A NOTE ON SEMIMULTIPLIERS IN PRIME RINGS

KYUNG HO KIM

Abstract

Let R be a ring and g be a surjective map of R. An additive mapping $F: R \rightarrow R$ is called a semimultiplier if (1) $F(x y)=F(x) g(y)=g(x) F(y)$ (2) $F(g(x))=g(F(x))$ for all $x, y \in R$. In this paper, we introduce the notion of semimultiplier of a ring R, and investigate the commutativity of prime rings admitting semimultipliers satisfying (1) $F([x, y])-[x, y]=0$ (2) $F([x, y])+[x, y]=0(3) F(x \circ y)-x \circ y=0(4) F(x \circ y)+x \circ y=0$ (5) $F(x y)=x y(6) F(x y)=y x$ for all x, y in some appropriate subset of R.

1. Introduction

Many considerable works have been done on left (right) multipliers in prime and semiprime rings during the last couple of decades([9-11]). An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+y d(x)$ holds for all $x, y \in R$. Following [5], an additive mapping $F: R \rightarrow R$ is called a generalized derivation on R if there exists a derivation $d: R \rightarrow R$ such that $F(x y)=F(x) y+x d(y)$ for every $x, y \in R$. Obviously, a generalized derivation with $d=0$ covers the concept of left multiplicars. Over the last few decares, several authors have investigated the relationship between the commutativity of the ring R and certain specific types of derivations of R. The first result in this direction is due to E. C. Posner [8] who proved that if a ring R admits a nonzero derivation d such that $[d(x), x] \in Z(R)$ for all $x \in R$, then R is commutative. This result was subsequently, refined and extended by a number of authors. In [7], Bresar and Vuckman showed that a prime ring must be commutative if it admits a nonzero left derivation. Recently, many authors have obtained commutativity theorems for prime and semiprime rings admitting derivation, generalized derivation. In this paper, we introduce the notion of a semimultiplier of R, and investigate the commutativity of prime rings satisfying certain identities involving semimultiplier.

2. Preliminaries

Throughout R will represent an associative ring with center $Z(R)$. For all $x, y \in$ R, as a usual commutator, we shall write $[x, y]=x y-y x$, and $x \circ y=x y+y x$. Also,

[^0]we make use of the following two basic identities without any specific mention:
\[

$$
\begin{gathered}
x \circ(y z)=(x \circ y) z-y[x, z]=y(x \circ z)+[x, y] z \\
(x y) \circ z=x(y \circ z)-[x, z] y=(x \circ z) y+x[y, z] \\
{[x y, z]=x[y, z]+[x, z] y \text { and }[x, y z]=y[x, z]+[x, y] z .}
\end{gathered}
$$
\]

Recall that R is prime if $a R b=\{0\}$ implies $a=0$ or $b=0$. A nonempty subset I of R is called a right semigroup ideal if $I R \subseteq I$. Similarly, A nonempty subset I of R is called a left semigroup ideal if $R I \subseteq I$. If I is both a left and a right semigroup ideal of R, then I is called a semigroup ideal of R. An additive mapping $F: R \rightarrow R$ is called a left multiplier if $F(x y)=F(x) y$ holds for every $x, y \in R$. Similarly, an additive mapping $F: R \rightarrow R$ is called a right multiplier if $F(x y)=x F(y)$ holds for every $x, y \in R$. If F is both a left and a right multiplier of R, then it is called a multiplier of R.

3. SEmimultipliers in prime and semiprime Rings

Definition 3.1. Let R be a ring. An additive mapping $F: R \rightarrow R$ is called a semimultiplier associated with a surjective function $g: R \rightarrow R$ if
(a) $F(x y)=F(x) g(y)=g(x) F(y)$,
(b) $F(g(x))=g(F(x))$, for every $x, y \in R$.

Lemma 3.2. Let R be a prime ring and I be a nonzero right (resp. left) semigroup ideal of R and F be a semimultiplier of R associated with g. If $F(x)=0$ for every $x \in I$, then $F=0$.

Proof. By hypothesis, we have $F(x)=0$ for any $x \in I$. Replacing x by $x r$ with $r \in R$ in the last relation, we get

$$
\begin{equation*}
g(x) F(r)=0, \forall x \in I, r \in R \tag{1}
\end{equation*}
$$

Since g is onto, we get $x F(r)=0$ for all $x \in I$ and $r \in R$. Now, replacing x by $x s$ in (1), we have $x s F(r)=0$ for every $x \in I$ and $r, s \in R$. Thus, we obtain $x R F(r)=\{0\}$ for every $x \in I$ and $r \in R$. Since R is prime and I is a nonzero right semigroup ideal of R, it implies that $F=0$.

Lemma 3.3. Let R be a prime ring and I be a nonzero semigroup ideal of R. Suppose that F is a semimultiplier of R associated with g and $a \in R$. If $a F(x)=0$ for every $x \in R$, then $a=0$ or $F=0$.

Proof. By hypothesis, we have $a F(x)=0$ for any $x \in I$ and $a \in R$. Replacing x by $x r$ in the last relation, we get

$$
\begin{equation*}
a g(x) F(r)=0, \forall x \in I, r \in R \tag{2}
\end{equation*}
$$

Since g is onto, we have $\operatorname{axF}(r)=0$ for all $x \in I$ and $r \in R$. Now, replacing x by $x s$ in (2), we have $\operatorname{axsF}(r)=0$ for every $x \in I$ and $r, s \in R$. Thus, we obtain $\operatorname{axRF}(r)=\{0\}$ for every $x \in I$ and $r \in R$. Since R is prime and I is a nonzero right semigroup ideal of R, it implies that $a x=0$ for all $x \in I$ or $F(r)=0$ for every $r \in R$. Hence

$$
a I=0 \text { or } F=0 .
$$

Assume that $F \neq 0$. Then we get $a x=0$ for every $x \in I$. Replacing x by $r x$ with $r \in R$ in the last equation, we have $a r x=0$ for every $x \in I, r \in R$. Thus

$$
a R x=\{0\}, \forall x \in I
$$

Since R is prime and I is a nonzero right ideal of R, we obtain $a=0$.

Lemma 3.4. Let R be a prime ring and I be a nonzero semigroup ideal of R and $a, b \in R$. If $a I b=0$, then $a=0$ or $b=0$.
Proof. By hypothesis, we have $a x b=0$ for any $x \in I$. Replacing x by $x r$ with $r \in R$ in the last relation, we get $a x r b=0$ for all $x \in I$ and $r \in R$. Thus

$$
\begin{equation*}
a x R b=\{0\}, \forall x \in I \tag{3}
\end{equation*}
$$

Since R is prime, we have $a x=0$ or $b=0$. Suppose that $b \neq 0$. Then it means that $a x=0$ for all $x \in I$. Taking $r x$ with $r \in R$ instead of x in the last relation, it holds that $\operatorname{ar} x=0$ for $x \in I, r \in R$. Hence we have

$$
a R x=\{0\}, \forall x \in I .
$$

Since R is prime and I is a nonzero semigroup ideal of R, we have $a=0$.

Theorem 3.5. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g such that $[F(x), y]=0$ for every $x, y \in I$. Then R is commutative.
Proof. By hypothesis, we have $[F(x), y]=0$ for any $x, y \in I$. Replacing x by $x z$ with $z \in I$, in this relation, we have

$$
[F(x) g(z), y]=F(x)[g(z), y]+[F(x), y] g(z)=0
$$

for every $x, y, z \in I$. Using the given hypothesis and the fact that g is onto, we obtain $F(x)[z, y]=0$ for every $x, y, z \in I$. Now, replacing y by $y s$ with $s \in R$, in the last relation, we obtain

$$
F(x) y[z, s]=0
$$

for every $x, y, z \in I$ and $s \in R$. This implies that $F(x) I[z, s]=\{0\}$ for every $x, z \in I$ and $s \in R$. Thus, by Lemma 3.4, we get $F(x)=0$ or $[z, s]=0$ for every $x, z \in I$ and $s \in R$. Since $F \neq 0$, we have $[z, s]=0$ for every $z \in I$ and $s \in R$. Again, replacing z by $z r$ with $r \in R$, in the last relation, we have $[z r, s]=z[r, s]+[z, s] r=z[r, s]=0$. This implies that $x z[r, s]=0$ for $0 \neq x \in I$, and hence $x I[r, s]=0$. By Lemma 3.4, we have $[r, s]=0$ for every $r, s \in R$, which implies that R is commutative.

Theorem 3.6. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g such that $F(I) \subseteq Z(R)$. Then R is commutative.

Proof. By hypothesis, we have $F(x y) \in Z(R)$ for any $x, y \in I$, and so $F(x) g(y) \in$ $Z(R)$ for every $x, y \in I$. This implies that $[F(x) g(y), r]=0$ for all $x, y \in I$ and $r \in R$. This can be rewritten as following relation,

$$
\begin{equation*}
F(x)[g(y), r]+[F(x), r] g(y)=0, \forall x, y \in I, r \in R \tag{4}
\end{equation*}
$$

Replacing r by $F(x)$ in (4), we have

$$
\begin{equation*}
F(x)[g(y), F(x)]=0, \forall x, y \in I \tag{5}
\end{equation*}
$$

Since g is surjective, we have

$$
\begin{equation*}
F(x)[y, F(x)]=0, \forall x, y \in I \tag{6}
\end{equation*}
$$

Again, replacing y by $y z$ with $z \in I$, in (6), we get $F(x) y[z, F(x)]=0$ for every $x, y, z \in I$. This implies that $F(x) I[z, F(x)]=\{0\}$ for every $x, z \in I$. By Lemma 3.4, we have $F(x)=0$ or $[z, F(x)]=0$ for every $x, z \in I$. Since $F \neq 0$, we have $[z, F(x)]=0$ for all $x, z \in I$, which implies that R is commutative by Theorem 3.5.

Theorem 3.7. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g such that $[F(x), F(y)]=0$, for every $x, y \in I$. Then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
[F(x), F(y)]=0, \forall x, y \in I \tag{7}
\end{equation*}
$$

Replacing y by $y z$ with $z \in I$, in (7), we have $[F(x), F(y) g(z)]=0$, which implies that

$$
F(y)[F(x), g(z)]=0 .
$$

Since g is onto, we have

$$
\begin{equation*}
F(y)[F(x), z]=0, \forall x, y, z \in I \tag{8}
\end{equation*}
$$

Now, replacing z by $z s$ with $s \in R$, we have $F(y) z[F(x), s]=0$ for every $x, y \in I$ and $s \in R$. This implies that $F(y) I[F(x), s]=\{0\}$ for every $y \in I$ and $s \in R$. Thus, by Lemma 3.4, we have $F(y)=0$ for any $y \in I$ and $[F(x), s]=0$ for $x \in I$ and $s \in R$. Since $F \neq 0$, we have $[F(x), s]=0$, which implies that $F(x) \in Z(R)$ for any $x \in I$. That is, $F(I) \subseteq Z(R)$. Hence, by Theorem 3.6, R is commutative.

Theorem 3.8. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g. If $F(x) \circ$ $F(y)=0$ holds for every $x, y \in I$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
F(x) \circ F(y)=0, \forall x, y \in I \tag{9}
\end{equation*}
$$

Replacing y by $z y$ with $z \in I$, in (9), we have $F(x) \circ F(y z)=F(x) \circ F(y) g(z)=0$ for every $x, y, z \in I$, which implies that

$$
(F(x) \circ F(y)) g(z)-F(y)[F(x), g(z)]=0
$$

for every $x, y, z \in I$. Using the given relation, we have $F(y)[F(x), g(z)]=0$ for every $x, y, z \in I$. Since g is onto, we have $F(y)[F(x), z]=0$ for every $x, y, z \in I$. Replacing z by $z y$, where $x \in I$, in the last equation, we have $F(y) z[F(x), y]=0$, which implies that $F(y) I[F(x), y]=\{0\}$ for every $x, y \in I$. By Lemma 3.4, we have $F(y)=0$ or $[F(x), y]=0$ for every $x, y \in I$. Since $F \neq 0$, we have $[F(x), y]=0$ for every $x, y \in I$. Hence, by Theorem $3.5, R$ is commutative.

Theorem 3.9. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g. If $F([x, y])=0$ holds for every $x, y \in I$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
F([x, y])=0, \forall x, y \in I \tag{10}
\end{equation*}
$$

Replacing y by $z y$ with $z \in I$, in (10), we have $F[x, y z])=0$ for every $x, y, z \in I$, which implies that

$$
F(y[x, z]+[x, y] z)=0
$$

for every $x, y, z \in I$. Hence we have $F(y) g([x, z])+F([x, y]) g(z)=0$ for all $x, y, z \in$ I, and so

$$
\begin{equation*}
F(y) g([x, z])=0, \forall x, z \in I . \tag{11}
\end{equation*}
$$

Since g is onto, we have $F(y)[x, z]=0$ for every $x, y, z \in I$. Replacing z by $z r$, where $r \in R$, in the last equation, we have $F(y) z[x, r]=0$, which implies that $F(y) I[x, r]=\{0\}$ for every $x, y \in I$ and $r \in R$. By Lemma 3.4, we have $F(y)=0$ or $[x, r]=0$ for every $x, y \in I$ and $r \in R$. Since $F \neq 0$, we have $[x, r]=0$ for every $x \in I$ and $r \in R$. Again, replacing x by $x s$ in the last relation, we have $x[s, r]=0$ for all $x \in I$ and $s, r \in R$. Hence $I[s, r]=\{0\}$ for all $r, s \in R$, which implies that $I R[s, r]=\{0\}$ for all $s, r \in R$. Since $I \neq 0$, we have $[s, r]=0$ for all $s, r \in R$, which implies that R is commutative.

Theorem 3.10. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g. If $F(x \circ y)=0$ holds for every $x, y \in I$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
F(x \circ y)=0, \forall x, y \in I \tag{12}
\end{equation*}
$$

Replacing y by $y z$ with $z \in I$, in (12), we have $F(x \circ y z)=0$ for every $x, y, z \in I$, which implies that

$$
F((x \circ y) z-y[x, z])=0
$$

for every $x, y, z \in I$. Hence we have $F(x \circ y) g(z)-F(y) g([x, z])=0$ for all $x, y, z \in I$, and so

$$
\begin{equation*}
F(y) g([x, z])=0, \forall x, z \in I \tag{13}
\end{equation*}
$$

Since g is onto, we have $F(y)[x, z]=0$ for every $x, y, z \in I$. Replacing z by $z r$, where $r \in R$, in the last equation, we have $F(y) z[x, r]=0$, which implies that $F(y) I[x, r]=\{0\}$ for every $x, y \in I$ and $r \in R$. By Lemma 3.4, we have $F(y)=0$ or $[x, r]=0$ for every $x, y \in I$ and $r \in R$. Since $F \neq 0$, we have $[x, r]=0$ for every $x \in I$ and $r \in R$. Again, replacing x by $x s$ in the last relation, we have $x[s, r]=0$ for all $x \in I$ and $s, r \in R$. Hence $I[s, r]=\{0\}$ for all $r, s \in R$, which implies that $I R[s, r]=\{0\}$ for all $s, r \in R$. Since $I \neq 0$, we have $[s, r]=0$ for all $s, r \in R$, which implies that R is commutative.

Theorem 3.11. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a semimultiplier F associated with g and $F(x) \neq x$ for all $x \in I$. If $F(x y)=F(x) F(y)$ holds for every $x, y \in I$, then $F=0$.

Proof. By hypothesis, we have

$$
\begin{equation*}
F(x y)=F(x) g(y)=F(x) F(y), \forall x \in I \tag{14}
\end{equation*}
$$

Replacing x by $x w$ in (14), we have $F(x w) g(y)=F(x w) F(y)$, that is, $F(x) g(w) g(y)=$ $F(x) g(w) F(y)$ for all $x, y, w \in I$. This implies that $F(x) g(w)(g(y)-F(y))=0$ for
all $x, y, w \in I$. Since g is onto, we have $F(x) R(y-F(y))=\{0\}$ for all $x, y \in R$. Since R is prime, we have $F(x)=0$ or $y-F(y)=0$ for all $x, y \in R$. But $F(x) \neq x$ for all $x \in I$, and so $F(x)=0$ for all $x \in I$, which implies that $F=0$ by Lemma 3.2.

Theorem 3.12. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g and $g(x) \neq x$ for all $x \in I$. If $F(x y)=[x, y]$ holds for every $x, y \in I$, then R is commutative.
Proof. By hypothesis, we have

$$
\begin{equation*}
F(x y)=[x, y], \forall x \in I \tag{15}
\end{equation*}
$$

Replacing x by $x y$ in (15), we have $F(x y) g(y)=[x y, y]$, that is, $[x, y] g(y)=[x, y] y$ for all $x, y \in I$. This implies that $[x, y](g(y)-y)=0$ for all $x, y \in I$. Also, replacing x by $s x$ in the last relation, we have $[s, y] x(g(y)-y)=0$ for all $x, y \in I$ and $s \in R$. This implies that $[s, y] I(g(y)-y)=\{0\}$ for all $x, y \in I$ and $s \in R$. Since R is prime, we have $[s, y]=0$ for all $y \in I$ and $s \in R$ or $g(y)-y=0$ for all $y \in I$. But $g(x) \neq x$ for all $x \in I$, and so $[s, y]=0$ for all $x, y \in I$ and $s \in R$. Again, replacing y by $r y$ with $r \in R$ in this relation, we have $[s, r] y=0$, which implies that $[s, r] I=\{0\}$ for all $r, s \in R$. Hence $[s, r] R I=\{0\}$. Since $I \neq 0$, we have $[s, r]=0$, which means that R is commutative.

Theorem 3.13. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g and $g(x) \neq x$ for all $x \in I$. If $F(x y)=x \circ y$ holds for every $x, y \in I$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
F(x y)=x \circ y, \forall x \in I . \tag{16}
\end{equation*}
$$

Replacing x by $x y$ in (16), we have $F(x y) g(y)=(x \circ y) y$, that is, $(x \circ y) g(y)=(x \circ y) y$ for all $x, y \in I$. This implies that $(x \circ y)(g(y)-y)=0$ for all $x, y \in I$. Also, replacing x by $x y$ in the last relation, we have $(x \circ y) y(g(y)-y)=0$ for all $x, y \in I$. This implies that $(x \circ y) I(g(y)-y)=\{0\}$ for all $x, y \in I$. By Lemma 3.4, we have $x \circ y=0$ for all $x, y \in I$ or $g(y)-y=0$ for all $y \in I$. But $g(x) \neq x$ for all $x \in I$, and so $x \circ y=0$ for all $x, y \in I$. Again, replacing y by $y s$ with $s \in R$ in this relation, we have $y[x, s]=0$ for all $x \in I$ and $s \in R$. Taking $x r$ instead of x with $r \in R$, in the last relation, we have $y x[r, s]=0$, that is, $y I[r, s]=0$ for all $r, s \in R$. Since $I \neq 0$, we have $[r, s]=0$ for all $r, s \in R$. Hence R is commutative.

Theorem 3.14. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g and $g(x) \neq x$ for all $x \in I$. If $F([x, y])=x \circ y$ holds for every $x, y \in I$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
F([x, y])=x \circ y, \forall x, y \in I \tag{17}
\end{equation*}
$$

Replacing y by $y z$ in (17), we have $F(y[x, z]+[x, y] z)=x \circ y z$, that is, $F(y) g([x, z])+$ $F([x, y]) g(z)=(x \circ y) z-y[x, z]$ for all $x, y, z \in I$. Taking z instead of x in this
relation, we have $F([z, y]) g(z)=(z \circ y) z$ for all $y, z \in I$. By hypothesis, we obtain $(z \circ y)(g(z)-z)=0$ for all $y, z \in I$.

Using the similar arguments of the last part proof Theorem 3.13, we get the required result.

Theorem 3.15. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g and $g(x) \neq x$ for all $x \in I$. If $F(x \circ y)=[x, y]$ holds for every $x, y \in I$, then R is commutative.

Proof. By hypothesis, we have

$$
\begin{equation*}
F(x \circ y)=[x, y], \forall x, y \in I \tag{18}
\end{equation*}
$$

Replacing y by $y z$ in (18), we have $F((x \circ y) z-y[x, z])=[x, y z]$, that is, $F(x \circ$ $y) g(z)-F(y) g([x, z])=y[x, z]+[x, y] z$ for all $x, y, z \in I$. Taking x instead of z in this relation, we have

$$
F(x \circ y) g(x)=[x, y] x
$$

for all $x, y \in I$. By the hypothesis, we get $[x, y] g(x)=[x, y] x$, and so $[x, y](g(x)-$ $x)=0$ for all $x, y \in I$.

Using the similar arguments of the last part proof Theorem 3.12, we get the required result.

Theorem 3.16. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g such that F satisfies any one of the following conditions:
(a) $[F(x), F(y)]=x y$ for every $x, y \in I$,
(b) $[F(x), F(y)]=y x$ for every $x, y \in I$.

Then R is commutative.
Proof. (a) By hypothesis, we have

$$
\begin{equation*}
[F(x), F(y)]=x y, \forall x, y \in I \tag{19}
\end{equation*}
$$

Replacing y by $y z$ in (19), we get $[F(x), F(y z)]=[F(x), F(y) g(z)]=x y z$ for every $x, y \in I$. Using (19) and the fact that g is onto, we obtain

$$
\begin{equation*}
F(y)[F(x), z]=0, \forall x, y \in I \tag{20}
\end{equation*}
$$

Again, replacing z by $z s$ with $s \in R$, in (20), we have $F(y) z[F(x), s]=0$, which implies that $F(y) I[F(x), s]=\{0\}$ for any $x, y \in I$ and $s \in R$. Thus, by Lemma 3.4, we have $F(y)=0$ or $[F(x), s]=0$ for every $x, y \in I$ and $s \in R$. Since $F \neq 0$, we have $[F(x), s]=0$, which implies that $F(I) \subseteq Z(R)$. Hence, by Theorem $3.6, R$ is commutative.
(b) By hypothesis, we have

$$
\begin{equation*}
[F(x), F(y)]=y x, \forall x, y \in I \tag{21}
\end{equation*}
$$

Replacing x by $x z$ with $z \in I$, in (21), we get $[F(x z), F(y)]=[F(x) g(z), F(y)]=0$ for every $x, y \in I$. Using (21) and the fact that g is onto, we obtain

$$
\begin{equation*}
F(x)[z, F(y)]=0, \forall x, y, z \in I \tag{22}
\end{equation*}
$$

Using the same methods as we used in the last part proof of (a), we get the required result.

Theorem 3.17. Let R be a prime ring and let I be a nonzero semigroup ideal of R. Suppose that R admits a nonzero semimultiplier F associated with g such that F satisfies any one of the following conditions:
(a) $F(x) F(y)=[x, y]$ for every $x, y \in I$,
(b) $F(y) F(x)=[x, y]$ for every $x, y \in I$,
(c) $F(x) F(y)=x \circ y$ for every $x, y \in I$.

Then R is commutative.
Proof. (a) By hypothesis, we have

$$
\begin{equation*}
F(x) F(y)=[x, y], \forall x, y \in I \tag{23}
\end{equation*}
$$

Replacing y by $y z$ in (23), we get $F(x) F(y z)=[x, y z]$ for every $x, y \in I$. This implies that $F(x) F(y) g(z)=y[x, z]+[x, y] z$ for every $x, y, z \in I$. Using (23), we obtain

$$
\begin{equation*}
[x, y] g(z)=y[x, z]+[x, y] z, \forall x, y, z \in I \tag{24}
\end{equation*}
$$

Taking y in place of x, we have $y[y, z]=0$ for all $y, z \in I$. Replacing z by $z s$ with $z \in I$, in (24), we have $y z[y, s]=0$, which implies that $y I[x, s]=\{0\}$ for every $x, y \in I$ and $s \in R$. Thus, by Lemma 3.4, we have $y=0$ for $[y, s]=0$ for all $x, y \in I$ and $s \in R$. If $y=0$, then $I=\{0\}$, a contradiction, and so $[x, s]=0$ for every $x \in I$ and $s \in R$. Now, replacing x by $x r$ in the last relation, we have $x[r, s]=0$, which means that $I[r, s]=\{0\}$ for all $r, s \in R$. Hence we get $x I[r, s]=\{0\}$ for $0 \neq x \in I$ and $r, s \in R$. By Lemma 3.4, we have $[r, s]=0$, which implies that R is commutative.

In cases of (b) and (c), using the same methods as we used in the last part proof of (a), we get the required result.

References

[1] H. E. Bell and M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math, Bull 37 (1994), 443-447.
[2] H. E. Bell, W. S. Martindale III Centralizing mappings of semi-prime rings, Canad. Math, Bull 30 (1987), 92-101.
[3] J. Bergen and P. Przesczuk, Skew derivations with central invariants, J. London Math. Soc, 59 (2) (1999), 87-99.
[4] M. Bresar, On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc, 114 (1992), 641-649.
[5] M. Bresar, On the distance the composition of two derivation to the generalized derivations, Glasgow Math. J. 33 (1991), 89-93.
[6] M. Bresar, Semiderivations of prime rings, Proc. Amer. Math. Soc, 108 (4) (1990), 859-860.
[7] M. Bresar and J. Vukman, On left derivations and related mappings, Proc. Amer. Math. Soc, 110 (1990), 7-16.
[8] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc, 8 (1957), 1093-1100.
[9] J. Vukman, Centralizer on semiprime rings, Comment. Math. Univ. Carolinae, 42 (2001), 237-245.
[10] J. Vukman, Identity related to centralizer in semiprime rings, Comment. Math. Univ. Carolinae, 40 (1999), 447-456.
[11] B. Zalar, On centralizer of semiprime rings, Comment. Math. Univ. Carolinae, 32 (1991), 609-614.

KYUNG HO KIM
Department of Mathematics, Korea Kyotong National University, Chungju 27469, KoREA

E-mail address: ghkim@ut.ac.kr

[^0]: 2010 Mathematics Subject Classification. Primary 16Y30.
 Key words and phrases. Semimultiplier, left multiplier, prime, semigroup ideal, commutative. Submitted Dec. 13, 2016.

