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EXISTENCE OF SOLUTIONS FOR A HIGHER-ORDER

BOUNDARY VALUE PROBLEM ON THE HALF-LINE VIA

MONOTONE THEORY

M. BRIKI AND T. MOUSSAOUI

Abstract. In this paper, a higher-order boundary value problem on the half-

line is considered and existence of solutions is proved by using the Minty-
Browder monotone theorem.

1. Introduction

We consider the following higher-order boundary value problem posed on the
half-line 

m∑
k=0

(−1)ku(2k)(t) = f(t, u(t)), t ∈ (0,+∞),

u(2i)(0) = u(2i)(+∞) = 0, i ∈ {0, 1, .....,m− 1},

(1.1)

where f ∈ C([0,+∞)× R, R) and m ∈ N⋆.
Boundary value problems appears in many mathematical models of physical, math-
ematical and biological phenomena, see ([7], [2], [9]). We refer to [6] in which using
variational methods and critical point theory the existence of solutions for a class
of Kirchhoff-type second-order impulsive differential equations on the half-line was
discussed. In this paper, we will study the existence of solutions for a higher-order
boundary value problem set on the half-line by using monotone theory.
We endow the following Sobolev space

Hm
0 (0,+∞) = {u ∈ L2 | u(i) ∈ L2 for i ∈ {1, ..,m}, u(j)(0) = 0 for j ∈ {1, ..,m−1}}

with its natural norm

∥u∥ =
( m∑
i=0

∥u(i)∥2L2

) 1
2 .

Note that if u ∈ Hm
0 (0,+∞), then u(i)(+∞) = 0, for i ∈ {1, ...,m − 1}, (see [1]).

Let p : [0,+∞) −→ (0,+∞) be a continuously differentiable and bounded function
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with
M = max(∥p∥L2 , ∥p′∥L2) < +∞.

We also consider the following Banach space

Cl,p[0,+∞) = {u ∈ C([0,+∞),R) : lim
t→+∞

p(t)u(t) exists }

endowed with the norm

∥u∥∞,p = sup
t∈[0,+∞)

p(t)|u(t)|.

Now we recall some information from the literature needed in this paper.

Definition 1.1. [10] Let X be a Banach space. An operator A : X −→ X∗ which
satisfies

⟨Au−Av, u− v⟩ ≥ 0 (1.2)

for any u, v ∈ X is called a monotone operator. An operator A is called strictly
monotone if for u ̸= v strict inequality holds in (1.2). An operator A is called
strongly monotone if there exists C > 0 such that

⟨Au−Av, u− v⟩ ≥ C∥u− v∥2

for any u, v ∈ X. It is clear that a strongly monotone operator is strictly monotone.

Definition 1.2. [10] Let A : X −→ X∗ be an operator on the real Banach space
X.
(a) A is said to be demicontinuous if

un −→ u as n −→ +∞ implies Aun ⇀ Au as n −→ +∞.

(b) A is said to be hemicontinous if the real function

t 7→ ⟨A(u+ tv), w⟩ is continuous on [0, 1] for all u, v, w ∈ X.

(c) A is said to be coercive if

lim
∥u∥−→+∞

⟨Au, u⟩
∥u∥

= +∞·

Remark 1.3. [5] It is easy to see that for monotone operator A : X −→ X∗ with
Dom(A) = X, demicontinuity and hemicontinuity are equivalent.

Finally in this section we recall the Minty-Browder Theorem.

Theorem 1.4. [8](Minty-Browder) Let X be a reflexive real Banach space. Let A :
X −→ X∗ be an operator which is bounded, hemicontinous, coercive and monotone
on the space X. Then, the equation Au = f has at least one solution for each
f ∈ X∗. If A is strictly monotone then the solution is unique.

2. Variational setting and embedding results

Take v ∈ Hm
0 (0,+∞), and multiply the equation in problem (1.1) by v and

integrate over (0,+∞), so we get∫ +∞

0

( m∑
k=0

(−1)ku(2k)(t)
)
v(t)dt =

∫ +∞

0

f(t, u(t))v(t)dt.

Hence
m∑

k=0

∫ +∞

0

u(k)(t)v(k)(t)dt =

∫ +∞

0

f(t, u(t))v(t)dt.
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This leads to the natural concept of a weak solution for problem (1.1).

Definition 2.1. We say that a function u ∈ Hm
0 (0,+∞) is a weak solution of

problem (1.1) if
m∑

k=0

∫ +∞

0

u(k)(t)v(k)(t)dt =

∫ +∞

0

f(t, u(t))v(t)dt,

for all v ∈ Hm
0 (0,+∞).?

We consider the following space

H1
0 (0,+∞) = {u ∈ L2(0,+∞) | u′ ∈ L2(0,+∞), u(0) = 0}

endowed with the norm

∥u∥0 =
(
∥u∥2L2 + ∥u′∥2L2

) 1
2 .

Lemma 2.2. [3, 4] The embedding H1
0 (0,+∞) ↪→ Cl,p[0,+∞) is continuous, i.e

∃M ≥ 0, ∥u∥p,∞ ≤M∥u∥0, ∀u ∈ H1
0 (0,+∞).

Lemma 2.3. [3, 4] The embedding H1
0 (0,+∞) ↪→ Cl,p[0,+∞) is compact.

Lemma 2.4. The embedding Hm
0 (0,+∞) ↪→ Cl,p[0,+∞) is compact.

Proof. We have the embedding Hm
0 (0,+∞) ↪→ H1

0 (0,+∞) is continuous; also the
embedding H1

0 (0,+∞) ↪→ Cl,p[0,+∞) is compact ( Lemma 2.3), then the embed-
ding Hm

0 (0,+∞) ↪→ Cl,p[0,+∞) is compact. �

3. Main result

Suppose the following conditions hold:
(H1) there exist functions a, b and there exists a constant σ ∈ (0, 1) with a

p σ ∈
L2(0,+∞), b ∈ L2(0,+∞) such that

|f(t, x)| ≤ a(t)|x|σ + b(t), ∀ t ∈ [0,+∞),∀ x ∈ R.

(H2) f : R+ × R −→ R is decreasing with respect to the second variable, i.e.,

f(t, x1) ≤ f(t, x2) for a.e. t ∈ [0,+∞) and x1, x2 ∈ R, x1 ≥ x2.

Let A be the operator defined from Hm
0 (0,+∞) into (Hm

0 (0,+∞))∗ by

A = I − F,

where

⟨I(u), v⟩ =
m∑

k=0

∫ +∞

0

u(k)(t)v(k)(t)dt

and

⟨F (u), v⟩ =
∫ +∞

0

f(t, u(t))v(t)dt.

We search for a weak solution of problem (1.1) which is a function u ∈ Hm
0 (0,+∞)

that satisfies the operator equation Au = 0.

Theorem 3.1. Assume that f satisfies the hypotheses (H1) and (H2). Then prob-
lem (1.1) has a unique weak solution.
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Proof. We divide our proof into five steps.
Step 1: A is bounded.
Note that the functional

ψ(u) =
1

2

( m∑
i=0

∥u(i)∥2L2

)
=

1

2
∥u∥2

is of class C1 and I is the derivative operator of ψ in the weak sense, so I is
continuous.

Let u ∈ Hm
0 (0,+∞) be such that ∥u∥ ≤ R. Using the Cauchy-Schwarz inequality,

we obtain

∥I(u)∥(Hm
0 (0,+∞))∗ = sup

∥v∥≤1

∣∣∣⟨I(u), v⟩∣∣∣
= sup

∥v∥≤1

∣∣∣( m∑
k=0

∫ +∞

0

u(k)(t)v(k)(t)dt
)∣∣∣

≤ sup
∥v∥≤1

( m∑
k=0

(∥u(k)∥L2∥v(k)∥L2

)
≤ (m+ 1)∥u∥ sup

∥v∥≤1

(
∥v∥

)
≤ (m+ 1)∥u∥ ≤ (m+ 1)R,

and

∥F (u)∥(Hm
0 (0,+∞))∗ = sup

∥v∥≤1

∣∣∣⟨F (u), v⟩∣∣∣ = sup
∥v∥≤1

∣∣∣ ∫ +∞

0

f(t, u(t))v(t)dt
∣∣∣

≤ sup
∥v∥≤1

(∫ +∞

0

a(t)|u(t)|σ|v(t)|dt+
∫ +∞

0

b(t)|v(t)|dt
)

= sup
∥v∥≤1

(∫ +∞

0

a(t)

pσ(t)
pσ(t)|u(t)|σ|v(t)|dt+

∫ +∞

0

b(t)|v(t)|dt
)

≤ sup
∥v∥≤1

[
∥u∥σp,∞

(∫ +∞

0

a(t)

pσ(t)
|v(t)|dt

)
+
(∫ +∞

0

b(t)|v(t)|dt
)]

≤ sup
∥v∥≤1

[
Mσ∥u∥σ

(∫ +∞

0

a2(t)

p2σ(t)
dt
) 1

2
(∫ +∞

0

|v(t)|2dt
) 1

2

+
(∫ +∞

0

b2(t)dt)
) 1

2
(∫ +∞

0

|v(t)|2dt
) 1

2
]

≤ sup
∥v∥≤1

∥v∥
[
Mσ∥u∥σ

(∫ +∞

0

a2(t)

p2σ(t)
dt
) 1

2

+
(∫ +∞

0

b2(t)dt)
) 1

2
]

≤ Mσ∥u∥σ∥ a

pσ
∥L2 + ∥b∥L2

≤ MσR σ∥ a

pσ
∥L2 + ∥b∥L2 .

Hence A is bounded.
Step 2 : A is demicontinuous.

We prove that F is strongly continuous, that is, if un ⇀ u then F (un) −→ F (u).
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Let (un) be such that un ⇀ u in Hm
0 (0,+∞). Now (un) is bounded in Hm

0 (0,+∞)
and by Lemma 2.4, we have that (un) is bounded in Cl,p[0,+∞). By Lemma 2.4,
un −→ u in Cl,p[0,+∞). We have

∥F (u)− F (un)∥(Hm
0 (0,+∞))∗ = sup

∥v∥≤1

∣∣∣⟨F (u)− F (un), v
⟩∣∣∣

= sup
∥v∥≤1

∣∣∣ ∫ +∞

0

(
f(t, u(t))− f(t, un(t))

)
v(t)dt

∣∣∣
≤ sup

∥v∥≤1

(∫ +∞

0

|f(t, u(t))v(t)|dt
)

+ sup
∥v∥≤1

(∫ +∞

0

|f(t, un(t))v(t)|dt
)

≤ sup
∥v∥≤1

(∫ +∞

0

(a(t)|u(t)|σ + b(t))|v(t)|dt
)

+ sup
∥v∥≤1

(∫ +∞

0

(a(t)|un(t)|σ + b(t))|v(t)|dt
)

≤ Mσ∥ a

pσ
∥L2

(
∥u∥σ + ∥un∥σ

)
+ 2∥b∥L2

≤ Mσ∥ a

pσ
∥L2C + 2∥b∥L2 ,

for some constant C > 0. Since un −→ u in Cl,p[0,+∞), we obtain

∫ +∞

0

(f(t, u(t))− f(t, un(t)))v(t)dt −→ 0 as n −→ +∞.

Thus F is strongly continuous and therefore it is continuous. From the fact that I is
continuous, we deduce that the operator A is continuous. Thus A is demicontinuous.

Step 3 : A is monotone.
Note that

⟨I(u)− I(v), u− v⟩ = ∥u− v∥2, (3.1)

so, I is strongly monotone.
Also, since f is decreasing with respect to the second variable,

⟨F (u)− F (v), u− v⟩ =
∫ +∞

0

(f(t, u(t))− f(t, v(t)))(u(t)− v(t))dt ≤ 0,

(3.2)

so A is strongly monotone.
Step 4 : A is a coercive operator.
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We have

1

∥u∥
⟨A(u), u⟩ =

1

∥u∥

[
∥u∥2 −

∫ +∞

0

f(t, u(t))u(t)dt
]

≥ 1

∥u∥

[
∥u∥2 −

(∫ +∞

0

a2(t)|u(t)|2σdt
) 1

2
(∫ +∞

0

|u(t)|2dt
) 1

2

−
∫ +∞

0

b(t)|u(t)|dt
]

≥ 1

∥u∥

[
∥u∥2 −

(∫ +∞

0

a2(t)

p2σ(t)
p2σ(t)|u(t)|2σdt

) 1
2 ∥u∥L2

− ∥b∥L2∥u∥L2

]
≥ 1

∥u∥

[
∥u∥2 − ∥ a

pσ
∥L2∥uσ∥∞,p∥u∥ − ∥b∥L2∥u∥

]
≥ 1

∥u∥

[
∥u∥2 −Mσ∥ a

pσ
∥L2∥u∥σ+1 − ∥b∥L2∥u∥

]
= ∥u∥ −Mσ∥ a

pσ
∥L2∥u∥σ − ∥b∥L2 ,

so A is coercive.
Theorem 1.4 guarantees that problem (1.1) has a weak solution.

Step 5 : Uniqueness.
Let u, v ∈ Hm

0 (0,+∞) be such that u ̸= v. From (3.1) and (3.2), it follows that

⟨A(u)−A(v), u− v⟩ ≥ ∥u− v∥2 > 0,

so A is strictly monotone. �

Example 3.2. Consider the higher-order boundary value problem
m∑

k=0

(−1)ku(2k)(t) = −3u
1
3 (t)e−t + 1

1+4t , t ∈ (0,+∞),

u(2i)(0) = u(2i)(+∞) = 0, i ∈ {0, 1, .....,m− 1}.

(3.3)

All conditions of Theorem 3.1 are satisfied with f(t, x) = −3x
1
3 e−t+ 1

1+4t , σ = 1/3,

a(t) = 3e−t, b(t) = 1
1+4t , p(t) = e−t. Therefore problem (3.3) has a unique weak

solution.

Next, we consider the limit case σ = 1.

Theorem 3.3. Assume that (H2) holds both with
(H ′1) there exist functions a, b with a

p ∈ L2(0,+∞), b ∈ L2(0,+∞) such that

|f(t, x)| ≤ a(t)|x|+ b(t), ∀ t ∈ [0,+∞),∀ x ∈ R

with

M∥a
p
∥L2 < 1.

Then problem (1.1) has a unique weak solution.
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Proof. Arguing as in the proof of Theorem (3.1), one can check that A is a coercive
operator. Indeed, under (H ′1), we have the estimates:

1

∥u∥
⟨A(u), u⟩ =

1

∥u∥

[
∥u∥2 −

∫ +∞

0

f(t, u(t))u(t)dt
]

≥ 1

∥u∥

[
∥u∥2 −

(∫ +∞

0

a2(t)|u(t)|2dt
) 1

2
(∫ +∞

0

|u(t)|2dt
) 1

2

−
∫ +∞

0

b(t)|u(t)|dt
]

≥ 1

∥u∥

[
∥u∥2 −

(∫ +∞

0

a2(t)

p2(t)
· p2(t)|u(t)|2dt

) 1
2 ∥u∥L2

− ∥b∥L2∥u∥L2

]
≥ 1

∥u∥

[
∥u∥2 − ∥a

p
∥L2∥u∥∞,p∥u∥ − ∥b∥L2∥u∥

]
≥ 1

∥u∥

[
∥u∥2 −M∥a

p
∥L2∥u∥2 − ∥b∥L2∥u∥

]
=

(
1−M∥a

p
∥L2

)
∥u∥ − ∥b∥L2 ,

so A is coercive.
Theorem 1.4 guarantees that problem (1.1) has a unique weak solution. �

Example 3.4. Consider the higher-order boundary value problem
m∑

k=0

(−1)ku(2k)(t) = −e−2t
√
|u(t)|+ 1

1+3t , t ∈ (0,+∞),

u(2i)(0) = u(2i)(+∞) = 0, i ∈ {0, 1, .....,m− 1}.

(3.4)

All conditions of Theorem 3.3 are satisfied with f(t, x) = −e−2t
√
|x|+ 1

1+3t , a(t) =

e−2t, b(t) = 1
1+3t , p(t) = e−t,M = 1√

2
. Therefore problem (3.4) has a unique weak

solution.
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