K €

L(E) and K(z) = Y fn(x)z,. Moreover, T is a bounded linear operator such that

n=1
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K @) < [IT[I[{fn(x )}II Hence

”T” K@) < [{fa(2)}] < Bllz], z € E

O

Next, we construct a K*-atomic decomposition for E* from a given K-atomic
decomposition for E.

Theorem 3.11. Let Ey be a BK-space with dual (E4)* and let E; and (Eq)* have
sequences of canonical unit vectors {e,} and {v,} respectively as basis. Let (T, fr)
be a K-atomic decomposition for E with respect to Eq. Let S : Eq — E given by

S{dn}) = > dnxy, be a well defined mapping. Then, (fn,7(xy)) is a K*-atomic
n=1
decomposition for E* with respect to (Eg4)*.

Proof. For each © € E, K(x) = . fo(x)z,. Thus f(K(z)) = > fulx)f(zn).
n=1
Take n, m € N with m < n. Then for f € E*

I Fae)fll = sup | flaw)frlz)
k=m

zEE |lz||l=1 T

Therefore, Y f(xzn)fn converges for all f € E*. Also, for « € E, we have

n=1
n=1 n:l

8

This gives K*(f) = Z f(zn) fn, for f € E*. Note that

n=1

(
S (N)les) = F(S(e)) = f(a;)f € E*. So, §°(f) = {f(za)} and {f(,)} =
[£(S(ea))} € (B € B*. Also

I{f (@)l za = I1S(NIF < e+, f€E"

Define R : E — E4 by R(z) = {fn(x)},z € E. Then, R*(v;)(z) = v;(R(x)) =
fi(z), z € E. So, R*(v;) = fj, for all j € N and for {a,,} € (E4)* we have

R*({an}) = R*( Z QpUp) i an R (vy,) = i Q[
n=1 n=1

Therefore, we have

oo

Moreover, K* = R*S™* and so

K= (Nlle- = 1RZS* ()l e < [RTNI{S (@a)}Hl(n~ f € E
This gives
1
1B 1K (Nlle < I{f(@n) i za < ISIIf]e=, f € £ (4)

Hence, (fn,(x,)) is a K*-atomic decomposition for E* with respect to (Eq)*. O
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Next, we give the following result characterizing the class of K-atomic decom-
positions.
Theorem 3.12. Let (z,, fn) be a K-atomic decomposition for E with respect to
E4 with bounds A and B. Let T : Eq — E given by T({a,}) = > apx, is
n=1
well defined for {a,} € B4 and let U : E — Eg4 be the mapping given by U(x) =
{fn(z)}. If K is invertible, then the following statements are equivalent.

(a) T is the pseudo inverse of U.

(b) (Tn, frn) is an atomic decomposition for E with respect to Eg.
(c) T is a linear extension of U=!: U(E) — E.

(d) U(E) is a complemented subspace of Eq.

(e) KerT is a complemented subspace of E4 and T is surjective.

Proof. (a) = (b) By hypothesis, {x € E : f,(x) =0, for all n € N} = {0}. So,
KerU = {0}. Since T is the pseudo inverse of U, by Lemma 2.4 there exists a
continuous projection operator 6 : E — E such that TU = I — 0 and kerU =
O(E). Thus, for each z € E, we have

TU(z)=(Ig—0)(x) =2, z € E.

o0
Hence, for every x € E, Y fn(z)z, = .
n=1

(b) = (a) For xz € E, we have

UTU(x) = UT({fa(2)}) = U(Y_ ful@)za) = U(2).
n=1
Hence, UTU =U.
(¢) = (b) If T is a linear extension of U~! : U(E) — E, then TU : E — E is
the identity map on E. So, TU(z) =z and Y fn(z)z, = .
n=1

(¢) = (a) Obvious, since UTU =Ulg =U.
(d)=(b) Suppose E; = U(E) ® G, where G is a closed subspace of E4. Let P be
a projection of E4 onto U(E) along G.

[e.e]

Then, P{an}) = {fn(D] arxr)}, for all {a,} € Eq. Therefore
k=1

Ul o P({an}) = U H{fu(d arz)} =D anzy
k=1 k=1
= T{an}), for all {a,} € Eq4.
This gives, T=U"! o P and
T({fa(@)}) =UT o P({fu(@)}) = U~ ({ful@)}-

o0
Hence, z = ) fo(x)xy, for all z € E.
=1

(b)=(d) Obvious.
(e)=(b) Let E4 = kerT & M, where M is a closed subspace of F4. Take T =
kerT'® U(E). Let Q : E; — M be a projection from Ey; onto M along kerT.
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Define L : E; — Y by L(a) = (o — Q(a),UT(«)), for a« = {an,} € E4. Let
L(a) = 0. This gives Q(a) = a. So o« € M. Let UT () = 0. Then

Zanacn = {fn( Zakxk }=0, forneN.

n=1 =

This gives Z anxy, = 0 and so, a € kerT. Thus, o € kerT' N M = {0}. Hence, L
n=1
is one-one.

Let (ap,U(z)) € kerT @ U(E), for ag € kerU and U(z) € U(E).
Since, T is onto, for each x € F, there exists 8 € E; such that T(S) = = and this
gives UT(B) = U(x). Take a = ag + Q(B). Then Q(a) = Q(ap) + Q*(B) = Q(B)

and ap = o — Q(«). Also, we have
UT(a) = UT(o — o) = UT(Q(B)) = UT(B) = U(x). ()
Thus L(a) = (oo, UT(z)) and L is an isomorphism from E4 onto Y. So, there is a
projection P=UT : E; — U(E) onto U(FE) along kerT. This gives
U'oP=T and U ' o P({fu(2)}) = T({ fu(z)}).

Finally, we have

“({fule an x)z, and I—an

n=1 n=1
Therefore, (x,, f,) is an atomic decomposition for E with respect to Fy.
(b)=(e) Obvious. O
Next, we prove a duality type result for a K-atomic decomposition for F.

Theorem 3.13. Let Ey be a reflevive BK-space with its dual (Eq)* and let se-
quences of canonical unit vectors {e,} and {v,} be bases for Eq and (Eq)*, respec-
tively. Let (fn,m(xy,)) be a K-atomic Decomposition for E* with respect to (E4)*

IfS: (Eq)* — E* given by S({d,}) = > dnfn is well defined for {d,} € E}, then
=1

there exists a linear operator L € L(E) such that (T, fn) is L-atomic decomposition
for E with respect to Eg.

118

Proof. For f € E*, we have K(f) =
xz € E. Then

f(zp)fn. Let m, n € N with m < n and
1

n

IS f@ade = s 1 felo)
k=m

FeExNFI=1 =,

(&)
Thus, Z fu(x)zy converges, for all x € E. DefinelL : E — E by L(z) =

io: fa(@)xy, © € E. Note that S(v,) = fn, n € N and for z € E, the linear
1g:wimded operator S* : E** — (E;)** satisfies
S*(m(@))(vn) = 7(2)S(vn) = fu(@).
So, {fn(z)} is identified with S*(7(z)) € (E4)** = E4. Further, we have
{fn@)H 2y = 15*(m (@) |z, <I S 2 lle, » € E. (6)
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Letting U = S* | g, we have U(x) ={f.(z)} and ||U| < ||S]|-
Define R : E* — (Eq)* by R(f) = {f(x,)}, f € E*. Then

R (e;)(f) = e;(R(f)) = f(z;), [e€E"
So, R*(ej) = z;,for all j € N. Take T' = (R*)|g,. Then, for {a,,} € E4 we have

o0 o
T({an}) = Z Qnén) Z anT(ey) = Z QT
n=1 n=1

Thus, TU (z) = > fn(z)xy, for all z € E and this gives TU = L on E. Therefore,
n=1

||T|| |L(z)||le < |{fn(2)}||E,. Then

||TH ||L( )”E < H{fn(x)}HEd < ”S””‘THE

Hence, (2, fr) is L-atomic decomposition for E with respect to Ej. O

Next, we give the results related to perturbation of K-atomic decomposition for
E.

Theorem 3.14. Let (z,, fn) be an atomic decomposition for E with respect to Eq
with bounds A and B. Let (yn, fn) be a K-atomic decomposition for E with respect

AD
to Eq with bounds C' and D. If there exists A > 0 with Xl < 1, then there exist

a sequence {gn} C E* such that (s, + Ayn, gn) is an atomic decomposition for E
DC

with respect to Eq with bounds SV an D

Proof. Take L = Ig + AK. Then, L : E — E is given by
L(z) = > folx)(zn + Ayn). Also, we have
n=1

L)z = Us + AK)(2)|e < |zlle + A|K(z)|z
C—l—)\A
and || L] < D(CT—E,)\A) This yields
AC
L@l < @), < Dlells.

So, (zyn, + AYn, frn) is an L-atomic decomposition with respect to E; with bounds

1A and D. Also, since (yy, fn) is a K-atomic decomposition, we have:

AD
(g~ L h%th 2alls = MK @) < 72 .
This gives ||Ig — L|| < 1. Thus L is invertible.

AD
Also, [|zllz = IL(2)lle < ~= =]z (7)
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So, L7 < & C)\D' For n € N, take g, = (L71)*f,. Then, for x € E, we have
r = LL '(z)= Z fn(L ) zn + Ayn)
= Z((L_1>*(fn))( )(@n + Ayp) = Zgn )(@n + Ayn).
n=1

For o € B, {ga(a)} = {fu(L~}(x))} € Ea.
Also, if z € E, then

arglele = 5 S I @D < 1T @)} s,

and
Hgn(@)Hle, = {faL™ @)} e, < DILH@)le < DIL |2l e
DC
< S5l
C—-\D
Thus, for € E, we have
AC

D
_— < < — .
lele < Hon@Yle, < 5= lolls
Hence, (2, + A\yn, gn) is an atomic decomposition for E with respect to Eq with

AC D
. O
bounds A and D

Theorem 3.15. Let FE; be a BK-space with a sequence of canonical vectors as
basis. Let (xn, fn) be a K-atomic decomposition for E with respect to E4 with
bounds A, B and let K has a generalized inverse K¥. Let a, 3,7 € [0,00) with
maw{ﬁ (a+~yB||IKT|||K]) } <1 and {yn} CE.If

[ Z di(ze—yr)lle < of Z drze|le + B Z diykllE +7{dk i1l B, for any finite

scalars dy,ds,ds, ... dn,n € N then there emsts {gn} C E* and a linear operator

T € L(E) such that (yn, gn) is a T-atomic decomposition for E with respect to Ey4
ACTH B BT K]

1+ a+9B|[K*||[K] (1= (e +BIIKH[[K]))

with bounds

(o) o0
Proof. For x € E, K(x) = > fo(x)xy. Also, > fn(z)y, converges for all z € E.
n=1 n=1

Let L: E — E be defined by L(z) = > fu(z)yn,x € E. For x € E, we have
n=1

n=1

ol K @)|s + BIL@)|s (8)
M@} s

1K (z) = L(2)|| £

+ IA

Also, for € K(F), we have
lzlle = KK (@)l = |[KKTK(@)|le < KKK (@)l
and
{fa(@)H Bs < Bllelle < BIE[IK K ()| 9)
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From 8 and 9, we have
1K (2) = L(2)|lp < (o +yBIKIIKTIDIK (@)l|l£ + BlIL(z)] e
Thus, for any z € K(E), we have

1 — (a+yB|K|||K*])
1+ 5

1K (@)l

IN

I1L(z)]|

1+a+B|K[|K”|
< 5

1K ()]

and
[1— (o + A BIK] K ) L+ o+ 4 BIK K]
(L+ ) KI[ K+l (1-p)AB~!
Take V = L|g(g). We shall show that V(K (E)) is closed. Let {s,} C V(K(E))

such that s, — s € E. For each s, there exists t,, € K(FE) such that s, = V(t,),
for all n € N. Now, we have

]l < IL(2)]| <

[l (10)

[tntm = tall < CTHV (tngm = ta)ll < CHisnim — snll,

1 — (o +yBIK KD~
1+5

quence, it follows that {¢,} is also a Cauchy sequence. But K(F) is closed. So,

there exists t € K(E) such that ¢, — ¢t and

s= lim s, = ILm V(t,) =V(t) € V(K(E)).

n— oo

where C' = [

. Since {s,} is a Cauchy se-

From (10), we conclude that V is injective on K(FE). Therefore, V : K(F) —
V(K(E)) is invertible. Let T : E — V(K (E)) be an orthogonal projection from
E to V(K(E)). Define g, = (V7'T)*f,, n € N. Then for 2 € E, we have

T(z) = VV H(T(2) =V(V ' T(2) = Y ful (V' T)(@))yn

- Z((V_lT)*fn)(x)yn = Zgn(x)yn

Also, for z € E we have {g,(z)} = {(fo(L71T))(z)} € E4 and

IT@le = WV T@)]s
L+ a+ BRI
< KT @)
L+ a e BIKIIEY
< s T TE) s,

For x € E we have

H{gn (@)}, = I{fH (VT T @) e, < BIVT'T(2)lle (11)
Also, for y € V(K (E)), we have

< 1yl (12)
L= (e + B KJ[[|K]])
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From (11) and (12), we conclude that
B+ )| KK
gn T E S
Hon@Hle = T (3 BIKITE )
B+ B)I KK
1 =(a+yBlIK[EH])

1T ()| &

ITlllz, =€ E

Hence
A(l-5)
1+C¥+’YBHK||||K+HHT(m)HE < ||{gn(x)}”Ed
B+ B)ITINE K
1= (a+B|K[[K*])

] &-
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Finally, we prove the following result related to the perturbation of an atomic

decomposition for E.

Theorem 3.16. Let (z,, fn) be an atomic decomposition for E with respect to Eq
with bounds A and B. Let (x,,gn) be a K-atomic decomposition for E with respect

to Eq with bounds C and D. Let T : E; — E given by T({an}) = Y. anx, be
n=1

AD
a well defined map for {a,} € Eq. If there exists A > 0 such that el < 1, then
there exists {yn} C E such that (yn, fn + Agn) is an atomic decomposition for E

with respect to Eq with bounds and B+ AD.

€-Xb
clri
Proof. Define an operator L = Ig + AK : E — E by

o0

L(z) = > (fn+ Agn)()zy, for all z € E. Then

n=1

{(fr+Agn) (@)} = {fu(@)} + Mgn(2)} € Eq

and

(o +Agn) @) Hzs < I{Fn@) s + Al{gn (@)} 4
< (B+AD)|z]e.

Now define U : E — Eg by U(x) = {

|U|| < B+ AD. Since

o0

TU(x) =T{(fn + Agn)(2)}) = Z(fn +Agn)(T)Tn, T € E,

n=1

we conclude that L = TU. Moreover, we have

L)z = TU()lle < [ITI{(fn + Agn)(@)} .-
Thus
1

L@l < Hfa + Ag) @) s, < (B +AD)ells, @ € E.

(fn+ Agn)(2)}. Then, U is well defined and

Therefore, (2, fr+Agn) is L-atomic decomposition for FE with respect to E4. Since

AD
I = L) (@)l = MK (@)le < —=llzlle, © € E,
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L is invertible. Thus, we have

AD
lallz = 1)z < % s, o € B.

This gives, |[L7Y < % Define y, = L™Y(z,,), for n € N. Then, for z € E,
we have
x = L7'L(z anJr)\gn x)z,)
n=1 n:l
So
lzle = L7 L@z < ILT TN+ Agn) (@)} p,s 2 € B
C

< -

< GBI+ Ag) @),
Therefore

C—-)\D
cliy|
Hence, (yn, fn + Agn) is an atomic decomposition for E with respect to E; with

C—-\D
bounds ——— and B + AD.
clT|

lzlle < [{(fo + Agn}lE, < (B+AD)|z|g, = € E.

O
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