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A NOTE ON SEMIMULTIPLIERS IN PRIME RINGS

KYUNG HO KIM

Abstract. Let R be a ring and g be a surjective map of R. An additive map-
ping F : R → R is called a semimultiplier if (1) F (xy) = F (x)g(y) = g(x)F (y)

(2) F (g(x)) = g(F (x)) for all x, y ∈ R. In this paper, we introduce the
notion of semimultiplier of a ring R, and investigate the commutativity of
prime rings admitting semimultipliers satisfying (1) F ([x, y]) − [x, y] = 0 (2)
F ([x, y]) + [x, y] = 0 (3) F (x ◦ y) − x ◦ y = 0 (4) F (x ◦ y) + x ◦ y = 0 (5)

F (xy) = xy (6) F (xy) = yx for all x, y in some appropriate subset of R.

1. Introduction

Many considerable works have been done on left (right) multipliers in prime and
semiprime rings during the last couple of decades([9-11]). An additive mapping
d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R.
Following [5], an additive mapping F : R → R is called a generalized derivation
on R if there exists a derivation d : R → R such that F (xy) = F (x)y + xd(y) for
every x, y ∈ R. Obviously, a generalized derivation with d = 0 covers the concept of
left multiplicars. Over the last few decares, several authors have investigated the
relationship between the commutativity of the ring R and certain specific types of
derivations of R. The first result in this direction is due to E. C. Posner [ 8] who
proved that if a ring R admits a nonzero derivation d such that [d(x), x] ∈ Z(R)
for all x ∈ R, then R is commutative. This result was subsequently, refined and
extended by a number of authors. In [7], Bresar and Vuckman showed that a
prime ring must be commutative if it admits a nonzero left derivation. Recently,
many authors have obtained commutativity theorems for prime and semiprime rings
admitting derivation, generalized derivation. In this paper, we introduce the notion
of a semimultiplier of R, and investigate the commutativity of prime rings satisfying
certain identities involving semimultiplier.

2. Preliminaries

Throughout R will represent an associative ring with center Z(R). For all x, y ∈
R, as a usual commutator, we shall write [x, y] = xy−yx, and x◦y = xy+yx. Also,
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we make use of the following two basic identities without any specific mention:

x ◦ (yz) = (x ◦ y)z − y[x, z] = y(x ◦ z) + [x, y]z

(xy) ◦ z = x(y ◦ z)− [x, z]y = (x ◦ z)y + x[y, z]

[xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z.

Recall that R is prime if aRb = {0} implies a = 0 or b = 0. A nonempty subset I
of R is called a right semigroup ideal if IR ⊆ I. Similarly, A nonempty subset I of
R is called a left semigroup ideal if RI ⊆ I. If I is both a left and a right semigroup
ideal of R, then I is called a semigroup ideal of R. An additive mapping F : R → R
is called a left multiplier if F (xy) = F (x)y holds for every x, y ∈ R. Similarly, an
additive mapping F : R → R is called a right multiplier if F (xy) = xF (y) holds for
every x, y ∈ R. If F is both a left and a right multiplier of R, then it is called a
multiplier of R.

3. Semimultipliers in prime and semiprime rings

Definition 3.1. Let R be a ring. An additive mapping F : R → R is called a
semimultiplier associated with a surjective function g : R → R if

(a) F (xy) = F (x)g(y) = g(x)F (y),
(b) F (g(x)) = g(F (x)), for every x, y ∈ R.

Lemma 3.2. Let R be a prime ring and I be a nonzero right (resp. left ) semigroup
ideal of R and F be a semimultiplier of R associated with g. If F (x) = 0 for every
x ∈ I, then F = 0.

Proof. By hypothesis, we have F (x) = 0 for any x ∈ I. Replacing x by xr with
r ∈ R in the last relation, we get

g(x)F (r) = 0, ∀ x ∈ I, r ∈ R. (1)

Since g is onto, we get xF (r) = 0 for all x ∈ I and r ∈ R. Now, replacing x by
xs in (1), we have xsF (r) = 0 for every x ∈ I and r, s ∈ R. Thus, we obtain
xRF (r) = {0} for every x ∈ I and r ∈ R. Since R is prime and I is a nonzero right
semigroup ideal of R, it implies that F = 0.

�

Lemma 3.3. Let R be a prime ring and I be a nonzero semigroup ideal of R.
Suppose that F is a semimultiplier of R associated with g and a ∈ R. If aF (x) = 0
for every x ∈ R, then a = 0 or F = 0.

Proof. By hypothesis, we have aF (x) = 0 for any x ∈ I and a ∈ R. Replacing x by
xr in the last relation, we get

ag(x)F (r) = 0, ∀ x ∈ I, r ∈ R. (2)

Since g is onto, we have axF (r) = 0 for all x ∈ I and r ∈ R. Now, replacing x
by xs in (2), we have axsF (r) = 0 for every x ∈ I and r, s ∈ R. Thus, we obtain
axRF (r) = {0} for every x ∈ I and r ∈ R. Since R is prime and I is a nonzero
right semigroup ideal of R, it implies that ax = 0 for all x ∈ I or F (r) = 0 for every
r ∈ R. Hence

aI = 0 or F = 0.
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Assume that F ̸= 0. Then we get ax = 0 for every x ∈ I. Replacing x by rx with
r ∈ R in the last equation, we have arx = 0 for every x ∈ I, r ∈ R. Thus

aRx = {0}, ∀ x ∈ I.

Since R is prime and I is a nonzero right ideal of R, we obtain a = 0.
�

Lemma 3.4. Let R be a prime ring and I be a nonzero semigroup ideal of R and
a, b ∈ R. If aIb = 0, then a = 0 or b = 0.

Proof. By hypothesis, we have axb = 0 for any x ∈ I. Replacing x by xr with r ∈ R
in the last relation, we get axrb = 0 for all x ∈ I and r ∈ R. Thus

axRb = {0}, ∀ x ∈ I. (3)

Since R is prime, we have ax = 0 or b = 0. Suppose that b ̸= 0. Then it means that
ax = 0 for all x ∈ I. Taking rx with r ∈ R instead of x in the last relation, it holds
that arx = 0 for x ∈ I, r ∈ R. Hence we have

aRx = {0}, ∀ x ∈ I.

Since R is prime and I is a nonzero semigroup ideal of R, we have a = 0.
�

Theorem 3.5. Let R be a prime ring and let I be a nonzero semigroup ideal of
R. Suppose that R admits a nonzero semimultiplier F associated with g such that
[F (x), y] = 0 for every x, y ∈ I. Then R is commutative.

Proof. By hypothesis, we have [F (x), y] = 0 for any x, y ∈ I. Replacing x by xz
with z ∈ I, in this relation, we have

[F (x)g(z), y] = F (x)[g(z), y] + [F (x), y]g(z) = 0

for every x, y, z ∈ I. Using the given hypothesis and the fact that g is onto, we
obtain F (x)[z, y] = 0 for every x, y, z ∈ I. Now, replacing y by ys with s ∈ R, in
the last relation, we obtain

F (x)y[z, s] = 0

for every x, y, z ∈ I and s ∈ R. This implies that F (x)I[z, s] = {0} for every x, z ∈ I
and s ∈ R. Thus, by Lemma 3.4, we get F (x) = 0 or [z, s] = 0 for every x, z ∈ I and
s ∈ R. Since F ̸= 0, we have [z, s] = 0 for every z ∈ I and s ∈ R. Again, replacing z
by zr with r ∈ R, in the last relation, we have [zr, s] = z[r, s] + [z, s]r = z[r, s] = 0.
This implies that xz[r, s] = 0 for 0 ̸= x ∈ I, and hence xI[r, s] = 0. By Lemma 3.4,
we have [r, s] = 0 for every r, s ∈ R, which implies that R is commutative.

�
Theorem 3.6. Let R be a prime ring and let I be a nonzero semigroup ideal of
R. Suppose that R admits a nonzero semimultiplier F associated with g such that
F (I) ⊆ Z(R). Then R is commutative.

Proof. By hypothesis, we have F (xy) ∈ Z(R) for any x, y ∈ I, and so F (x)g(y) ∈
Z(R) for every x, y ∈ I. This implies that [F (x)g(y), r] = 0 for all x, y ∈ I and
r ∈ R. This can be rewritten as following relation,

F (x)[g(y), r] + [F (x), r]g(y) = 0, ∀ x, y ∈ I, r ∈ R. (4)

Replacing r by F (x) in (4), we have

F (x)[g(y), F (x)] = 0, ∀ x, y ∈ I. (5)
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Since g is surjective, we have

F (x)[y, F (x)] = 0, ∀ x, y ∈ I. (6)

Again, replacing y by yz with z ∈ I, in (6), we get F (x)y[z, F (x)] = 0 for every
x, y, z ∈ I. This implies that F (x)I[z, F (x)] = {0} for every x, z ∈ I. By Lemma
3.4, we have F (x) = 0 or [z, F (x)] = 0 for every x, z ∈ I. Since F ̸= 0, we have
[z, F (x)] = 0 for all x, z ∈ I, which implies that R is commutative by Theorem 3.5.

�

Theorem 3.7. Let R be a prime ring and let I be a nonzero semigroup ideal of
R. Suppose that R admits a nonzero semimultiplier F associated with g such that
[F (x), F (y)] = 0, for every x, y ∈ I. Then R is commutative.

Proof. By hypothesis, we have

[F (x), F (y)] = 0, ∀ x, y ∈ I. (7)

Replacing y by yz with z ∈ I, in (7), we have [F (x), F (y)g(z)] = 0, which implies
that

F (y)[F (x), g(z)] = 0.

Since g is onto, we have

F (y)[F (x), z] = 0, ∀ x, y, z ∈ I. (8)

Now, replacing z by zs with s ∈ R, we have F (y)z[F (x), s] = 0 for every x, y ∈ I
and s ∈ R. This implies that F (y)I[F (x), s] = {0} for every y ∈ I and s ∈ R. Thus,
by Lemma 3.4, we have F (y) = 0 for any y ∈ I and [F (x), s] = 0 for x ∈ I and
s ∈ R. Since F ̸= 0, we have [F (x), s] = 0, which implies that F (x) ∈ Z(R) for any
x ∈ I. That is, F (I) ⊆ Z(R). Hence, by Theorem 3.6, R is commutative.

�

Theorem 3.8. Let R be a prime ring and let I be a nonzero semigroup ideal of
R. Suppose that R admits a nonzero semimultiplier F associated with g. If F (x) ◦
F (y) = 0 holds for every x, y ∈ I, then R is commutative.

Proof. By hypothesis, we have

F (x) ◦ F (y) = 0, ∀ x, y ∈ I. (9)

Replacing y by zy with z ∈ I, in (9), we have F (x) ◦ F (yz) = F (x) ◦ F (y)g(z) = 0
for every x, y, z ∈ I, which implies that

(F (x) ◦ F (y))g(z)− F (y)[F (x), g(z)] = 0

for every x, y, z ∈ I. Using the given relation, we have F (y)[F (x), g(z)] = 0 for
every x, y, z ∈ I. Since g is onto, we have F (y)[F (x), z] = 0 for every x, y, z ∈ I.
Replacing z by zy, where x ∈ I, in the last equation, we have F (y)z[F (x), y] = 0,
which implies that F (y)I[F (x), y] = {0} for every x, y ∈ I. By Lemma 3.4, we have
F (y) = 0 or [F (x), y] = 0 for every x, y ∈ I. Since F ̸= 0, we have [F (x), y] = 0 for
every x, y ∈ I. Hence, by Theorem 3.5, R is commutative.

�

Theorem 3.9. Let R be a prime ring and let I be a nonzero semigroup ideal of R.
Suppose that R admits a nonzero semimultiplier F associated with g. If F ([x, y]) = 0
holds for every x, y ∈ I, then R is commutative.
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Proof. By hypothesis, we have

F ([x, y]) = 0, ∀ x, y ∈ I. (10)

Replacing y by zy with z ∈ I, in (10), we have F [x, yz]) = 0 for every x, y, z ∈ I,
which implies that

F (y[x, z] + [x, y]z) = 0

for every x, y, z ∈ I. Hence we have F (y)g([x, z])+F ([x, y])g(z) = 0 for all x, y, z ∈
I, and so

F (y)g([x, z]) = 0, ∀ x, z ∈ I. (11)

Since g is onto, we have F (y)[x, z] = 0 for every x, y, z ∈ I. Replacing z by zr,
where r ∈ R, in the last equation, we have F (y)z[x, r] = 0, which implies that
F (y)I[x, r] = {0} for every x, y ∈ I and r ∈ R. By Lemma 3.4, we have F (y) = 0
or [x, r] = 0 for every x, y ∈ I and r ∈ R. Since F ̸= 0, we have [x, r] = 0 for every
x ∈ I and r ∈ R. Again, replacing x by xs in the last relation, we have x[s, r] = 0
for all x ∈ I and s, r ∈ R. Hence I[s, r] = {0} for all r, s ∈ R, which implies that
IR[s, r] = {0} for all s, r ∈ R. Since I ̸= 0, we have [s, r] = 0 for all s, r ∈ R, which
implies that R is commutative.

�
Theorem 3.10. Let R be a prime ring and let I be a nonzero semigroup ideal of R.
Suppose that R admits a nonzero semimultiplier F associated with g. If F (x◦y) = 0
holds for every x, y ∈ I, then R is commutative.

Proof. By hypothesis, we have

F (x ◦ y) = 0, ∀ x, y ∈ I. (12)

Replacing y by yz with z ∈ I, in (12), we have F (x ◦ yz) = 0 for every x, y, z ∈ I,
which implies that

F ((x ◦ y)z − y[x, z]) = 0

for every x, y, z ∈ I. Hence we have F (x◦y)g(z)−F (y)g([x, z]) = 0 for all x, y, z ∈ I,
and so

F (y)g([x, z]) = 0, ∀ x, z ∈ I. (13)

Since g is onto, we have F (y)[x, z] = 0 for every x, y, z ∈ I. Replacing z by zr,
where r ∈ R, in the last equation, we have F (y)z[x, r] = 0, which implies that
F (y)I[x, r] = {0} for every x, y ∈ I and r ∈ R. By Lemma 3.4, we have F (y) = 0
or [x, r] = 0 for every x, y ∈ I and r ∈ R. Since F ̸= 0, we have [x, r] = 0 for every
x ∈ I and r ∈ R. Again, replacing x by xs in the last relation, we have x[s, r] = 0
for all x ∈ I and s, r ∈ R. Hence I[s, r] = {0} for all r, s ∈ R, which implies that
IR[s, r] = {0} for all s, r ∈ R. Since I ̸= 0, we have [s, r] = 0 for all s, r ∈ R, which
implies that R is commutative.

�
Theorem 3.11. Let R be a prime ring and let I be a nonzero semigroup ideal of
R. Suppose that R admits a semimultiplier F associated with g and F (x) ̸= x for
all x ∈ I. If F (xy) = F (x)F (y) holds for every x, y ∈ I, then F = 0.

Proof. By hypothesis, we have

F (xy) = F (x)g(y) = F (x)F (y), ∀ x ∈ I. (14)

Replacing x by xw in (14), we have F (xw)g(y) = F (xw)F (y), that is, F (x)g(w)g(y) =
F (x)g(w)F (y) for all x, y, w ∈ I. This implies that F (x)g(w)(g(y)− F (y)) = 0 for
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all x, y, w ∈ I. Since g is onto, we have F (x)R(y − F (y)) = {0} for all x, y ∈ R.
Since R is prime, we have F (x) = 0 or y− F (y) = 0 for all x, y ∈ R. But F (x) ̸= x
for all x ∈ I, and so F (x) = 0 for all x ∈ I, which implies that F = 0 by Lemma
3.2.

�

Theorem 3.12. Let R be a prime ring and let I be a nonzero semigroup ideal of R.
Suppose that R admits a nonzero semimultiplier F associated with g and g(x) ̸= x
for all x ∈ I. If F (xy) = [x, y] holds for every x, y ∈ I, then R is commutative.

Proof. By hypothesis, we have

F (xy) = [x, y], ∀ x ∈ I. (15)

Replacing x by xy in (15), we have F (xy)g(y) = [xy, y], that is, [x, y]g(y) = [x, y]y
for all x, y ∈ I. This implies that [x, y](g(y)−y) = 0 for all x, y ∈ I. Also, replacing
x by sx in the last relation, we have [s, y]x(g(y)− y) = 0 for all x, y ∈ I and s ∈ R.
This implies that [s, y]I(g(y)−y) = {0} for all x, y ∈ I and s ∈ R. Since R is prime,
we have [s, y] = 0 for all y ∈ I and s ∈ R or g(y)−y = 0 for all y ∈ I. But g(x) ̸= x
for all x ∈ I, and so [s, y] = 0 for all x, y ∈ I and s ∈ R. Again, replacing y by ry
with r ∈ R in this relation, we have [s, r]y = 0, which implies that [s, r]I = {0} for
all r, s ∈ R. Hence [s, r]RI = {0}. Since I ̸= 0, we have [s, r] = 0, which means that
R is commutative.

�

Theorem 3.13. Let R be a prime ring and let I be a nonzero semigroup ideal of R.
Suppose that R admits a nonzero semimultiplier F associated with g and g(x) ̸= x
for all x ∈ I. If F (xy) = x ◦ y holds for every x, y ∈ I, then R is commutative.

Proof. By hypothesis, we have

F (xy) = x ◦ y, ∀ x ∈ I. (16)

Replacing x by xy in (16), we have F (xy)g(y) = (x◦y)y, that is, (x◦y)g(y) = (x◦y)y
for all x, y ∈ I. This implies that (x◦y)(g(y)−y) = 0 for all x, y ∈ I. Also, replacing
x by xy in the last relation, we have (x ◦ y)y(g(y) − y) = 0 for all x, y ∈ I. This
implies that (x ◦ y)I(g(y) − y) = {0} for all x, y ∈ I. By Lemma 3.4, we have
x◦y = 0 for all x, y ∈ I or g(y)−y = 0 for all y ∈ I. But g(x) ̸= x for all x ∈ I, and
so x ◦ y = 0 for all x, y ∈ I. Again, replacing y by ys with s ∈ R in this relation, we
have y[x, s] = 0 for all x ∈ I and s ∈ R. Taking xr instead of x with r ∈ R, in the
last relation, we have yx[r, s] = 0, that is, yI[r, s] = 0 for all r, s ∈ R. Since I ̸= 0,
we have [r, s] = 0 for all r, s ∈ R. Hence R is commutative.

�

Theorem 3.14. Let R be a prime ring and let I be a nonzero semigroup ideal of R.
Suppose that R admits a nonzero semimultiplier F associated with g and g(x) ̸= x
for all x ∈ I. If F ([x, y]) = x ◦ y holds for every x, y ∈ I, then R is commutative.

Proof. By hypothesis, we have

F ([x, y]) = x ◦ y, ∀ x, y ∈ I. (17)

Replacing y by yz in (17), we have F (y[x, z]+[x, y]z) = x◦yz, that is, F (y)g([x, z])+
F ([x, y])g(z) = (x ◦ y)z − y[x, z] for all x, y, z ∈ I. Taking z instead of x in this
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relation, we have F ([z, y])g(z) = (z ◦ y)z for all y, z ∈ I. By hypothesis, we obtain
(z ◦ y)(g(z)− z) = 0 for all y, z ∈ I.

Using the similar arguments of the last part proof Theorem 3.13, we get the
required result.

�
Theorem 3.15. Let R be a prime ring and let I be a nonzero semigroup ideal of R.
Suppose that R admits a nonzero semimultiplier F associated with g and g(x) ̸= x
for all x ∈ I. If F (x ◦ y) = [x, y] holds for every x, y ∈ I, then R is commutative.

Proof. By hypothesis, we have

F (x ◦ y) = [x, y], ∀ x, y ∈ I. (18)

Replacing y by yz in (18), we have F ((x ◦ y)z − y[x, z]) = [x, yz], that is, F (x ◦
y)g(z)− F (y)g([x, z]) = y[x, z] + [x, y]z for all x, y, z ∈ I. Taking x instead of z in
this relation, we have

F (x ◦ y)g(x) = [x, y]x

for all x, y ∈ I. By the hypothesis, we get [x, y]g(x) = [x, y]x, and so [x, y](g(x) −
x) = 0 for all x, y ∈ I.

Using the similar arguments of the last part proof Theorem 3.12, we get the
required result.

�
Theorem 3.16. Let R be a prime ring and let I be a nonzero semigroup ideal of
R. Suppose that R admits a nonzero semimultiplier F associated with g such that
F satisfies any one of the following conditions:

(a) [F (x), F (y)] = xy for every x, y ∈ I,
(b) [F (x), F (y)] = yx for every x, y ∈ I.
Then R is commutative.

Proof. (a) By hypothesis, we have

[F (x), F (y)] = xy, ∀ x, y ∈ I. (19)

Replacing y by yz in (19), we get [F (x), F (yz)] = [F (x), F (y)g(z)] = xyz for every
x, y ∈ I. Using (19) and the fact that g is onto, we obtain

F (y)[F (x), z] = 0, ∀ x, y ∈ I. (20)

Again, replacing z by zs with s ∈ R, in (20), we have F (y)z[F (x), s] = 0, which
implies that F (y)I[F (x), s] = {0} for any x, y ∈ I and s ∈ R. Thus, by Lemma 3.4,
we have F (y) = 0 or [F (x), s] = 0 for every x, y ∈ I and s ∈ R. Since F ̸= 0, we
have [F (x), s] = 0, which implies that F (I) ⊆ Z(R). Hence, by Theorem 3.6, R is
commutative.

(b) By hypothesis, we have

[F (x), F (y)] = yx, ∀ x, y ∈ I. (21)

Replacing x by xz with z ∈ I, in (21), we get [F (xz), F (y)] = [F (x)g(z), F (y)] = 0
for every x, y ∈ I. Using (21) and the fact that g is onto, we obtain

F (x)[z, F (y)] = 0, ∀ x, y, z ∈ I. (22)

Using the same methods as we used in the last part proof of (a), we get the
required result.

�
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Theorem 3.17. Let R be a prime ring and let I be a nonzero semigroup ideal of
R. Suppose that R admits a nonzero semimultiplier F associated with g such that
F satisfies any one of the following conditions:

(a) F (x)F (y) = [x, y] for every x, y ∈ I,
(b) F (y)F (x) = [x, y] for every x, y ∈ I,
(c) F (x)F (y) = x ◦ y for every x, y ∈ I.
Then R is commutative.

Proof. (a) By hypothesis, we have

F (x)F (y) = [x, y], ∀ x, y ∈ I. (23)

Replacing y by yz in (23), we get F (x)F (yz) = [x, yz] for every x, y ∈ I. This
implies that F (x)F (y)g(z) = y[x, z] + [x, y]z for every x, y, z ∈ I. Using (23), we
obtain

[x, y]g(z) = y[x, z] + [x, y]z, ∀ x, y, z ∈ I. (24)

Taking y in place of x, we have y[y, z] = 0 for all y, z ∈ I. Replacing z by zs with
z ∈ I, in (24), we have yz[y, s] = 0, which implies that yI[x, s] = {0} for every
x, y ∈ I and s ∈ R. Thus, by Lemma 3.4, we have y = 0 for [y, s] = 0 for all x, y ∈ I
and s ∈ R. If y = 0, then I = {0}, a contradiction, and so [x, s] = 0 for every
x ∈ I and s ∈ R. Now, replacing x by xr in the last relation, we have x[r, s] = 0,
which means that I[r, s] = {0} for all r, s ∈ R. Hence we get xI[r, s] = {0} for
0 ̸= x ∈ I and r, s ∈ R. By Lemma 3.4, we have [r, s] = 0, which implies that R is
commutative.

In cases of (b) and (c), using the same methods as we used in the last part proof
of (a), we get the required result.

�
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