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ON THE EXPONENTIAL STUDY OF SOLUTIONS OF

VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS WITH

TIME LAG

CEMIL TUNC AND OSMAN TUNC

Abstract. We are concerned with three nonlinear Volterra integro-differential
equations (NVIDEs) with constant time lag. The variational of parameters
inequalities, that is, the boundedness of the solutions, to that (NVIDEs) is

investigated by the Lyapunov functionals (LFs). The results obtained here
improve and complement a sample of works found in the literature. In fact,
the novelty and originality of this article are that it improves and extends
earlier results from very simple cases without time lag to the more general and

non-linear cases with time lag.

1. Introduction

Mathematical models by functional differential equations (FDEs), (VIDEs), Volterra
integral equations (VIEs), integral equations (IEs) and integro-differential equations
(IDEs) have attracted the attention of scientists due to their useful applications to
day life problems in various scientific fields like sciences, engineering and many other
areas (see Burton [6], Burton and Mahfoud [10], Corduneanu [13], Gripenberg et
al. [26], Lakshmikantham and Rama Mohan Rao [38], Peschel and Mende [48],
Staffans [59], Wazwaz [76]). Therefore, due to this reality, qualitative properties
of solutions of various models of the mentioned equations have been widel investi-
gated by different authors (Adivar and Raffoul [1], Becker ([2], [3], [4]), Burton ([5],
[7]), Burton and Haddock [8], Burton and Mahfoud ([9], [11]), Chang and Wang
[12], Diamandescu[14], Dung ([15], [16]), Eloe et al. [17], Engler [18], Funakubo et
al. [19], Furumochi and Matsuoka [20], Grace and Akin [21], Graef and Tunç [22],
Graef et al. [23], Grimmer and Seifert [24], Grimmer and Zeman [25], Grossman
and Miller [27], Hara et al. ([28],[29],[30]), Hino and Murakami [31], Islam [32],
Islam and Al-Eid [33], Islam and Raffoul ([34], [35]), Jin and Luo [36], Lakshmikan-
tham and Rama Mohan Rao [37], Mahfoud ([39],[40],[41]), Mesmouli et al. [42],
Martinez [43], Miller [44], Murakami [45], Ngoc [46], Napoles Valdes [47], Raffoul
([49],[50], [51],[52]), Raffoul and Rai [53], Raffoul and Ren [54], Raffoul and Sanbo
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[55], Raffoul and nal [56], Rama Mohana Rao and Raghavendra [57], Rama Mo-
hana Rao and Srinivas [59], Talpalaru [60], Tunç ([61], [62], [63], [64], [65]), Tunç
and Ayhan [66], Tunç and Mohammed ([67], [68]), Vanualailai [69],Vanualailai and
Nakagiri ([70], [71]), Wang ([72], [73], [74]), Wang et al. [75], Zhang [77], Da Zhang
[78]). As distinguished line from these facts, the following article is notable: In
2009, Raffoul [51] considered the (FDE)

dx

dt
Φ(t, x(s); 0 ≤ s ≤ t) := Φ(t, x(.)), (1)

in which x is an n-dimensional vector, Φ is given a continuous function in t and
x(.) such that Φ(t, 0) = 0.

A stereotype of (FDE) (1) is the (VIDE) given by

dx

dt
= h(x) +

∫ t

0

B(t, s)f(x(s))ds+ g(t).

Let t0 ≥ 0. Then, for each continuous function ϕ : [0, t0] → ℜn, at least, there
exists a continuous function x(t) = x(t, t0, ϕ) on [t0, I], which is a solution of (FDE)
(1) for 0 ≤ t0 ≤ t ≤ I so that x(t, t0, ϕ) = ϕ for 0 ≤ t ≤ t0 (see Raffoul [51]). In [51],
Raffoul investigated sufficient conditions to guarantee that all solutions of (FDE)
(1) satisfy specific variational of parameters inequalities by means of (LFs), and the
author gave examples for illustrations. Indeed, Raffoul [51] considered the below
(VIDEs) to show applicability of the obtained results:

dx

dt
= σ(t)x+

∫ t

0

B(t, s)x(s)ds+ g(t), (2)

dx

dt
= σ(t)x+

∫ t

0

B(t, s)x
2
3 (s)ds+ g(t) (3)

and
dx

dt
= σ(t)x3 +

∫ t

0

B(t, s)x
1
3 (s)ds+ g(t). (4)

Motivated by the results of Raffoul [51], which are related to (VIDEs) (2)-(4), in
this paper, we consider the following (NVIDEs) with constant time lag:

dx

dt
= −f(t, x) +

∫ t

t−τ

H(t, s)K(x(s))ds+ F (t), (5)

dx

dt
= −p(t, x) +

∫ t

t−τ

H(t, s)q
2
3 (x(s))ds+ F (t) (6)

and
dx

dt
= −r3(t, x) +

∫ t

t−τ

H(t, s)h
1
3 (x(s))ds+ F (t), (7)

respectively, where x(t) = ϕ(t), 0 ≤ t ≤ t0, and ϕ(t) is a given bounded continuous
initial function, t − τ ≥ 0, τ ∈ ℜ, τ > 0, fixed constant time lag, x ∈ ℜ, F :
ℜ+ → ℜ, ℜ+ = [0,∞), and f, p, r : ℜ+ × ℜ → ℜ are continuous functions with
f(t, 0) = p(t, 0) = r(t, 0) = 0, K, q, h : ℜ → ℜ are continuous functions with
K(0) = q(0) = h(0) = 0, and H(t, s) is a continuous function for 0 ≤ s ≤ t < ∞.
It is also assumed that the derivatives ∂

∂xf(t, x) = fx(t, x),
∂
∂xp(t, x) = px(t, x) and

∂
∂xr(t, x) = rx(t, x) exist and are continuous for all (t, x).
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Let us define

f1(t, x) =

{
f(t,x)

x , x ̸= 0
fx(t, 0), x = 0

p1(t, x) =

{
p(t,x)

x , x ̸= 0
px(t, 0), x = 0

r1(t, x) =

{
r(t,x)

x , x ̸= 0
rx(t, 0), x = 0.

Hence, we can write from (NVIDEs) (5)-(7) that

x′(t) = f1(t, x)x+

∫ t

t−τ

H(t, s)K(x(s))ds+ F (t), (8)

x′(t) = −p1(t, x)x+

∫ t

t−τ

H(t, s)q
2
3 (x(s))ds+ F (t) (9)

and

x′(t) = −r31(t, x)x
3 +

∫ t

t−τ

H(t, s)h
1
3 (x(s))ds+ F (t), (10)

respectively.
It is notable form the given information that Raffoul [51] considered one linear

and two non-linear (VIDEs) without time lag. However, we pay attention to certain
three new (NVIDEs) with constant time lag. In fact, when we choose f(t, x) =

−σ(t)x,K(x) = x, F (t) = g(t); p(t, x) = −σ(t)x, q
2
3 (x) = x

2
3 , F (t) = g(t), and

r(t, x) = −σ
1
3 (t)x, h

1
3 (x) = x

1
3 , F (t) = g(t), respectively, and put zero ”0” instead

of the term t− τ , then (NVIDEs) (5)-(7) reduce to (VIDE) (2)-(4) investigated by
Raffoul [51]. That is, (NVIDEs) (5)-(7) include and extend (VIDEs) (2)-(4) studied
by Raffoul [51].

The purpose of this paper is to establish new sufficient conditions to guarantee
some new variational of parameters inequalities so that the solutions (NVIDEs)
(5)-(7) are bounded. By this way, we would like to do a contribution to the subject
and the related literature.

Let φ : [0, t0] → ℜn be a continuous function and define |φ| = sup{∥φ(s)∥ : 0 ≤
s ≤ t0}.

Definition ([51]). The solutions of (FDE) (1) are said bounded if any solution
x(t, t0, φ) of equation (1) fulfills

∥x(t, t0, η)∥ ≤ C(∥η∥, t0), t ≥ t0, (11)

where C : ℜ+ × ℜ+ → ℜ+,ℜ+ = [0,∞), C is here two-parameters a positive
function, which depends on φ and t0, and φ is a given bounded and continuous
initial function.

If the C in inequality (11) is independent of t0 , then it is said that the solutions
of (FDE) (1) are uniformly bounded.

Throughout this paper, the below basic theorem is needed for our results, and
when we need x represents x(t).

Theorem A ([51]). Assume that D ⊂ ℜn contains the origin and there exists
a continuously differentiable (LF) W : [0,∞) × D → [0,∞) such that the below
assumptions hold for all (t, x) ∈ [0,∞)×D:

(A1) W1(∥x∥) ≤ W (t, x) ≤ W2(∥x∥) +
∫ t

0
ϕ1(t, s)W3(|x(s)|)ds,

(A2) Ẇ (t, x(.)) ≤ −α1(t)W4(∥x∥)− α2(t)
∫ t

0
ϕ2(t, s)W5(|x(s)|)ds+ F (t)
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for positive and continuous functions α1(t), α2(t) and F (t), where ϕ1(t, s) ≥ 0 and
ϕ2(t, s) ≥ 0 are scalar valued and continuous functions for 0 ≤ s ≤ t < ∞. If the
condition

(A3) W2(∥x∥)−W4(∥x∥) +
∫ t

0
[ϕ1(t, s)W3|x(s)| − ϕ2(t, s)W5|x(s)|]ds ≤ γ

holds for some constant γ ≥ 0, then all solutions of (FDE) (1) that start in D
satisfy the variational of parameters inequality

∥x∥ ≤ W−1
1 {W (t0, ∥ϕ∥) exp(−

∫ t

t0

α(s)ds)+

∫ t

t0

[(γα(u)+F (u)) exp(−
∫ t

u

α(s)ds)]du}

for all t ≥ t0, where α(t) = max{α1(t), α2(t)}.
Proof. See Raffoul [51].

2. Boundedness of solutions

We introduce some assumptions for (VIDE) (5).
A. Assumptions
Let the below assumptions be true.

(C1) f(t, 0) = H(0) = 0, f1(t, x) ≥ f0(t) for t ∈ ℜ+, x ∈ ℜ,
(C2) ω(t) = 2f0(t)−

∫ t

t−τ
K0|H(t, s)|ds− σ

∫∞
t−τ

K0|H(u+ τ, t)|du− 1 > 0,

in which the function f0 is positive, bounded and continuous,

(C3) (σ − 1)|H(t, s)| ≥ σ
∫∞
t−τ

|H(u, s)|du,
∫ t

t−τ
|H(t, s)|ds < ∞

and
∫∞
t−τ

|H(u+ τ, t)|du < ∞
with 0 ≤ s ≤ t ≤ u < ∞.

The first outcome of the current work is given below.
Theorem 1. If assumptions (C1)-(C3) hold, then all solutions x(t) of (NVIDE)

(5) start in D satisfy the variational of parameters inequality

|x| ≤ {Ω1(t0, ∥ϕ∥) exp(−
∫ t

t0

ω(s)ds) +

∫ t

t0

[(γα(u) +G(u)) exp(−
∫ t

u

ω(s)ds)]du}

(12)
with

ω(t) = max{2f0(t)−
∫ t

t−τ

K0|H(t, s)|ds− σ

∫ ∞

t−τ

K0|H(u+ τ, t)|du− 1, 1}

γ = 0, G(t) = F 2(t), and

Ω1(t0, ϕ) = ϕ2 + σ

∫ t0

0

∫ ∞

t0−τ

K0|H(u+ τ, s)|duϕ2(s)ds.

Proof. Define a (LF) Ω1 = Ω1(t, x(t)) by

Ω1 = x2 + σ

∫ t

0

∫ ∞

t−τ

K0|H(u+ τ, s)|dux2(s)ds, (13)

where σ,K0 ∈ ℜ, K0 > 0, σ > 0, we fix the constant σ in the proof later.
It can easily be seen from (13) that Ω1 is positive definite, since

Ω1(t, 0) = 0 and Ω1(t, x) ≥ x2.
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By a clear calculation from (13) and (NVIDEs) (5) and (8), we obtain

Ω′
1 = 2xx′ + σx2

∫ ∞

t−τ

K0|H(u+ τ, t)|du− σ

∫ t

0

K0|H(t, s)|x2(s)ds

= −2f1(t, x)x
2 + 2x

∫ t

t−τ

H(t, s)K(x(s))ds+ 2xF (t)

+ σx2

∫ ∞

t−τ

K0|H(u+ τ, t)|du− σ

∫ ∞

t−τ

K0|H(t, s)|x2(s)ds.

By an elementary inequality together with the assumption f1(t, x) ≥ f0(t), it can
be enable that

Ω′
1 ≤ −2f0(t)x

2 + 2|x|
∫ t

t−τ

K0|H(t, s)||x(s)|ds

+ σx2

∫ ∞

t−τ

K0|H(u+ τ, t)|du− σ

∫ ∞

t−τ

K0|H(t, s)|x2(s)ds

+ 2|x||F (t)|

≤ −[2f0(t)−
∫ t

t−τ

K0|H(t, s)|ds− σ

∫ ∞

t−τ

K0|H(u+ τ, t)|du− 1]x2

+ (1− σ)K0

∫ t

t−τ

H(t, s)x2(s)ds+ F 2(t).

Let G(t) = F 2(t) and σ > 1. Then

Ω′
1 ≤ −ω(t)x2 − (σ − 1)K0

∫ t

t−τ

H(t, s)x2(s)ds+G(t)

by assumption (C2)
Let us take that

α1(t) = ω(t), α2(t) = 1,

W1(.) = W2(.) = W4(.) = x2(t),

W3(.) = W5(.) = x2(s),

ϕ1(t, s) = σ

∫ ∞

t−τ

|H(u+ τ, s)|du

and

ϕ2(t, s) = (σ − 1)K0H(t, s).

Then we can conclude that all assumptions (A1)-(A3) of Theorem A hold. Hence,
one can show that all solutions x(t) of (VIDE) (5) satisfy relation (12).

B.Assumpitons
Let α1 be a positive constant such that the following assumptions hold.

(D1) p(t, 0) = q(0) = 0, p1(t, x) ≥ α(t), t ∈ ℜ+, x ∈ ℜ, |q(x)| ≤ α
1
2
1 |x|,

0 < α1 < 1,

(D2) 2α(t)−
∫ t

t−τ
|H(t, s)|ds−

∫∞
t−τ

|H(u+ t, s)|du− 1 > 0,

in which the function α is positive, bounded and continuous,

(D3)
∫ t

t−τ
|H(t, s)|ds < ∞,

∫∞
t−τ

|H(u+τ, t)|du < ∞ and 1
3 |H(t, s)|ds ≥

∫∞
t−τ

|H(u+

τ, s)|du
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with 0 ≤ s ≤ t ≤ u < ∞.
The second outcome of the current work is given below.
Theorem 2. If assumptions (D1)-(D3) hold, then all solutions of (NVIDE)

(6) start in D satisfy the variational of parameters inequality

|x| ≤ {Ω2(t0, ∥ϕ∥) exp(−
∫ t

t0

β(s)ds) +

∫ t

t0

[(γα(u) +G(u)) exp(−
∫ t

u

ω(s)ds)]du}

with

β(t) = max{2α1(t)−
∫ t

t−τ

K0|H(t, s)|ds− λ

∫ ∞

t−τ

K0|H(u+ τ, t)|du− 1, 1}

γ = 0, G(t) = F 2(t), and

Ω2(t0, ϕ) = ϕ2 + λ

∫ t0

0

∫ ∞

t0−τ

K0|H(u+ τ, s)|duϕ2(s)ds.

Proof. We describe a (LF) Ω2 = Ω2(t, x(t)) by

Ω2 = x2 + λ

∫ t

0

∫ ∞

t−τ

|H(u+ τ, s)|dux2(s)ds, (14)

where λ ∈ ℜ ,λ > 0, we fix the constant in the proof.
It is clear from (14) that Ω2 is positive definite, since

Ω2(t, 0) = 0 and Ω2(t, x) ≥ x2.

An easy computation from (14) and (NVIDEs) (6) and (9) shows that

Ω′
2 = 2xx′ + λx2

∫ ∞

t−τ

|H(u+ τ, t)|du− λ

∫ t

0

|H(t, s)|x2(s)ds

= −2p1(t, x)x
2 + 2x

∫ t

t−τ

H(t, s)q
2
3 (x(s))ds+ 2xF (t)

+ λx2

∫ ∞

t−τ

|H(u+ τ, t)|du− λ

∫ ∞

t−τ

|H(t, s)|x2(s)ds.

An elementary inequality together with the assumption p1(t, x) ≥ α(t) make enable
that

Ω′
2 ≤ −2α(t)x2 + x2

∫ t

t−τ

|H(t, s)|x2(s)ds+

∫ t

t−τ

|H(t, s)|q 4
3 (x(s))ds

+ λx2

∫ ∞

t−τ

|H(u+ τ, t)|du− λ

∫ ∞

t−τ

|H(t, s)|x2(s)ds

+ x2 + F 2(t).

Consider the term ∫ t

t−τ

|H(t, s)|q 4
3 (x(s))ds, (15)

which is involved in (15).
Let a = 3

2 and b = 3. By using the Young’s inequality,

mn ≤ a−1ma + b−1nb, a−1 + b−1 = 1,
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and assumption (D1), we get∫ t

t−τ

|H(t, s)|q 4
3 (x(s))ds =

∫ t

t−τ

|H(t, s)| 13 |H(t, s)| 23 q 4
3 (x(s))ds

≤ 1

3

∫ t

t−τ

|H(t, s)|ds+ 2

3

∫ t

t−τ

|H(t, s)|q2(x(s))ds

≤ 1

3

∫ t

t−τ

|H(t, s)|ds+ 2

3
α1

∫ t

t−τ

|H(t, s)|x2(s)ds.

On gathering the former inequality into (15), we have

Ω′
2 ≤ −[2α(t)−

∫ t

t−τ

|H(t, s)|ds− λ

∫ ∞

t0−τ

|H(u+ t, s)|du]x2

+
1

3

∫ t

t−τ

|H(t, s)|ds+ 2

3
α1

∫ t

t−τ

|H(t, s)|x2(s)ds

− λ

∫ ∞

t−τ

|H(t, s)|x2(s)ds+ x2 + F 2(t).

Let λ = 1, G(t) = F 2(t) and L = 1
3

∫ t

t−τ
|H(t, s)|ds. Hence

Ω′
2 ≤ −[2α(t)−

∫ t

t−τ

|H(t, s)|ds−
∫ ∞

t0−τ

|H(u+ t, s)|du− 1]x2

+ (−1 +
2

3
α1)

∫ t

t−τ

|H(t, s)|x2(s)ds+G(t).

The former inequality together with (D2) yields that

Ω′
2 ≤ −[2α(t)−

∫ t

t−τ

|H(t, s)|ds−
∫ ∞

t−τ

|H(u+ t, s)|du− 1]x2

+ (−1 +
2

3
α1)

∫ t

t−τ

|H(t, s)|x2(s)ds+G(t) + L.

Let

β(t) = max{2α(t)−
∫ t

t−τ

|H(t, s)|ds−
∫ ∞

t−τ

|H(u+ t, s)|du− 1, 1}.

Then

Ω′
2 ≤ −β(t)x2 − (1− 2

3
α1)

∫ t

t−τ

|H(t, s)|x2(s)ds+G(t).

When we choose

α1(t) = β(t), α2(t) = 1− 2

3
α1,

W1(.) = W2(.) = W4(.) = x2(t),

W3(.) = W5(.) = x2(s),

ϕ1(t, s) = λ

∫ ∞

t−τ

|H(u+ τ, s)|du

and

ϕ2(t, s) = H(t, s),
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then we can conclude that all assumptions (A1)-(A3) of Theorem A hold. Hence,
one can easily conclude that all solutions x(t) of (NVIDE) (6) satisfy the desired
result.

We now state some assumptions on the functions appearing in (NVIDE) (7).
C.Assumptions
We accept the following assumptions hold.

(H1) r(t, 0) = h(0) = 0, r1(t, x) ≥ ϑ(t) > 0, |h(x)| ≤ δ
1
4 |x|, 0 < δ < 1, t ∈ ℜ+, x ∈

ℜ,
(H2) γ(t) = 2ϑ3(t)− 1

2

∫ t

t−τ
|H(t, s)|ds− µ

∫∞
t−τ

|H(u+ τ, t)|du− 1
2 > 0

with 0 ≤ s ≤ t ≤ u < ∞, where γ is a positive function, which is bounded and
continuous,

(H3)
∫ t

t−τ
|H(t, s)| 12 ds < ∞,

∫∞
t−τ

|H(u+ τ, t)|du < ∞
and

5

6
|H(t, s)| ≥

∫ ∞

t

|H(u, s)|du.

Set
D = {x ∈ ℜ : ∥x∥ ≥ 1}.

Let ϕ(t) be an initial function. We also suppose that this function is bounded and
continuous, and ∥ϕ∥ = 1 for 0 ≤ t ≤ t0.

The last outcome of the current work is given below.
Theorem 3. If assumptions (H1)-(H3) hold, then all solutions of (NVIDE) (7)

initiating in D satisfy the inequality

∥x∥ ≤ W−1{Ω3(t0, ∥ϕ∥) exp(−
∫ t

t0

γ(u)du)+

∫ t

t0

[(αγ(u)+F (u)) exp(−
∫ t

u

γ(s)ds)]du},

for all t ≥ t0, where γ(t) = max{γ1(t), γ2(t)}.
Remark. It is worth mentioning that in Theorem 3, W is a continuous function

from ℜ+ to ℜ+ with W (0) = 0,W (s) > 0 if s > 0 and W is strictly increasing, and
it is called a wedge.

Proof. We describe a (LF) Ω3 = Ω3(t, x(t)) by

Ω3 = x2 + µ

∫ t

0

∫ ∞

t−τ

|H(u+ τ, s)|dux4(s)ds, (16)

where µ ∈ ℜ, µ > 0, we fix that constant in the proof.
We have from (16) that

Ω3(t, 0) = 0 and Ω3(t, x) ≤ x2.

Thus, we see that the (LF) Ω3 is positive definite.
Differentiating the (LF) Ω3 with respect to t, along solutions of (NVIDE) (7),

we obtain from (16) and (NVIDE) (7) that

Ω′
3 = 2xx′ + µx4

∫ ∞

t−τ

|H(u+ τ, t)|du− µ

∫ t

0

|H(t, s)|x4(s)ds

= −2r1(t, x)x
4 + 2x

∫ t

t−τ

H(t, s)h
1
3 (x(s))ds+ 2xF (t)

+ µx4

∫ ∞

t−τ

|H(u+ τ, t)|du− µ

∫ t

t−τ

|H(t, s)|x4(s)ds.
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By the use of the inequality 2|x(t)||x(s)| 13 ≤ x2(t) + x
2
3 (s) and the assumption

r1(t, x) ≥ ϑ(t) > 0, we get

Ω′
3 ≤ −2ϑ(t)x4 +

∫ t

t−τ

|H(t, s)|[x2(t) + h
2
3 (x(s))ds] + (x2(t) + F 2(t))

+ µx4

∫ ∞

t−τ

|H(u+ τ, t)|du− µ

∫ t

t−τ

|H(t, s)|x4(s)ds

= −2ϑ3(t)x4 +

∫ t

t−τ

|H(t, s)|x2(t)ds+

∫ t

t−τ

h
2
3 (x(s))ds

+ x2 + F 2(t) + µx4

∫ ∞

t−τ

|H(u+ τ, t)|du− µ

∫ t

t−τ

|H(t, s)|x4(s)ds. (17)

Let a = 2, b = 2 and a = 6, b = 6
5 respectively. From the Young’s inequality,

mn ≤ 1

a
ma +

1

b
nb,

1

a
+

1

b
= 1

and assumption (H1), we get the following relations, respectively:∫ t

t−τ

|H(t, s)|x2(t)ds =

∫ t

t−τ

|H(t, s)| 12 |H(t, s)| 12x2(t)ds

≤ 1

2

∫ t

t−τ

|H(t, s)| 32 ds+ 1

2

∫ t

t−τ

|H(t, s)| 12x4(t)ds

and ∫ t

t−τ

|H(t, s)|h 2
3 (x(s))ds =

∫ t

t−τ

|H(t, s)| 56 |H(t, s)| 16 |h 2
3 (x(s))ds

≤ 5

6

∫ t

t−τ

|H(t, s)|ds+ δ

6

∫ t

t−τ

|H(t, s)|x4(s)ds.

In addition, we have

x2 ≤ 1

2
x4 +

1

2
.

Substituting the previous inequalities into (17), we obtain

Ω′
3 ≤ −[2ϑ3(t)− 1

2

∫ t

t−τ

|H(t, s)| 12 ds− µ

∫ ∞

t−τ

|H(u+ τ, t)|du− 1

2
]x4

+
1

2

∫ t

t−τ

|H(t, s)| 32 ds+ 5

6

∫ t

t−τ

|H(t, s)|ds

+ (
δ

6
− µ)

∫ t

t−τ

|H(t, s)|x4(s)ds+ 1 + F 2(t).

Let

G(t) = F 2(t),
5

6
|H(t, s)| ≥

∫ ∞

t

|H(u, s)|du,

µ = δ, L =
1

2

∫ t

t−τ

|H(t, s)| 32 ds+ 5

6

∫ t

t−τ

|H(t, s)|ds

and

ρ(t) = max{γ(t), 1}.
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Thereafter, using assumption (H2) of Theorem 3, we conclude that

Ω′
3 ≤ −ρ(t)x4.

The remaining of the proof can be done by following a similar way that shown in
the proof of Theorem 1 or 2. Therefore, we omit the details.

3. Conclusion

We investigate three (NVIDEs) with constant time lag. Three variational of
parameters inequalities are obtained so that the all solutions of the considered
(NVIDEs) remain bounded. We benefited from the (LFs). The obtained results
have a contribution to the related literature, and they improve and extend the
results in [51] from the cases of without time lag to that general non-linear cases
with time lag. The obtained results are compared with that found in [51] and that
in the references of this paper.
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