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EXISTENCE OF SOLUTIONS FOR A HIGHER-ORDER
BOUNDARY VALUE PROBLEM ON THE HALF-LINE VIA
MONOTONE THEORY

M. BRIKI AND T. MOUSSAOUI

ABSTRACT. In this paper, a higher-order boundary value problem on the half-
line is considered and existence of solutions is proved by using the Minty-
Browder monotone theorem.

1. INTRODUCTION

We consider the following higher-order boundary value problem posed on the
half-line
SEDRI@) = f(tu), e (0,+00),
k=0 (1.1)

u)(0) = u®)(+o0) = 0, i€{0,1,....,m—1},

where f € C([0,+00) x R, R) and m € N*.

Boundary value problems appears in many mathematical models of physical, math-
ematical and biological phenomena, see ([7], [2], [9]). We refer to [6] in which using
variational methods and critical point theory the existence of solutions for a class
of Kirchhoff-type second-order impulsive differential equations on the half-line was
discussed. In this paper, we will study the existence of solutions for a higher-order
boundary value problem set on the half-line by using monotone theory.

We endow the following Sobolev space

HP(0,+00) = {ue L?| u € L? fori e {1,..,m}, w9 (0) =0 forj € {1,..,m—1}}

with its natural norm
m
) 1
lull = (D lut]32)2.
i=0

Note that if u € H'(0,+00), then u()(+o00) = 0, fori € {1,...,m — 1}, (see [1]).
Let p : [0,400) — (0, +00) be a continuously differentiable and bounded function
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with
M = max(||pll 2, [IPl|2) < +oc.
We also consider the following Banach space
Cip[0,400) = {u € C([0,+0),R) : , ligrn p(t)u(t) exists }
—~+o00
endowed with the norm

lulsop = sup  p(t)[ult)]
t€[0,+00)

Now we recall some information from the literature needed in this paper.
Definition 1.1. [10] Let X be a Banach space. An operator A : X — X* which
satisfies

(Au — Av,u—v) >0 (1.2)
for any u,v € X is called a monotone operator. An operator A is called strictly
monotone if for u # v strict inequality holds in (1.2). An operator A is called
strongly monotone if there exists C' > 0 such that

(Au — Av,u —v) > Clu — v||?
for any u,v € X. It is clear that a strongly monotone operator is strictly monotone.

Definition 1.2. [10] Let A : X — X* be an operator on the real Banach space
X.
(a) A is said to be demicontinuous if
Up, —> uasn — +oo  implies Au, — Auasn — +oo.
(b) A is said to be hemicontinous if the real function
t — (A(u + tv),w) is continuous on [0,1] for all u,v,w € X.
(c) A is said to be coercive if
A
lim (Au, u) = +o0-
||| —> 400 ||U||

Remark 1.3. [5] It is easy to see that for monotone operator A : X — X* with
Dom(A) = X, demicontinuity and hemicontinuity are equivalent.

Finally in this section we recall the Minty-Browder Theorem.

Theorem 1.4. [8](Minty-Browder) Let X be a reflexive real Banach space. Let A :
X — X* be an operator which is bounded, hemicontinous, coercive and monotone
on the space X. Then, the equation Au = f has at least one solution for each
f e X*. If A is strictly monotone then the solution is unique.

2. VARIATIONAL SETTING AND EMBEDDING RESULTS

Take v € H{*(0,+00), and multiply the equation in problem (1.1) by v and
integrate over (0, +00), so we get

m

e k, (2k) e
/0 (;(—1)u (t))v(t)dt:/o F(t,u(t))o(t)dt.

=0
Hence

3 / 0 (10 (1)t = / T () o(t)dt.

k=0"0 0
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This leads to the natural concept of a weak solution for problem (1.1).

Definition 2.1. We say that a function u € H{"(0,+00) is a weak solution of
problem (1.1) if

+oo
(k) v(k = u(t))v
> = [ st uoyn

for all v € Hg)"(O,Jroo)..
We consider the following space

H3(0,400) = {u € L*(0,+00) | u' € L*(0,+00),u(0) = 0}

endowed with the norm
lallo = (a2 + la'32) .
Lemma 2.2. [3, 4] The embedding H} (0, +00) < C [0, +00) is continuous, i.e
IM >0, [ullp,ee < Mullo, Yu € Hj(0,+00).

Lemma 2.3. [3, 4] The embedding H}(0,+00) <= Cy [0, +00) is compact.
Lemma 2.4. The embedding H§*(0,+00) — C;,[0,400) is compact.

Proof. We have the embedding HJ*(0,+00) < H}(0,+0o0) is continuous; also the

embedding H{ (0, +00) < C},[0,+00) is compact ( Lemma 2.3), then the embed-

ding H{"(0,4+00) < C} 5[0, +00) is compact. O
3. MAIN RESULT

Suppose the following conditions hold:
(H1) there exist functions a, b and there exists a constant o € (0,1) with o5 €

L?(0,+00),b € L*(0, +00) such that
lf (¢ 2)| <a(t)|z|” +b(t), Vie0,+00),VzeR.

(H2) f:RT xR — R is decreasing with respect to the second variable, i.e.,
flt,z1) < f(t,ze) forae. t€[0,+00) and z1,220 € R,21 > 5.
Let A be the operator defined from H[*(0,+00) into (H{*(0,+00))* by

A=1-F,

Z/ u® ()™ (t)dt

where

and
+oo
(F(u),v) = / £t u(t)yo(t)dt.

We search for a weak solution of problem (1.1) which is a function v € HJ"(0, 4+00)
that satisfies the operator equation Au = 0.

Theorem 3.1. Assume that f satisfies the hypotheses (H1) and (H2). Then prob-
lem (1.1) has a unique weak solution.
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Proof. We divide our proof into five steps.
Step 1: A is bounded.
Note that the functional

v = 5 (S Iul3:) = Sl

i=0
is of class C' and I is the derivative operator of 1 in the weak sense, so I is
continuous.
Let u € HJ*(0,+00) be such that ||u|| < R. Using the Cauchy-Schwarz inequality,
we obtain

7 g orsoens = sup [(2(w),0)]

= sup ‘(zm:/oﬂo u(k)(t)wk)(t)dt)‘

SR wr

m

sup (D ([|u®] 2 0™ 2)

o<t i=5
(m + D)jul| sup ([lo])
lvll<1

IN

IN

< (m+ Dlul < (m+ DR,
and
—+oo

IF@ oy = s [(Fa)| = s | [ fe. o))

llvll<1 H II<1

+oo —+oo
< sw ([ el [ o)
lvll<1 *Jo 0

INA
172}
=
T

/Oﬂo ;f(tz) \U(t)|dt) + (/O+OO b(t)\v(tﬂdt”
( o0 1

IN

sup

(

= s ([ ol [ sop)
|
[

“+o00 a2(t) % +o00o ) %
< o
< o[ 27 ul” / Sat) + ( / p(1)dr)) |
< Ml s+

(o g a
< M°R HZFHLZ'i'HbHL?-

Hence A is bounded.
Step 2 : A is demicontinuous.
We prove that F' is strongly continuous, that is, if w, — u then F(u,) — F(u).
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Let (uy) be such that u, — w in HJ*(0,+00). Now (uy) is bounded in HJ"(0, 4+00)
and by Lemma 2.4, we have that (u,) is bounded in Cy [0, +00). By Lemma 2.4,
un — u in (9, [0, +00). We have

17 = Flun)lugooon: = sup |(F(w) = Flun).v)

_— /+°° (1) — St )01
€1 (/ u(®)o(t)]dt)

! @}f?l(/o St un(t)o(b)]dt)

(

[ ewlur + o)
0

IN

IN

sup
[lv]|<1

s ([ <<>|un<>|”+b<t>>|v<t>|dt)

loll<1 *Jo

IN

o @ . -
M ||];||L2(|IUI| + un]|®) + 21b] 22

IN

on @
M llpllmC + 2|0l 2,

for some constant C' > 0. Since w,, — u in C},[0,4+00), we obtain

+o0o
/0 (F(u(®)) — F(t un(E))0(B)dt — 0 as n —> +oo.

Thus F' is strongly continuous and therefore it is continuous. From the fact that I is

continuous, we deduce that the operator A is continuous. Thus A is demicontinuous.
Step 3 : A is monotone.

Note that

(I(w) = I(v),u—v) = [u—v|? (3.1)

so, I is strongly monotone.
Also, since f is decreasing with respect to the second variable,

+oo
(F(u) — F(v),u—v) = / (F(t,u()) = F(t,0(0) (ult) — v(t))dt < 0,

so A is strongly monotone.
Step 4 : A is a coercive operator.
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We have
1 1 Hoo
—(A(u),u) = — u27/ Ft,u(t))u(t)dt
A = = [ fu)ud |
1 too 30 [T 3
> 2 2 20 2
> il = ([ @@pea)’ ([ opa)
+oo
- /O b(1) (1) ]
Lo e /+OO a®(t) , 2 H
> —|||ul]* = T |u(®)|“dt) " ||ul| 12
> ol = (S OlOP7de) el
= el ze]
17 a
O T L 2 i o g PR
11, 2 a
> —||ul|? = M| — |2 ||ul|”Tt = ||b]| L2 ||lu
> o |l = Ml = e

a
= Ml = M e el = f1ellz2,

so A is coercive.
Theorem 1.4 guarantees that problem (1.1) has a weak solution.
Step 5 : Uniqueness.
Let u,v € HJ"(0,400) be such that v # v. From (3.1) and (3.2), it follows that

(A(u) = A(v),u —v) > [lu = v||* > 0,

so A is strictly monotone. (I

Example 3.2. Consider the higher-order boundary value problem

YD) = =Bud (e + iy, e (0,400),
k=0 (3.3)
u)(0) =u®)(+00) = 0, i€{0,1,.....m—1}.

All conditions of Theorem 3.1 are satisfied with f(t,2) = —3z3e~t + ﬁ7 oc=1/3,

a(t) = 3e™", b(t) = 1345, p(t) = e~". Therefore problem (3.3) has a unique weak
solution.
Next, we consider the limit case o = 1.

Theorem 3.3. Assume that (H2) holds both with
(H'1) there exist functions a, b with 5 € L2(0,4+00),b € L?(0,+00) such that

lf(t,z)| <a(t)|z]+0b(), Vte|0,+00),VzeR
with
a
M2 < 1.
b

Then problem (1.1) has a unique weak solution.
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Proof. Arguing as in the proof of Theorem (3.1), one can check that A is a coercive
operator. Indeed, under (H'1), we have the estimates:

Lawa = e [ oo
— uU), U = —|lu — , U u
I [l 0
1 oo 30 [T 3
p—— 2_ 2(t)Ju(t))?dt / t)|?dt
= L& (/0 @u(e)d)" ([ ut) )
“+o0
- / b(t)|u(t)|dt]
0
1 oo a2(t) 3
> —uQ—/ P2 () |u(t)Pdt) " ||u| L2
o L O A= LGl W
— el 2]
1 9 a
> —||ul|* = [|=||p2]|w ul|l — (6]l z2||w
> o [l = e gl = 0l
1 2 a 2
— ~ M2 — I
o Ll = M1 e el = ol
a
= (1= MU lze )l = olz2,
so A is coercive.
Theorem 1.4 guarantees that problem (1.1) has a unique weak solution. O

Example 3.4. Consider the higher-order boundary value problem

m

S DM@ = —em 2 u®)] + g, € (0,+00),

P (3.4)
u(0) = u®) (+00) = 0, i€{0,1,....;m—1}.

All conditions of Theorem 3.3 are satisfied with f(¢,z) = —e=2!\/|z|+ ﬁ, a(t) =
e, b(t) = 7, p(t) =", M = % Therefore problem (3.4) has a unique weak
solution.
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