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A STUDY ON SEQUENCES IN A RANDOM METRIC SPACE
VIA THE CONCEPT OF AN IDEAL

CELALEDD·IN ŞENÇ·IMEN AND AHMET ÖLMEZ

Abstract. The distance between any two points in a random metric (RM)
space is a nonnegative random variable. Such spaces naturally arise in random
functional analysis. The aim of this paper is to contribute to the
mathematical analysis of RM spaces. In this context, we introduce the
concepts of ideal convergent (I�convergent) sequence, I�Cauchy sequence
and I�bounded sequence in an RM space endowed with the ("; �)�topology,
and establish some basic facts. I�convergence and related properties of a
sequence presenting random deviations in an RM space could provide a general
mathematical setting to model the behaviour of the sequence, although it may
not be convergent in the ordinary sense. We also consider certain I�convergence
properties of a sequence of functions de�ned on RM spaces.

1. INTRODUCTION

In 1942, Menger [31] introduced the concept of a statistical metric space which is
now called a probabilistic metric (PM) space [37], as a generalization of an ordinary
metric space. In the theory of PM spaces, a probability distribution function Fpq is
assigned as a distance between any arbitrary points p and q of a nonempty abstract
set S. It is known that many papers have been published in the theory of PM
spaces up to now, and it is nearly impossible to list all of them here. However, a
clear and detailed history of the subject can be found in the books [5] and [37].

While the theory of PM spaces was developing, a related theory, namely, the
theory of random metric (RM) spaces was put forward by �paµcek [41, 42] and
further studied by many others (see, for instance, [2], [3], [14], [15], [16], [34] and
[39]). To obtain an RM space, one should consider the concept of a PM space from
the point of view of the standard measure-theoretic model of probability theory,
that is, an RM space is mainly based on the theory of random variables. To be more
concise, in the setting of RM spaces, a random variable Xpq is directly assigned as
a distance function to a pair of points (p; q) 2 S � S; rather than its probability
distribution function Fpq as in the theory of PM spaces, where S is a nonempty
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set. On the other hand, we see that, in the modern theory of RM spaces, random
variables are replaced with more general measurable functions satisfying certain
properties and RM spaces are much more related to random functional analysis
(see [15]). For a detailed history and the development of RM theory, we refer to
[14], [15], [16], [37] and the references therein.

As for the concept of ideal convergence (I�convergence, brie�y), it is a
generalization of the well known concept of statistical convergence (see, e.g. [9],
[36] and [43] for the notion of statistical convergence; and see also [46] for an
earlier concept, namely, the notion of almost convergence). I�convergence is thus a
generalization of ordinary convergence, and it is de�ned via the concept of an ideal I
of subsets of the set N of all positive integers. It was �rst introduced for a sequence
in a metric space by Kostyrko et al. [27], and since then, it has been investigated
by many others (see, e.g. [1], [4], [7], [35] and [40]). Note that, a similar concept,
called the �lter convergence was introduced in [33] for a sequence of numbers (see
also [26]).

The aim of this paper is to introduce the I�convergence and related concepts
in an RM space endowed with the ("; �)�topology, and to obtain basic results.
Since the study of convergence of a sequence in any abstract space is essential for a
mathematical analysis of the space, the concept of I�convergence in an RM space
could provide a more general framework for the study of sequences in RM spaces.

Our paper is organized as follows. In the second section, for an easy reading of
the paper, we recall some preliminary notations, de�nitions and results related to
RM spaces and I�convergence. The main results of the paper are presented in the
third section.

2. PRELIMINARIES

First, we recall some of the basic concepts related to the theory of RM spaces,
and we refer to [15] for more details in the following.

Let (
;A; P ) be a probability space and R be the real number �eld. Then
L0 (
;R) will denote the set of all real valued random variables on 
; and L+0 (
) the
set of all such random variables � on 
 that � (!) � 0 almost surely (a.s.), where
! 2 
: Now we are ready for

De�nition 2.1 [15, 37] An ordered pair (S;X ) is called a random metric space
(brie�y, an RM space) with base (
;A; P ) if S is a nonempty set and X is a
mapping from S � S to L+0 (
) such that, denoting X (p; q) by Xpq; for all p; q; r in
S, the following hold:
(RM 1) Xpq (!) = 0 a.s. if p = q;
(RM 2) Xpq (!) = Xqp (!) a.s.,
(RM 3) Xpq (!) = 0 a.s. implies p = q;
(RM 4) Xpr (!) � Xpq (!) +Xqr (!) a.s.

Moreover, Xpq is said to be the random distance between p and q. If the axiom
(RM 3) is dropped, then (S;X ) is called a random pseudometric space (brie�y, an
RPM space).
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Remark 2.1 The function X given in De�nition 2.1 is called a strong stochastic
metric in [2], and the RM space (S;X ) is called an F�random metric space in [15].
However, in this paper, the pair (S;X ) will be called a random metric space as in
[37], X will be called a random metric, and we will not explicitly mention the base
space (
;A; P ) unless necessary. Moreover, we would like to point out that; in [14],
another de�nition of an RM space, namely, the concept of an E�random metric
space was introduced (see also [15]). In this space, the distance between any two
points is an equivalence class of a nonnegative random variable. In this context, one
can have a notion of an E�random normed space. The advantage of this approach
is that an important notion of a random normed module can be introduced and
its random conjugate space can be deeply developed as can be seen by the recent
advances in [13], [17], [18], [19], [20], [21], [22] and [23].

Now let us cast a glance at the topological structure of RM spaces. Let (S;X )
be an RPM space with base (
;A; P ). For " > 0 and 0 < � < 1; let

U ("; �) = f(p; q) 2 S � S : P f! 2 
 : Xpq (!) < "g > 1� �g
= f(p; q) 2 S � S : P (Xpq < ") > 1� �g :

Then fU ("; �) : " > 0; 0 < � < 1g forms a subbase for some pseudometrizable
uniformity on S, which determines a pseudometrizable topology, called the
("; �)�topology. Thus, given an RM space (S;X ) and a point p in S, we will
call the the set

Np("; �) = fq 2 S : P (Xpq < ") > 1� �g
the ("; �)�neighborhood of p.

Throughout the rest of the paper, when we speak about an RM space (S;X ) ;
we always assume that S is endowed with the ("; �)�topology.

De�nition 2.2 [2] Let (S;X ) be an RM space. Then, X is uniformly continuous
means that, given " > 0 and 0 < � < 1; there are numbers "0 > 0 and 0 < �0 < 1
such that

P (jXpq �Xp0q0 j < ") > 1� �
whenever P (Xpp0 < "0) > 1� �0 and P (Xqq0 < "0) > 1� �0; where p; p0; q; q0 2 S:
According to [2], it is enough to choose "0 = "

2 and �
0 = �

2 in De�nition 2.2 to
prove the following result which is essential for all our purposes.

Lemma 2.1 [2] If (S;X ) is an RM space, then the random metric X is uniformly
continuous.

Note 2.1 Since X is uniformly continuous, as a particular case of De�nition 2.2
and as a consequence of Lemma 2.1 we can say that, given " > 0 and 0 < � < 1 we
have P (Xpr < ") > 1�� whenever P

�
Xpq <

"
2

�
> 1� �

2 and P
�
Xqr <

"
2

�
> 1� �

2
where p; q; r 2 S:

Finally, we list some of the basic concepts related to the theory of
I�convergence in a metric space, and we refer to [27] for more details.

Let Y be a non-empty set and P(Y ) be its power set. Then a family
I � P(Y ) is an ideal if and only if for each A;B 2 I we have A [ B 2 I and
for each A 2 I and each B � A we have B 2 I: A non-empty family F � P(Y )



244 C. ŞENÇ·IMEN AND A. ÖLMEZ EJMAA-2018/6(1)

is a �lter on Y if and only if ; =2 F ; for each A;B 2 F we have A \ B 2 F ;
and for each A 2 F and each B � A we have B 2 F . An ideal I is called non-
trivial if I 6= ; and Y =2 I: An I � P(Y ) is a non-trivial ideal if and only if
F = F(I) = fY nA : A 2 Ig is a �lter on Y . A non-trivial ideal I � P(Y ) is
called admissible if and only if I � ffyg : y 2 Y g : For instance, the collection If
of all �nite subsets of N is an admissible ideal in P(N):

Another important admissible ideal is obtained as follows: Let A � N: Then,
the limit given by

lim
n!1

1

n
# fj 2 A : j � ng

(whenever exists) is called the natural density of A and it is denoted by �(A); where
# fj 2 A : j � ng denotes the number of elements of A not exceeding n. Note that
for a �nite subset A of N; we have �(A) = 0: Moreover, if �(A) exists, then �(Ac) =
1� �(A) where Ac = N�A (see also [32]). Thus the collection fA � N : �(A) = 0g
is an admissible ideal in P(N), and we will denote it by I�:

De�nition 2.3 [27] Let I be an ideal in P(N), (xn) be a sequence in a metric space
(X; �) and x 2 X: If, for each " > 0 we have

fn 2 N : � (xn; x) � "g 2 I;
then we say that (xn) is I�convergent to x, and we write

I � lim xn = x:

De�nition 2.4 [27] Let I be an ideal in P(N); (xn) be a sequence in a metric
space (X; �) and x 2 X: Then (xn) is said to be I��convergent to x; provided that
there exists a set M 2 F(I) (i.e., N nM 2 I) such that

M = fmk : m1 < m2 < ::: < mk < :::g
and xmk

! x as k !1: In this case, we write I� � lim xn = x:

Lemma 2.2 [27] Let I be an admissible ideal in P(N), (xn) be a sequence in
a metric space (X; �) and x 2 X: If (xn) is I��convergent to x; then (xn) is
I�convergent to x.

3. MAIN RESULTS

First of all, following [27], [28] and [40], we will introduce the concept of an
I�convergent sequence in an RM space (S;X ), and present some main results.
Throughout the rest of the paper, I will denote an admissible ideal in P(N):

De�nition 3.1 Let (S;X ) be an RM space. We say that a sequence (pn) in S is
I�convergent in the ("; �)�topology (or I�convergent in the random metric) to a

point p in S (or brie�y, (pn) is I�convergent) and we write pn
I�RM�! p; provided

that for each " > 0 and 0 < � < 1 we have

fn 2 N : pn =2 Np("; �)g = fn 2 N : P (Xpnp < ") � 1� �g 2 I:

That is, pn
I�RM�! p i¤ for each " > 0 and 0 < � < 1 we have

fn 2 N : P (Xpnp < ") > 1� �g 2 F(I):
In this case, we call p the I�RM limit of (pn) :
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Remark 3.1 (a) In [1], an important concept, called the I�convergence in measure
was introduced as follows. Given a �nite measure space (
;A; �) ; let us denote
by L0 the space of real valued measurable functions de�ned almost everywhere on

: If (fn) is a sequence in L0 and f 2 L0; then we say that (fn) is I�convergent
in measure to f provided that

I� lim � f! 2 
 : jfn (!)� f(!)j � "g = 0
for every " > 0: We will denote this situation by (�) � I� lim fn = f: Such
a convergence was �rst considered in [9] as a special case, under the name of
asymptotic statistical convergence. If, in particular, we choose our measure space
as a probability space (
;A; P ), then the I�convergence in measure will be called
the I�convergence in probability. In this case, we can say that a sequence (fn) of
random variables is I�convergent in probability to f provided that

I� lim P f! 2 
 : jfn (!)� f(!)j � "g = 0
for every " > 0; or equivalently,

I� lim P f! 2 
 : jfn (!)� f(!)j < "g = 1
for every " > 0 (see also [12] and [24]). We will denote this situation by

(P )� I� lim fn = f:

(b) As for our context, since the base (
;A; P ) of an RM space (S;X ) is a
probability space, we can say that, for a sequence (pn) in (S;X ) we have
pn

I�RM�! p i¤

I� lim P f! 2 
 : jXpnp (!)j < "g = I� lim P (Xpnp < ") = 1

for each " > 0; since � 2 (0; 1) can be made arbitrarily small according to De�nition
3.1. This means that pn

I�RM�! p i¤ the sequence (Xpnp) of random variables is
I�convergent in probability to the zero random variable � de�ned by �(!) = 0
a.s., namely,

pn
I�RM�! p() (P )� I� lim Xpnp = �:

(c) Finally, we would like to point out that, in [25], as a special case of
I�convergence, the statistical convergence in a �erstnev type of probabilistic normed
space endowed with the ("; �)�topology (see [38] for such spaces) is de�ned by
using probability distribution functions. Also, Şençimen and Pehlivan [44]
introduced the strong I�convergence in a general PM space endowed with the
strong topology by using probability distribution functions. However, as stated in
the introductory part of our work, probabilistic metric/normed spaces are
essentially di¤erent from RM spaces in their fundamental structures. Therefore,
our de�nitions presented here will be formulated di¤erently from those of [25] and
[44], because we will base ourselves on the measure theoretical properties of random
variables directly, not the probability distribution functions.

Now we continue our work with certain properties of the I�convergence in an
RM space (S;X ). First, since the collection If of all �nite subsets of N is an
admissible ideal in P(N); we can say that a convergent sequence (pn) in (S;X ) with
respect to the ("; �)�topology is If�convergent in the same topology. Now let us
consider the following
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Example 3.1 Let S = R2 and given p = (a1; a2) ; q = (b1; b2) 2 S; let

d(p; q) =
h
(a1 � b1)2 + (a2 � b2)2

i 1
2

;

namely, the Euclidean metric. Moreover, let us given the probability space (I;A;m)
where I = [0; 1] ; A is the ��algebra of all Lebesgue measurable subsets of I and
m is the Lebesgue measure. Now let us de�ne a random variable � : I �! R by
�(!) = !: Now consider the mapping

X : S � S �! L+0 (I)

de�ned by
Xpq (!) = d(p; q) �(!);

where p; q 2 S: Under these conditions, the pair (S;X ) is an RM space with base
(I;A;m) (see Chp. 9 of [37], for such a construction of an RM space). Now let
(pn) be a sequence in (S;X ) de�ned by

pn =

�
(1; 1); if n is perfect square�

1
n ;

1
n

�
; otherwise

;

where n 2 N; and let � = (0; 0) 2 S: If we consider the sequence (Xpn�) of random
variables de�ned by

Xpn� (!) = d(pn; �) �(!) =

( p
2!; if n is perfect squarep

2!
n ; otherwise

;

then we see that

P (Xpn� < ") =

(
"p
2
; if 0 < " <

p
2

1; if " �
p
2

when n is a perfect square, and

P (Xpn� < ") =

(
n"p
2
; if 0 < " <

p
2
n

1; if " �
p
2
n

when n is not a perfect square. Note that

lim
k!1

P
�
Xpnk� < "

�
= 1

for each " > 0; where M = fnk : k 2 Ng is the set of positive integers which are not
perfect square, �(M) = 1 and hence M 2 F (I�) : Thus we have

I�� � lim P (Xpn� < ") = 1

for each " > 0 by De�nition 2.4, which yields

I� � lim P (Xpn� < ") = 1

for each " > 0 by Lemma 2.2. Thus, in view of Remark 3.1-(b), we get

(P )� I�� lim Xpn� = �:

Hence we have pn
I��RM�! � (This also means that (pn) is statistically convergent

in the ("; �)�topology). Note that (pn) is not convergent in the ordinary sense
with respect to the ("; �)�topology. Moreover, the subsequence (pn)n2Mc of the
sequence (pn) is I��convergent in the ("; �)�topology to the point p = (1; 1) 2 S.
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Thus a subsequence of an I�convergent sequence need not I�converge to the
I�RM limit of the sequence in an RM space.

Now we continue with a

Lemma 3.1 Let (S;X ) be an RM space with base (
;A; P ) : Then, given
" > 0 and 0 < � < 1 we have P (Xps < ") > 1� � whenever P

�
Xpq <

"
3

�
> 1� �

3 ;

P
�
Xqr <

"
3

�
> 1� �

3 and P
�
Xrs <

"
3

�
> 1� �

3 where p; q; r; s 2 S:

Proof. Let " > 0 and 0 < � < 1: Moreover, let A =
�
! 2 
 : Xpq(!) < "

3

	
,

B =
�
! 2 
 : Xqr(!) < "

3

	
and C =

�
! 2 
 : Xpr(!) < 2"

3

	
: Then, by the axiom

(RM 4) of De�nition 2.1, we have

P (C) � P (A \B) > 1� �
3
+ 1� �

3
� 1 = 1� 2�

3
:

Now let D = f! 2 
 : Xps(!) < "g and E =
�
! 2 
 : Xrs(!) < "

3

	
: Similarly, we

have

P (D) � P (C \ E) > 1� 2�
3
+ 1� �

3
� 1 = 1� �;

which completes the proof. �

Theorem 3.1 Let (S;X ) be an RM space. If (pn) and (qn) are sequences in S

such that pn
I�RM�! p and qn

I�RM�! q, then we have

(P )� I � lim Xpnqn = Xpq:

Proof. First, let us recall that X is a uniformly continuous mapping by Lemma
2.1. Now let " > 0 and 0 < � < 1 be given. Thus we can say that

P (jXpnqn �Xpqj < ") > 1� �
whenever

P
�
Xpnp <

"

2

�
> 1� �

2
and

P
�
Xqnq <

"

2

�
> 1� �

2
:

Now let us consider the following sets:

A1 = fn 2 N : P (jXpnqn �Xpqj < ") � 1� �g ;

A2 =

�
n 2 N : P

�
Xpnp <

"

2

�
� 1� �

2

�
;

A3 =

�
n 2 N : P

�
Xqnq <

"

2

�
� 1� �

2

�
:

Thus we see that A1 � (A2 [A3) : Moreover, by De�nition 3.1, we have

A2; A3 2 I since pn
I�RM�! p and qn

I�RM�! q, respectively. Hence we get A1 2 I;
and thus Ac1 2 F(I): This means that

fn 2 N : P (jXpnqn �Xpqj < ") > 1� �g 2 F(I);
and since � 2 (0; 1) can be made arbitrarily small, we have

I � lim P (jXpnqn �Xpqj < ") = 1;
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which completes the proof. �

At this stage, note that, in [27], the concept of an I�convergence preserving
function on a metric space was introduced. Thus, by using the language of [27], we
can also say that the random metric X preserves I�convergence, by Theorem 3.1.

In what follows, based on the concept of real statistically Cauchy sequence
de�ned in [10] and the concept of I�Cauchy sequence (a generalization of
statistically Cauchy sequence) in a metric space (see [7]), we will introduce the
concept of an I�Cauchy sequence in an RM space and prove some basic facts. We
would like to point out that, in [29], as a very general case, I�convergence of nets
in a topological space was introduced. Also in [6], the concept of a I�Cauchy net
in a uniform space was introduced and studied its basic properties. Since (S;X ) is a
uniform space, our results which will be given by Theorems 3.2 - 3.3 and Corollary
3.1 may be considered as special cases of the ones given in [6]. However, to make
our paper self-contained and to see in detail what is happening in the measure-
theoretical setting of random variables, we will prove these results by using the
tools of RM spaces.

De�nition 3.2 Let (S;X ) be an RM space. We say that a sequence (pn) in S is
I�Cauchy provided that, for every " > 0 and 0 < � < 1; there exists a number
N = N("; �) 2 N such that

fn 2 N : P (XpnpN < ") � 1� �g 2 I:
Theorem 3.2 In an RM space (S;X ) ; if a sequence is I�convergent, then it is
also I�Cauchy.

Proof. Let (pn) be a sequence in S such that pn
I�RM�! p: Moreover, let any " > 0

and 0 < � < 1 be given. Since pn
I�RM�! p, we have

C ("; �) =

�
n 2 N : P

�
Xpnp <

"

2

�
> 1� �

2

�
2 F(I):

Now choose an N 2 C ("; �) : Thus we have P
�
XpNp <

"
2

�
> 1 � �

2 : Then, by
Lemma 2.1, we have P (XpnpN < ") > 1� � whenever n 2 C ("; �) : Namely,

fn 2 N : P (XpnpN < ") > 1� �g 2 F(I):
This shows that (pn) is I�Cauchy. �

Theorem 3.3 Let (pn) be a sequence in an RM space (S;X ) : If (pn) is I�Cauchy,
then for every " > 0 and 0 < � < 1; there exists a set
A = A("; �) 2 I such that P (Xpmpn < ") > 1� � for any m;n =2 A:

Proof. Let (pn) be an I�Cauchy sequence in (S;X ). Moreover, let any " > 0 and
0 < � < 1 be given. Then there exists an N = N("; �) 2 N such that�

n 2 N : P
�
XpnpN <

"

2

�
� 1� �

2

�
2 I:

Now, let us write

A = A("; �) =

�
n 2 N : P

�
XpnpN <

"

2

�
� 1� �

2

�
:
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Thus we have P
�
XpmpN <

"
2

�
> 1� �

2 and P
�
XpnpN <

"
2

�
> 1� �

2 for any m;n =2
A: Now Lemma 2.1 yields that

P (Xpmpn < ") > 1� �
for any m;n =2 A: �

Corollary 3.1 If (pn) is an I�Cauchy sequence in an RM space (S;X ) ; then for
every " > 0 and 0 < � < 1 there exists a set B = B("; �) 2 F(I) such that
P (Xpmpn < ") > 1� � for any m;n 2 B:

Theorem 3.4 Let (S;X ) be an RM space. If (pn) and (qn) are I�Cauchy sequences
in S; then, given any " > 0 and 0 < � < 1 there exists a set
D = D("; �) 2 F(I) such that

P (jXpmqm �Xpnqn j < ") > 1� �
whenever m;n 2 D:

Proof. Let (pn) and (qn) be I�Cauchy sequences in S. Moreover, let any " > 0
and 0 < � < 1 be given. Then, by Corollary 3.1, there exist

B = B("; �); C = C("; �) � N with B;C 2 F(I)
such that

P
�
Xpipj <

"

2

�
> 1� �

2
holds for any i; j 2 B; and

P
�
Xqkql <

"

2

�
> 1� �

2

holds for any k; l 2 C: Now consider the set B \ C = D 2 F(I): Thus we can say
that for every " > 0 and 0 < � < 1 there exists a set D = D("; �) 2 F(I) such that
P
�
Xpmpn <

"
2

�
> 1 � �

2 and P
�
Xqmqn <

"
2

�
> 1 � �

2 for any m;n 2 D: Hence we
have

P (jXpmqm �Xpnqn j < ") > 1� �
for any m;n 2 D by Lemma 2.1, which completes the proof. �

Now we will mention the concept of I�boundedness in an RM space. In [11]
and [45], the concept of a real statistically bounded sequence was introduced.
Similarly, in [35], the concept of a real I�bounded sequence was given. Now an
analogous concept in an RM space will be introduced by the following

De�nition 3.3 Let (S;X ) be an RM space. We say that a sequence (pn) in S is
I�bounded provided that, there exist a p0 2 S; an "0 > 0 and a �0 2 (0; 1) such
that

fn 2 N : P (Xpnp0 < "0) � 1� �0g 2 I;
namely,

fn 2 N : P (Xpnp0 < "0) > 1� �0g 2 F(I):
Note that there are di¤erent types of bounded sets in the theory of PM spaces

(see [37]) and RM spaces (see [14]). However, an I�bounded sequence introduced
above is based on the concept of boundedness of an arbitrary set in a uniform space
(see, e.g. [30]).
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Now the following result is immediate from the de�nitions presented in this sec-
tion.

Theorem 3.5 Every I�Cauchy sequence (and hence every I�convergent
sequence) in an RM space (S;X ) is I�bounded.

Finally, we would like to mention some properties of a sequence of functions
de�ned between RM spaces. In what follows, we have inspired from [1] and [8].
In [1], certain types of I�convergent sequences of metric space-valued functions
are considered. In [8], ��statistically convergent sequences of real functions are
investigated. We generalize their results to the setting of RM spaces. First, we
begin with a

De�nition 3.4 Let (S;X ) and
�
~S; ~X

�
be RM spaces and (fn) be a sequence of

functions each de�ned from S into ~S. We say that (fn) is I�pointwise convergent
to a function f : S �! ~S provided that; for each p 2 S; " > 0 and 0 < � < 1 there
exists a set A 2 I such that fn(p) 2 Nf(p)("; �); that is,

P
�
~Xfn(p)f(p) < "

�
> 1� �

for all n =2 A: We say that (fn) is I�uniformly convergent to f provided that; for
each " > 0 and 0 < � < 1 there exists a set A 2 I such that for all n =2 A and p 2 S
we have fn(p) 2 Nf(p)("; �), that is,

P
�
~Xfn(p)f(p) < "

�
> 1� �:

Theorem 3.6 Let fn : S �! ~S and each fn be continuous. If (fn) is I�uniformly
convergent to a function f : S �! ~S; then f is continuous on S.

Proof. By hypothesis, for each " > 0 and 0 < � < 1 there exists a set A =

A("; �) 2 I such that P
�
~Xfn(p)f(p) <

"
3

�
> 1 � �

3 for all p 2 S and n 2 A
c: Now

pick an N 2 Ac: Thus we have

P
�
~XfN (p)f(p) <

"

3

�
> 1� �

3
(3.1)

for all p 2 S: Now let p0 2 S: Hence we can write

P
�
~XfN (p0)f(p0) <

"

3

�
> 1� �

3
: (3.2)

Since fN is continuous at p0; there exists a 
 > 0 and an h 2 (0; 1) such that
P (Xp0p < 
) > 1� h implies

P
�
~XfN (p)fN (p0) <

"

3

�
> 1� �

3
: (3.3)

Now whenever p 2 S with P (Xp0p < 
) > 1� h; if we combine (3.1)-(3.3), we get

P
�
~Xf(p)f(p0) < "

�
> 1� �;

by Lemma 3.1. Since p0 is arbitrary, f is continuous on S. �
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