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THE EQUICONVERGENCE OF THE EIGENFUNCTION

EXPANSION FOR A SINGULAR STURM-LIOUVILLE PROBLEM

WITH SIGN-VALUED WEIGHT

ZAKI F.A. EL-RAHEEM, AND SHIMAA A.M. HAGAG

Abstract. The purpose of this paper is to prove the equiconvergence formula
of the eigenfunction expansion for a singular Sturm-Liouville problem with

sign valued weight on a finite interval [0, π]. Our methodology depends on
asymptotic calculation and the method of contour integration.

1. Introduction

The theory of the equiconvergence of the eigenfunction expansion is one of in-
teresting an analytical problem that arising in the field of spectral analysis of dif-
ferential operator see [1],[2]. From many years ago, the class of spectral problem of
Sturm-Liouville with discontinuous weight founded great interest by Gasimov and
his disciples see [4-6]. Consider the following Sturm-Liouville problem

− y′′ + q(x) y = λ ρ(x) y 0 ≤ x ≤ π (1)

y(0) = 0 , y′(π) + H y(π) = 0, (2)

with q(x) being non-negative real function has a second piecewise integrable deriva-
tives on (0, π), Let also, H is positive number, λ is a spectral parameter and
weighted function or the explosive factor ρ(x) has the following form

ρ(x) =

{
1 ; 0 ≤ x ≤ a < π
−1 ; a < x ≤ π.

(3)

The author in [7] discuss the asymptotic behavior of the eigenvalues which are
real and simple, and the eigenfunctions of the problem(1)-(2), also he studied the
orthogonality of eigenfunction expansion with respect to ρ(x). In[8] the author
calculated the regularized trace formula,consequently he studied the eigenfunction
expansion of same problem see [9], we should mention here the more difficulty that
we obtained in our problem due to the definition of ρ(x)in the form of (3) because
it divided our problem into two problems see [10],[11] which the author studied the
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equicovergence theorem with same ρ(x) ,indeed the authors in [5],[6] obtained the
equiconvergence theorem but in different ρ(x) which define by the following form

ρ(x) =

{
α2 ; α ̸= 10 ≤ x ≤ a
1 ; x > a.

(4)

Although all authors following same methodology there’s a change on the boundary
conditions that contained which led to different in the results that obtained. In
this paper we prove the equiconvergence formula for problem (1)-(2)using countour
integration over the quadratic contour Γn which is defined in [8] as follow

Γn =

{
|Re s| < π

a
(n− 1

4
) +

π

2a
, |Im s| ≤ π

π − a
(n− 1

4
) +

π

2(π − a)

}
. (5)

2. Basic definitions and results

In this section we mention some basic definitions and results which obtained by
the author in [7-9]which we need in our work.

• Let the functions φ(x, λ),ψ(x, λ) are solutions of equation (1) under the
initial conditions:

φ(0, λ) = 0, φ′(0, λ) = 1 (6)

ψ(π, λ) = 1, ψ′(π, λ) = −H. (7)

Where φ(x, λ), ψ(x, λ) are entire in λ and satisfied boundary conditions (2)
at x = 0 and x = π respectively. TheWronskian of two solutions φ(x, λ), ψ(x, λ)
of the equation (1) is define as

W (λ) = < φ(x, λ), ψ(x, λ) >= φ(x, λ) ψ′(x, λ) − φ′(x, λ) ψ(x, λ). (8)

Where W (λ) ̸= 0 if and only if the two solutions φ(x, λ), ψ(x, λ)are lin-
early independent and the eigenvalues coincide with the roots of the func-
tion W (λ) = 0 which are simple, indeed W (λ) doesn’t dependent on x and
it’s appropriate to put x = a in (8).

• In [9]the author define the next formula:

G(x, t, λ) =
−1

W (λ)

{
φ(x, λ) ψ(t, λ) x ≤ t,
φ(t, λ) ψ(x, λ) x ≥ t,

(9)

which is called Green’s function (the kernel of the resolvent of Sturm-
Liouville problem (1)-(2) and this function admit for λ = λk the following
formula

G(x, t, λ) =
−1

λ− λk

φ(x, λk) φ(t, λk)

ak
+ G1(x, t, λ). (10)

Where G1(x, t, λ) is regular in the neighborhood of λ = λk andak =∫ π

0
ρ(t)φ2(x, λk)dx ̸= 0. which is called the normalization numbers of (1)-

(2).
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• Also the author in [9] studied the extended asymptotic formulas of the
eigenfunctions φ(x, λ),and ψ(x, λ) for the problem (1)-(2) over the inter-
val [0, π] as follow:

φ(x, λ) =



sin sx
s + O

(
e|Ims|x)

|s2|

)
, 0 ≤ x ≤ a,

1
s [sin sa cosh s(a− x) − cos sa sinh s(a− x)]

+ O
(

e|Ims|a+|Res|(a−x))

|s2|

)
, a < x ≤ π,

(11)

ψ(x, λ) =



u(x)
u(a) [cos s(x− a) cosh s(π − a) − sin s(x− a) sinh s(π − a)]

+ O
(

e|Ims|(x−a)+|Res|(π−a))

|s|

)
, 0 ≤ x ≤ a,

cosh s(π − x) + O
(

e|Res|(π−x))

|s|

)
, a < x ≤ π,

(12)
where

u(x) =
1

2

∫ x

0

q(t) dt.

3. The simple form for Sturm-Liouville (1)-(2)

Consider the Sturm-Liouville problem in the simple form (q(x) = 0), then the
problem (1)-(2) can be written as

− y′′ = λ ρ(x) y 0 ≤ x ≤ π (13)

y(0) = 0 , y′(π) = 0. (14)

Let φo(x, λ), ψo(x, λ) are the solutions of problem (13)-(14)in cases ρ(x) = 1, ρ(x) =
−1 respectively where

φo(x, λ) =
sin sx

s
0 ≤ x ≤ a (15)

ψo(x, λ) = cosh s(π − x) a < x ≤ π, (16)

we need to extended the solutions φo(x, λ), ψo(x, λ) to all interval [0, π] because
these formulas in (15),(16) defined on parts of the interval.In the following lemma
we will deduce this extension formula.
lemma 1 The asymptotic formula of the solutions φo(x, λ), and ψo(x, λ) have the
next form

φo (x, λ) =

{ sin sx
s ; 0 ≤ x ≤ a;

sin sa
s cosh s(x− a) + cossa

s sinh s(x− a); a < x ≤ π;
(17)

ψo(x, λ) =

{
cos s(x− a) cosh s(π − a) − sin s(x− a) sinh s(π − a); 0 ≤ x ≤ a;

cosh s(π − x); a < x ≤ π.
(18)

Proof. we starting with equation

− y′′ = s2 y, 0 ≤ x ≤ a. (19)
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The fundamental system of solutions of (19) is y1(x, s) = sin sx, y2(x, s) = cos sx, more-
over the equation

y′′ = s2 y, a < x ≤ π. (20)

have also fundamental system of solutions of is z1(x, s) = sinh s(π − x), z2(x, s) =
cosh s(π − x), hence the solutions φo(x, λ), and ψo(x, λ) over interval [0, π] can be
represented by

φo (x, λ) =

{
sin sx

s ; 0 ≤ x ≤ a;

c1 z1(x, s) + c2 z2(x, s); a < x ≤ π;
(21)

ψo(x, λ) =

{
m1 y1(x, s) +m2 y2(x, s); 0 ≤ x ≤ a;

cosh s(π − x); a < x ≤ π.
(22)

To calculate the constants c1, c2,m1, andm2 differentiation both equations (21),(22) with
respect to x at x = a, and using the continuity property of these derivatives with
solutions φo(x, λ), and ψo(x, λ), we get

c1 = − sin sa
s sinh s(π − a) − cos sa

s cosh s(π − a),

c2 = sin sa
s cosh s(π − a) + cos sa

s sinh s(π − a),
(23)

substituting from(23) into (21)we obtain (17), hence by applying same methodol-
ogy, we get

m1 = sin sa cosh s(π − a) − cos sa sinh s(π − a),

m2 = cos sa cosh s(π − a) + sin sa sinh s(π − a),
(24)

substituting from(24) into (22)we obtain (18), which complete our proof.

4. The Green’s function in terms of the simple Green’s function

The study of the equiconvergence theorem of problem (1)-(2) required to find
the asymptotic formula of Green’s function of problem (1)-(2) in terms of the cor-
responding simple Green’s function in case of q(x) = 0 for the problem (13)-(14).
Consider the Green’s function of the problem (13)-(14) as follow:

Go(x, t, λ) =
−1

Wo(λ)

{
φo(x, λ) ψo(t, λ) x ≤ t,
φo(t, λ) ψo(x, λ) x ≥ t,

, (25)

where,
Wo(λ) = − sin sa sinh s(π − a) − cos sa cosh s(π − a), (26)

which satisfied the next inequality on the contour Γn, which is defined by (5)

|Wo(λ)| ≥ C e|Im s|a + |Re s|(π−a). (27)

In the next lemma we calculate the asymptotic formula for the Green’s func-
tion G(x, t, λ) in terms of Go(x, t, λ).
lemma 2 The Green’s function G(x, t, λ) admits the next formula

G(x, t, λ) = Go(x, t, λ) + g(x, t, λ), (28)

under the following conditions

• q(x) ∈ L1[0, π],
• the asymptotic formula of (11), and (12) where g(x, t, λ), λ ∈ Γn, n →
∞ holds the next inequality
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g(x, t, λ) =



O
(

e−|Im s||x−t|

|s2|

)
, for x, t ∈ [0, a]

O
(

e−|Re s||x−t|

|s2|

)
, for x, t ∈ (a, π]

O
(

e−|Im s|(x−a)−|Re s|(a−t))

|s2|

)
, for 0 ≤ x ≤ a < t ≤ π,

O
(

e−|Im s|(t−a)−|Re s|(a−x)

|s2|

)
, for 0 ≤ t ≤ a < x ≤ π,

(29)

Proof. The author in [7] obtained the following

W (λ) = φ(a, λ) ψ′(a, λ)− φ′(a, λ) ψ(a, λ),

keep in mind (11),(12),(26), and(27), we have after some calculations

W (λ) = Wo(λ) + O

(
e|Im s|a+|Re s|(π−a))

|s|

)
, (30)

which equivalent to

W (λ) = Wo(λ)

[
1 +O

(
1

|s|

)]
. (31)

urging as before in [9], we have six possibilities to study

• (i) first three possibilities for x ≤ t, we have
(1) 0 ≤ x ≤ t ≤ a, (2) a < x ≤ t ≤ π, and (3) 0 ≤ x ≤ a ≤ t ≤ π,

• (ii) second three possibilities for t ≤ x, we have
(4) 0 ≤ t ≤ x ≤ a, (5) a < t ≤ x ≤ π, and (6) 0 ≤ t ≤ a ≤ x ≤ π.

Starting with the calculations of the first three possibilities in case(i) for x ≤ t,as
follow

(1) In the case (1) using (9),(11), and(12),we get

G(x, t, λ) =
−1

W (λ)
φ(x, λ) ψ(t, λ)

=
−1

W (λ)

[
φo(x, λ) ψo(t, λ) +O

(
e|Im s|(x+a−t)+|Re s|(π−a))

|s2|

)]
.

by the aid of (30),(31),(27), and (25) after substituting, we obtain

G(x, t, λ) =
−1

Wo(λ)
[φo(x, λ) ψo(t, λ)] + O

(
e|Im s|(x−t)

|s2|

)
= Go(x, t, λ) + O

(
e|Im s|(x−t)

|s2|

)
.

(32)

(2) In the case (2) using (9),(11), and (12),we get

G(x, t, λ) =
−1

W (λ)
φ(x, λ) ψ(t, λ)

=
−1

W (λ)

[
φo(x, λ) ψo(t, λ) +O

(
e|Im s|a+|Re s|(π−a+x−t)

|s2|

)]
.



218 ZAKI F.A. EL-RAHEEM, AND SHIMAA A.M. HAGAG EJMAA-2017/5(2)

by the aid of (30),(31),(27), and (25) after substituting, we obtain

G(x, t, λ) =
−1

Wo(λ)
[φo(x, λ) ψo(t, λ)] + O

(
e|Re s|(x−t)

|s2|

)
= Go(x, t, λ) + O

(
e|Re s|(x−t)

|s2|

)
.

(33)

(3) In the case (3) using same methodology, we have

G(x, t, λ) =
−1

W (λ)
φ(x, λ) ψ(t, λ)

=
−1

W (λ)

[
φo(x, λ) ψo(t, λ) +O

(
e|Im s|x+|Re s|(π−t))

|s2|

)]
.

as before, we obtain

G(x, t, λ) =
−1

Wo(λ)
[φo(x, λ) ψo(t, λ)] + O

(
e|Im s|(x−a)+|Re s|(a−t)

|s2|

)
= Go(x, t, λ) + O

(
e|Im s|(x−a)+|Re s|(a−t)

|s2|

)
.

(34)

Second, we will discuss the other three cases for t ≤ x as follow
(4) In the case (4) using (9),(11), and (12),we have

G(x, t, λ) =
−1

W (λ)
φ(t, λ) ψ(x, λ)

=
−1

W (λ)

[
φo(t, λ) ψo(x, λ) +O

(
e|Im s|(a+t−x)+|Re s|(π−a)

|s2|

)]
.

by the aid of (30),(31),(27), and (25) after substituting, we obtain

G(x, t, λ) = Go(x, t, λ) + O

(
e|Im s|(t−x)

|s2|

)
. (35)

(5) Moreover in the case (5) urging as before, we obtain

G(x, t, λ) =
−1

W (λ)

[
φo(t, λ) ψo(x, λ) +O

(
e|Im s|a+|Re s|(π−a+t−x)

|s2|

)]
.

similarly, we have

G(x, t, λ) = Go(x, t, λ) + O

(
e|Re s|(t−x)

|s2|

)
. (36)

Finally, in the case (6),we get

G(x, t, λ) =
−1

W (λ)

[
φo(t, λ) ψo(x, λ) +O

(
e|Im s|t+|Re s|(π−x)

|s2|

)]
.

by same manner, we obtain

G(x, t, λ) = Go(x, t, λ) + O

(
e|Im s|(t−a)+|Re s|(a−x)

|s2|

)
. (37)
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By the virtue of (32), and(35) together we have

G(x, t, λ) = Go(x, t, λ) + O

(
e−|Im s||x−t|

|s2|

)
, x, t ∈ [0, a]. (38)

Similarly from (33), and(36), we get

G(x, t, λ) = Go(x, t, λ) + O

(
e−|Re s||x−t|

|s2|

)
, x, t ∈ [a, π]. (39)

Final step from (38),(39),(34),and (37) together we get the inequality in (29) which
end our proof.

5. Equiconvergence

In this section we prove the equiconvergence of the eigenfunction expansion of
Sturm-Liouville problem (1)-(2), now we will claim what we do to prove the equicon-
vergence as follow

• suppose that f(x) ∈ L2[0, π], we choose

An,f =
n∑

k=0

1

a+k
φ(x, λ+k )

∫ π

0

φ(t, λ+k ) f(t) ρ(t)dt+
n∑

k=0

1

a−k
φ(x, λ−k )

∫ π

0

φ(t, λ−k ) f(t) ρ(t)dt,

(40)
where a±k ̸= 0 from [7]. Arguing as in [9] the series in (40) convergence uni-

formly to any function f(x) ∈ (0, π, ρ(x)) asn→ ∞. Let A
(o)
n,f denoted the

corresponding function for Sturm-Liouville problem (13)-(14) (where q(x) =
0).

• The essentially required to prove the equiconvergence of the eigenfunction

expansion of problem (1)-(2) that is the difference |An,f − A
(o)
n,f | uniformly

convergence to 0 as n→ ∞, x ∈ [0, π], and in next theorem we will explain
that.

theorem 1 The next equiconveregence formula which state that:

lim
n→∞

sup
0≤x≤π

|An,f (x) − A
(o)
n,f (x)| = 0, (41)

admits under the conditions of lemma (3), and lemma (4). Proof. From lemma
(4), we have

G(x, t, λ) = Go(x, t, λ) + g(x, t, λ),

multiply both sides by ρ(t) f(t), and hence integrate from 0 to π , we get∫ π

0

G(x, t, λ) ρ(t) f(t) dt =

∫ π

0

Go(x, t, λ) ρ(t) f(t) dt+

∫ π

0

g(x, t, λ) ρ(t) f(t) dt,

(42)
now to apply the Caushy residues formula to (42) we must integrate over a closed
contour, so that according to definition of the quadratic contour Γn in(5) , sup-
pose that Γ+

n the upper half of contour Γn, Ims ≥ 0, and Ln is the image of the
contour Γ+

n under the mapping λ = s2.
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Now multiply (42) by 1
2πi and integrating over the contour Ln in λ domain, we get

1
2πi

∮
Ln

{∫ π

0

G(x, t, λ) ρ(t) f(t) dt

}
dλ =

1
2πi

∮
Ln

{∫ π

0

Go(x, t, λ) ρ(t) f(t) dt

}
dλ+

1

2πi

∮
Ln

{∫ π

0

g(x, t, λ) ρ(t) f(t) dt

}
dλ,

(43)
notice that the poles of the function G(x, t, λ) coincide with the roots of the func-
tion W (λ) following from (10). Now in (43) we want to calculate the three inte-
grals, then to obtain the first integral 1

2πi

∮
Ln

{∫ π

0
G(x, t, λ) ρ(t) f(t) dt

}
dλ, ap-

plying the residues formula, we have

1

2πi

∮
Ln

{∫ π

0

G(x, t, λ) ρ(t) f(t) dt

}
dλ =

n∑
k=0

Resλ=λk

{∫ π

0

G(x, t, λ±k ) ρ(t) f(t) dt

}
,

(44)
using the formula (10), then (44) have the following form

1
2πi

∮
Ln

{∫ π

0

G(x, t, λ) ρ(t) f(t) dt

}
dλ =

∑n
k=0

φ(x,λ+
k )

a+
k

∫ π

0

φ(t, λ+k ) f(t) ρ(t)dt+
n∑

k=0

φ(x, λ−k )

a−k

∫ π

0

φ(t, λ−k ) f(t) ρ(t)dt = An,f (x).

(45)
Similarly, applying same methodology to the second integral 1

2πi

∮
Ln

{∫ π

0
Go(x, t, λ) ρ(t) f(t) dt

}
dλ,

we have

1

2πi

∮
Ln

{∫ π

0

Go(x, t, λ) ρ(t) f(t) dt

}
dλ = A

(o)
n,f (x). (46)

Substituting from (45),(46) into(43), we obtain

An,f (x) − A
(o)
n,f (x) =

1

2πi

∮
Ln

{∫ π

0

g(x, t, λ) ρ(t) f(t) dt

}
dλ, (47)

affected by modules to both sides of (47), we get

|An,f (x) − A
(o)
n,f (x)| ≤ 1

2π

∮
Ln

{∫ π

0

|g(x, t, λ)| |f(t)| dt
}

|dλ|. (48)

To get our purpose of the theorem and prove the equicongeregence we must show
that the right hand side of (48) must tends to zero uniformly with respect to x ∈ [0, π], ar-
guing as in [6],[11], apply same methodology , we have∮

Ln

{∫ π

0

|g(x, t, λ)| |f(t)| dt
}

|dλ| =

∮
Ln

{∫ a

0

|g(x, t, λ)| |f(t)| dt
}

|dλ| +

∮
Ln

{∫ π

a

|g(x, t, λ)| |f(t)| dt
}

|dλ|.

(49)
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From lemma(4), we get∮
Ln

{∫ π

0

|g(x, t, λ)||f(t)| dt
}
|dλ| ≤

H1

∮
Ln

{∫ a

0

e−|Im s|x−t|

|s|2
|f(t)|dt

}
|dλ|+H2

∮
Ln

{∫ π

a

e−|Im s|(x−a)−|Re s|(a−t)

|s|2
|f(t)| dt

}
|dλ|.

(50)
sinceH1,H2 are constants, here we have two integrals

∫ a

0
,and

∫ π

a
we must deal with

them, therefore starting with calculation of the integral
∫ a

0
so that,let λ = s2, and

suppose that δ > 0 be sufficiently small number, then, for x, t ∈ [o, a], we have

∮
Ln

{∫ a

0

e−|Im s|x−t|

|s|2
|f(t)| dt

}
|dλ|

=

∫
Γ+
n

|ds|
|s|

{∫
|x−t|≤δ

e−|Im s||x−t| |f(t)| dt +

∫
|x−t|>δ

e−|Im s||x−t| |f(t)| dt

}

≤
∫
Γ+
n

|ds|
|s|

∫
|x−t|≤δ

|f(t)| dt +

∫ π

0

|f(t)| dt
∫
Γ+
n

e−|Im s|δ |ds|
|s|

≤ 4

∫
|x−t|≤δ

|f(t)| dt +

∫ π

0

|f(t)| dt
[

2

δ(n− 1
2 )

+ 2 e−δ(n− 1
4 )

]
,

which led to the next relation

H1

∮
Ln

{∫ a

0

e−|Im s|x−t|

|s|2
|f(t)| dt

}
|dλ|

≤ M1

∫
|x−t|≤δ

|f(t)| dt +
M2

δn
+ M3 e

−δ n.

(51)

WhereM1,M2, and M3 are independent of x,n, and δ. By the same manner we
evaluated the next integral of

∫ π

a
in (50), we obtain

H2

∮
Ln

{∫ π

a

e−|Im s|(x−a)−|Re s|(a−t)

|s|2
|f(t)| dt

}
|dλ|

≤ M4

∫
|x−t|≤δ

|f(t)| dt +
M5

δn
+ M6 e

−δ n.

(52)

WhereM4,M5, andM6 are independent of x,n, and δ, hence substituting (51),(52) into (50), we
obtain that∮

Ln

{∫ π

0

|g(x, t, λ)| |f(t)| dt
}

|dλ| ≤ B

∫
|x−t|≤δ

|f(t)| dt+ C

δn
+ D e−δn. (53)

Where A,B,and C are constants also independent of x,n,and δ, now from (53)
into(48), we get

|An,f (x) − A
(o)
n,f (x)| ≤ B

∫
|x−t|≤δ

|f(t)| dt+ C

δn
+ D e−δn. (54)



222 ZAKI F.A. EL-RAHEEM, AND SHIMAA A.M. HAGAG EJMAA-2017/5(2)

As a final step of our proof, for f(x) ∈ L1[0, π] applying the property of absolute
continuity of Lesbuge integral to f(x), ∀ ϵ > 0,∃ δ > 0 is sufficiently small
such that

∫
|x−t|≤δ

|f(t)| dt ≤ ϵ, where ϵis independent of x which means that (the

set {|x− t ≤ δ} is measurable), also fixed δ in (54), there exists N such that ∀ n >
N, 1

δn < ϵ and e−δn ϵ, then the formula (54) becomes

|An,f (x) − A
(o)
n,f (x)| ≤ (B + C +D) ϵ, n > N. (55)

Choose ϵ is sufficiently small in 955), then we get |An,f (x) − A
(o)
n,f (x)| → 0, as n→

∞, uniformly with respect to x ∈ [0, π]. Which finish our vision of the proof of the
equiconvergence theorem for sinqular Sturm-Liouville problem(1)-(2).
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