EXISTENCE OF SOLUTIONS FOR A HIGHER-ORDER BOUNDARY VALUE PROBLEM ON THE HALF-LINE VIA MONOTONE THEORY

M. BRIKI AND T. MOUSSAOUI

Abstract

In this paper, a higher-order boundary value problem on the halfline is considered and existence of solutions is proved by using the MintyBrowder monotone theorem.

1. Introduction

We consider the following higher-order boundary value problem posed on the half-line

$$
\left\{\begin{align*}
\sum_{k=0}^{m}(-1)^{k} u^{(2 k)}(t) & =f(t, u(t)), \quad t \in(0,+\infty) \tag{1.1}\\
u^{(2 i)}(0)=u^{(2 i)}(+\infty) & =0, \quad i \in\{0,1, \ldots \ldots, m-1\}
\end{align*}\right.
$$

where $f \in C([0,+\infty) \times \mathbb{R}, \mathbb{R})$ and $m \in \mathbb{N}^{\star}$.
Boundary value problems appears in many mathematical models of physical, mathematical and biological phenomena, see ([7], [2], [9]). We refer to [6] in which using variational methods and critical point theory the existence of solutions for a class of Kirchhoff-type second-order impulsive differential equations on the half-line was discussed. In this paper, we will study the existence of solutions for a higher-order boundary value problem set on the half-line by using monotone theory.
We endow the following Sobolev space
$H_{0}^{m}(0,+\infty)=\left\{u \in L^{2} \mid u^{(i)} \in L^{2}\right.$ for $i \in\{1, . ., m\}, u^{(j)}(0)=0$ for $\left.j \in\{1, . ., m-1\}\right\}$
with its natural norm

$$
\|u\|=\left(\sum_{i=0}^{m}\left\|u^{(i)}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}} .
$$

Note that if $u \in H_{0}^{m}(0,+\infty)$, then $u^{(i)}(+\infty)=0$, for $i \in\{1, \ldots, m-1\}$, (see [1]). Let $p:[0,+\infty) \longrightarrow(0,+\infty)$ be a continuously differentiable and bounded function

[^0]with
$$
M=\max \left(\|p\|_{L^{2}},\left\|p^{\prime}\right\|_{L^{2}}\right)<+\infty
$$

We also consider the following Banach space

$$
C_{l, p}[0,+\infty)=\left\{u \in C([0,+\infty), \mathbb{R}): \lim _{t \rightarrow+\infty} p(t) u(t) \text { exists }\right\}
$$

endowed with the norm

$$
\|u\|_{\infty, p}=\sup _{t \in[0,+\infty)} p(t)|u(t)|
$$

Now we recall some information from the literature needed in this paper.
Definition 1.1. [10] Let X be a Banach space. An operator $A: X \longrightarrow X^{*}$ which satisfies

$$
\begin{equation*}
\langle A u-A v, u-v\rangle \geq 0 \tag{1.2}
\end{equation*}
$$

for any $u, v \in X$ is called a monotone operator. An operator A is called strictly monotone if for $u \neq v$ strict inequality holds in (1.2). An operator A is called strongly monotone if there exists $C>0$ such that

$$
\langle A u-A v, u-v\rangle \geq C\|u-v\|^{2}
$$

for any $u, v \in X$. It is clear that a strongly monotone operator is strictly monotone.
Definition 1.2. [10] Let $A: X \longrightarrow X^{*}$ be an operator on the real Banach space X.
(a) A is said to be demicontinuous if

$$
u_{n} \longrightarrow u \text { as } n \longrightarrow+\infty \quad \text { implies } A u_{n} \rightharpoonup A u \text { as } n \longrightarrow+\infty
$$

(b) A is said to be hemicontinous if the real function

$$
t \mapsto\langle A(u+t v), w\rangle \text { is continuous on }[0,1] \text { for all } u, v, w \in X
$$

(c) A is said to be coercive if

$$
\lim _{\|u\| \longrightarrow+\infty} \frac{\langle A u, u\rangle}{\|u\|}=+\infty
$$

Remark 1.3. [5] It is easy to see that for monotone operator $A: X \longrightarrow X^{*}$ with $\operatorname{Dom}(A)=X$, demicontinuity and hemicontinuity are equivalent.

Finally in this section we recall the Minty-Browder Theorem.
Theorem 1.4. [8](Minty-Browder) Let X be a reflexive real Banach space. Let A : $X \longrightarrow X^{*}$ be an operator which is bounded, hemicontinous, coercive and monotone on the space X. Then, the equation $A u=f$ has at least one solution for each $f \in X^{*}$. If A is strictly monotone then the solution is unique.

2. Variational setting and embedding Results

Take $v \in H_{0}^{m}(0,+\infty)$, and multiply the equation in problem (1.1) by v and integrate over $(0,+\infty)$, so we get

$$
\int_{0}^{+\infty}\left(\sum_{k=0}^{m}(-1)^{k} u^{(2 k)}(t)\right) v(t) d t=\int_{0}^{+\infty} f(t, u(t)) v(t) d t
$$

Hence

$$
\sum_{k=0}^{m} \int_{0}^{+\infty} u^{(k)}(t) v^{(k)}(t) d t=\int_{0}^{+\infty} f(t, u(t)) v(t) d t
$$

This leads to the natural concept of a weak solution for problem (1.1).
Definition 2.1. We say that a function $u \in H_{0}^{m}(0,+\infty)$ is a weak solution of problem (1.1) if

$$
\sum_{k=0}^{m} \int_{0}^{+\infty} u^{(k)}(t) v^{(k)}(t) d t=\int_{0}^{+\infty} f(t, u(t)) v(t) d t
$$

for all $v \in H_{0}^{m}(0,+\infty) . ?$
We consider the following space

$$
H_{0}^{1}(0,+\infty)=\left\{u \in L^{2}(0,+\infty) \mid u^{\prime} \in L^{2}(0,+\infty), u(0)=0\right\}
$$

endowed with the norm

$$
\|u\|_{0}=\left(\|u\|_{L^{2}}^{2}+\left\|u^{\prime}\right\|_{L^{2}}^{2}\right)^{\frac{1}{2}}
$$

Lemma 2.2. [3, 4] The embedding $H_{0}^{1}(0,+\infty) \hookrightarrow C_{l, p}[0,+\infty)$ is continuous, i.e

$$
\exists M \geq 0, \quad\|u\|_{p, \infty} \leq M\|u\|_{0}, \quad \forall u \in H_{0}^{1}(0,+\infty)
$$

Lemma 2.3. [3, 4] The embedding $H_{0}^{1}(0,+\infty) \hookrightarrow C_{l, p}[0,+\infty)$ is compact.
Lemma 2.4. The embedding $H_{0}^{m}(0,+\infty) \hookrightarrow C_{l, p}[0,+\infty)$ is compact.
Proof. We have the embedding $H_{0}^{m}(0,+\infty) \hookrightarrow H_{0}^{1}(0,+\infty)$ is continuous; also the embedding $H_{0}^{1}(0,+\infty) \hookrightarrow C_{l, p}[0,+\infty)$ is compact (Lemma 2.3), then the embedding $H_{0}^{m}(0,+\infty) \hookrightarrow C_{l, p}[0,+\infty)$ is compact.

3. Main Result

Suppose the following conditions hold:
(H1) there exist functions a, b and there exists a constant $\sigma \in(0,1)$ with $\frac{a}{p^{\sigma}} \in$ $L^{2}(0,+\infty), b \in L^{2}(0,+\infty)$ such that

$$
|f(t, x)| \leq a(t)|x|^{\sigma}+b(t), \quad \forall t \in[0,+\infty), \forall x \in \mathbb{R}
$$

(H2) $f: \mathbb{R}^{+} \times \mathbb{R} \longrightarrow \mathbb{R}$ is decreasing with respect to the second variable, i.e.,

$$
f\left(t, x_{1}\right) \leq f\left(t, x_{2}\right) \quad \text { for a.e. } t \in[0,+\infty) \quad \text { and } x_{1}, x_{2} \in \mathbb{R}, x_{1} \geq x_{2}
$$

Let A be the operator defined from $H_{0}^{m}(0,+\infty)$ into $\left(H_{0}^{m}(0,+\infty)\right)^{*}$ by

$$
A=I-F
$$

where

$$
\langle I(u), v\rangle=\sum_{k=0}^{m} \int_{0}^{+\infty} u^{(k)}(t) v^{(k)}(t) d t
$$

and

$$
\langle F(u), v\rangle=\int_{0}^{+\infty} f(t, u(t)) v(t) d t
$$

We search for a weak solution of problem (1.1) which is a function $u \in H_{0}^{m}(0,+\infty)$ that satisfies the operator equation $A u=0$.

Theorem 3.1. Assume that f satisfies the hypotheses (H1) and (H2). Then problem (1.1) has a unique weak solution.

Proof. We divide our proof into five steps.
Step 1: A is bounded.
Note that the functional

$$
\psi(u)=\frac{1}{2}\left(\sum_{i=0}^{m}\left\|u^{(i)}\right\|_{L^{2}}^{2}\right)=\frac{1}{2}\|u\|^{2}
$$

is of class C^{1} and I is the derivative operator of ψ in the weak sense, so I is continuous.

Let $u \in H_{0}^{m}(0,+\infty)$ be such that $\|u\| \leq R$. Using the Cauchy-Schwarz inequality, we obtain

$$
\begin{aligned}
\|I(u)\|_{\left(H_{0}^{m}(0,+\infty)\right)^{*}} & =\sup _{\|v\| \leq 1}|\langle I(u), v\rangle| \\
& =\sup _{\|v\| \leq 1}\left|\left(\sum_{k=0}^{m} \int_{0}^{+\infty} u^{(k)}(t) v^{(k)}(t) d t\right)\right| \\
& \leq \sup _{\|v\| \leq 1}\left(\sum_{k=0}^{m}\left(\left\|u^{(k)}\right\|_{L^{2}}\left\|v^{(k)}\right\|_{L^{2}}\right)\right. \\
& \leq(m+1)\|u\| \sup _{\|v\| \leq 1}(\|v\|) \\
& \leq(m+1)\|u\| \leq(m+1) R
\end{aligned}
$$

and

$$
\begin{aligned}
&\|F(u)\|_{\left(H_{0}^{m}(0,+\infty)\right)^{*}}=\sup _{\|v\| \leq 1}|\langle F(u), v\rangle|=\sup _{\|v\| \leq 1}\left|\int_{0}^{+\infty} f(t, u(t)) v(t) d t\right| \\
& \leq \sup _{\|v\| \leq 1}\left(\int_{0}^{+\infty} a(t)|u(t)|^{\sigma}|v(t)| d t+\int_{0}^{+\infty} b(t)|v(t)| d t\right) \\
&=\sup _{\|v\| \leq 1}\left(\int_{0}^{+\infty} \frac{a(t)}{p^{\sigma}(t)} p^{\sigma}(t)|u(t)|^{\sigma}|v(t)| d t+\int_{0}^{+\infty} b(t)|v(t)| d t\right) \\
& \leq \sup _{\|v\| \leq 1}\left[\|u\|_{p, \infty}^{\sigma}\left(\int_{0}^{+\infty} \frac{a(t)}{p^{\sigma}(t)}|v(t)| d t\right)+\left(\int_{0}^{+\infty} b(t)|v(t)| d t\right)\right] \\
& \leq \sup _{\|v\| \leq 1}\left[M^{\sigma}\|u\|^{\sigma}\left(\int_{0}^{+\infty} \frac{a^{2}(t)}{p^{2 \sigma}(t)} d t\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty}|v(t)|^{2} d t\right)^{\frac{1}{2}}\right. \\
&\left.\left.+\left(\int_{0}^{+\infty} b^{2}(t) d t\right)\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty}|v(t)|^{2} d t\right)^{\frac{1}{2}}\right] \\
& \leq\left.\sup _{\|v\| \leq 1}\|v\|\left[M^{\sigma}\|u\|^{\sigma}\left(\int_{0}^{+\infty} \frac{a^{2}(t)}{p^{2 \sigma}(t)} d t\right)^{\frac{1}{2}}+\left(\int_{0}^{+\infty} b^{2}(t) d t\right)\right)^{\frac{1}{2}}\right] \\
& \leq M^{\sigma}\|u\|\left\|^{\sigma}\right\| \frac{a}{p^{\sigma}}\left\|_{L^{2}}+\right\| b \|_{L^{2}} \\
& \leq M^{\sigma} R^{\sigma}\left\|\frac{a}{p^{\sigma}}\right\|_{L^{2}}+\|b\|_{L^{2}} .
\end{aligned}
$$

Hence A is bounded.
Step 2 : A is demicontinuous.
We prove that F is strongly continuous, that is, if $u_{n} \rightharpoonup u$ then $F\left(u_{n}\right) \longrightarrow F(u)$.

Let $\left(u_{n}\right)$ be such that $u_{n} \rightharpoonup u$ in $H_{0}^{m}(0,+\infty)$. Now $\left(u_{n}\right)$ is bounded in $H_{0}^{m}(0,+\infty)$ and by Lemma 2.4, we have that $\left(u_{n}\right)$ is bounded in $C_{l, p}[0,+\infty)$. By Lemma 2.4, $u_{n} \longrightarrow u$ in $C_{l, p}[0,+\infty)$. We have

$$
\begin{aligned}
\left\|F(u)-F\left(u_{n}\right)\right\|_{\left(H_{0}^{m}(0,+\infty)\right)^{*}} & =\sup _{\|v\| \leq 1}\left|\left\langle F(u)-F\left(u_{n}\right), v\right\rangle\right| \\
& =\sup _{\|v\| \leq 1}\left|\int_{0}^{+\infty}\left(f(t, u(t))-f\left(t, u_{n}(t)\right)\right) v(t) d t\right| \\
& \leq \sup _{\|v\| \leq 1}\left(\int_{0}^{+\infty}|f(t, u(t)) v(t)| d t\right) \\
& +\sup _{\|v\| \leq 1}\left(\int_{0}^{+\infty}\left|f\left(t, u_{n}(t)\right) v(t)\right| d t\right) \\
& \leq \sup _{\|v\| \leq 1}\left(\int_{0}^{+\infty}\left(a(t)|u(t)|^{\sigma}+b(t)\right)|v(t)| d t\right) \\
& +\sup _{\|v\| \leq 1}\left(\int_{0}^{+\infty}\left(a(t)\left|u_{n}(t)\right|^{\sigma}+b(t)\right)|v(t)| d t\right) \\
& \leq M^{\sigma}\left\|\frac{a}{p^{\sigma}}\right\|_{L^{2}}\left(\|u\|^{\sigma}+\left\|u_{n}\right\|^{\sigma}\right)+2\|b\|_{L^{2}} \\
& \leq M^{\sigma}\left\|\frac{a}{p^{\sigma}}\right\|_{L^{2}} C+2\|b\|_{L^{2}},
\end{aligned}
$$

for some constant $C>0$. Since $u_{n} \longrightarrow u$ in $C_{l, p}[0,+\infty)$, we obtain

$$
\int_{0}^{+\infty}\left(f(t, u(t))-f\left(t, u_{n}(t)\right)\right) v(t) d t \longrightarrow 0 \text { as } n \longrightarrow+\infty
$$

Thus F is strongly continuous and therefore it is continuous. From the fact that I is continuous, we deduce that the operator A is continuous. Thus A is demicontinuous.

Step 3 : A is monotone.
Note that

$$
\begin{equation*}
\langle I(u)-I(v), u-v\rangle=\|u-v\|^{2} \tag{3.1}
\end{equation*}
$$

so, I is strongly monotone.
Also, since f is decreasing with respect to the second variable,

$$
\begin{equation*}
\langle F(u)-F(v), u-v\rangle=\int_{0}^{+\infty}(f(t, u(t))-f(t, v(t)))(u(t)-v(t)) d t \leq 0 \tag{3.2}
\end{equation*}
$$

so A is strongly monotone.
Step $4: A$ is a coercive operator.

We have

$$
\begin{aligned}
\frac{1}{\|u\|}\langle A(u), u\rangle & =\frac{1}{\|u\|}\left[\|u\|^{2}-\int_{0}^{+\infty} f(t, u(t)) u(t) d t\right] \\
& \geq \frac{1}{\|u\|}\left[\|u\|^{2}-\left(\int_{0}^{+\infty} a^{2}(t)|u(t)|^{2 \sigma} d t\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty}|u(t)|^{2} d t\right)^{\frac{1}{2}}\right. \\
& \left.-\int_{0}^{+\infty} b(t)|u(t)| d t\right] \\
& \geq \frac{1}{\|u\|}\left[\|u\|^{2}-\left(\int_{0}^{+\infty} \frac{a^{2}(t)}{p^{2 \sigma}(t)} p^{2 \sigma}(t)|u(t)|^{2 \sigma} d t\right)^{\frac{1}{2}}\|u\|_{L^{2}}\right. \\
& \left.-\|b\|_{L^{2}}\|u\|_{L^{2}}\right] \\
& \geq \frac{1}{\|u\|}\left[\|u\|^{2}-\left\|\frac{a}{p^{\sigma}}\right\|_{L^{2}}\left\|u^{\sigma}\right\|_{\infty, p}\|u\|-\|b\|_{L^{2}}\|u\|\right] \\
& \geq \frac{1}{\|u\|}\left[\|u\|^{2}-M^{\sigma}\left\|\frac{a}{p^{\sigma}}\right\|_{L^{2}}\|u\|^{\sigma+1}-\|b\|_{L^{2}}\|u\|\right] \\
& =\|u\|-M^{\sigma}\left\|\frac{a}{p^{\sigma}}\right\|_{L^{2}}\|u\|^{\sigma}-\|b\|_{L^{2}},
\end{aligned}
$$

so A is coercive.
Theorem 1.4 guarantees that problem (1.1) has a weak solution.
Step 5 : Uniqueness.
Let $u, v \in H_{0}^{m}(0,+\infty)$ be such that $u \neq v$. From (3.1) and (3.2), it follows that

$$
\langle A(u)-A(v), u-v\rangle \geq\|u-v\|^{2}>0
$$

so A is strictly monotone.
Example 3.2. Consider the higher-order boundary value problem

$$
\left\{\begin{align*}
\sum_{k=0}^{m}(-1)^{k} u^{(2 k)}(t) & =-3 u^{\frac{1}{3}}(t) e^{-t}+\frac{1}{1+4 t}, \quad t \in(0,+\infty) \tag{3.3}\\
u^{(2 i)}(0)=u^{(2 i)}(+\infty) & =0, \quad i \in\{0,1, \ldots \ldots, m-1\}
\end{align*}\right.
$$

All conditions of Theorem 3.1 are satisfied with $f(t, x)=-3 x^{\frac{1}{3}} e^{-t}+\frac{1}{1+4 t}, \sigma=1 / 3$, $a(t)=3 e^{-t}, b(t)=\frac{1}{1+4 t}, p(t)=e^{-t}$. Therefore problem (3.3) has a unique weak solution.

Next, we consider the limit case $\sigma=1$.
Theorem 3.3. Assume that (H2) holds both with
($\left.H^{\prime} 1\right)$ there exist functions a, b with $\frac{a}{p} \in L^{2}(0,+\infty), b \in L^{2}(0,+\infty)$ such that

$$
|f(t, x)| \leq a(t)|x|+b(t), \quad \forall t \in[0,+\infty), \forall x \in \mathbb{R}
$$

with

$$
M\left\|\frac{a}{p}\right\|_{L^{2}}<1
$$

Then problem (1.1) has a unique weak solution.

Proof. Arguing as in the proof of Theorem (3.1), one can check that A is a coercive operator. Indeed, under $\left(H^{\prime} 1\right)$, we have the estimates:

$$
\begin{aligned}
\frac{1}{\|u\|}\langle A(u), u\rangle & =\frac{1}{\|u\|}\left[\|u\|^{2}-\int_{0}^{+\infty} f(t, u(t)) u(t) d t\right] \\
& \geq \frac{1}{\|u\|}\left[\|u\|^{2}-\left(\int_{0}^{+\infty} a^{2}(t)|u(t)|^{2} d t\right)^{\frac{1}{2}}\left(\int_{0}^{+\infty}|u(t)|^{2} d t\right)^{\frac{1}{2}}\right. \\
& \left.-\int_{0}^{+\infty} b(t)|u(t)| d t\right] \\
& \geq \frac{1}{\|u\|}\left[\|u\|^{2}-\left(\int_{0}^{+\infty} \frac{a^{2}(t)}{p^{2}(t)} \cdot p^{2}(t)|u(t)|^{2} d t\right)^{\frac{1}{2}}\|u\|_{L^{2}}\right. \\
& \left.-\|b\|_{L^{2}}\|u\|_{L^{2}}\right] \\
& \geq \frac{1}{\|u\|}\left[\|u\|^{2}-\left\|\frac{a}{p}\right\|_{L^{2}}\|u\|_{\infty, p}\|u\|-\|b\|_{L^{2}}\|u\|\right] \\
& \geq \frac{1}{\|u\|}\left[\|u\|^{2}-M\left\|\frac{a}{p}\right\|_{L^{2}}\|u\|^{2}-\|b\|_{L^{2}}\|u\|\right] \\
& =\left(1-M\left\|\frac{a}{p}\right\|_{L^{2}}\right)\|u\|-\|b\|_{L^{2}},
\end{aligned}
$$

so A is coercive.
Theorem 1.4 guarantees that problem (1.1) has a unique weak solution.
Example 3.4. Consider the higher-order boundary value problem

$$
\left\{\begin{align*}
\sum_{k=0}^{m}(-1)^{k} u^{(2 k)}(t) & =-e^{-2 t} \sqrt{|u(t)|}+\frac{1}{1+3 t}, \quad t \in(0,+\infty) \tag{3.4}\\
u^{(2 i)}(0)=u^{(2 i)}(+\infty) & =0, \quad i \in\{0,1, \ldots ., m-1\}
\end{align*}\right.
$$

All conditions of Theorem 3.3 are satisfied with $f(t, x)=-e^{-2 t} \sqrt{|x|}+\frac{1}{1+3 t}, a(t)=$ $e^{-2 t}, b(t)=\frac{1}{1+3 t}, p(t)=e^{-t}, M=\frac{1}{\sqrt{2}}$. Therefore problem (3.4) has a unique weak solution.

References

[1] H. Brezis, Analyse Fonctionnelle, Théorie et Applications. Masson, Paris, 1983.
[2] R. Engui?A, A. Gavioli, L. Sanchez, Solutions of second-order and fourth-order ODEs on the half-line, Nonlinear Analysis, 73 (2010), 2968-2979.
[3] O. Frites, T. Moussaoui, D. O'Regan, Existence of solutions via variational methods for a problem with nonlinear boundary conditions on the half-line, Dynamics of Continuous, Discrete and Impulsive Systems, 22 (2015), 395-407.
[4] O. Frites, T. Moussaoui, D. O'Regan, Existence of solutions for a variational inequality on the half-line, Bulletin of the Iranian Mathematical Society, 43(1) (2017), 223-237.
[5] L. Gasinski, N. S. Papageargiou, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Chapman-Hall CRC, 2005.
[6] S. Heidarkhani, G.A. Afrouzi and S. Moradi, Existence results for a Kirchhoff-type secondorder impulsive differential equation on the half-line, Asymptotic Analysis, to appear.
[7] F. Li, Y. Li, Z. LiAng, Existence and multiplicity of solutions to $2 m$ th-order ordinary differential equations, J. Math. Anal. Appl., 331 (2007), 958-977.
[8] J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969.
[9] Y. Yang, J. Zhang, Existence of infinitely many mountain pass solutions for some fourthorder boundary value problems with a parameter, Nonlinear Analysis, 71 (2009), 6135-6143.
[10] E. Zeidler, Nonlinear Functional Analysis and Its Applications, II/B, Springer Verlag, Berlin, New York, 1986.
M. Briki

Laboratory of Fixed Point Theory and Applications, Department of Mathematics, E.n.S., Kouba, Algiers, Algeria

E-mail address: mabroukbriki@yahoo.fr
T. Moussaoui

Laboratory of Fixed Point Theory and Applications, Department of Mathematics, E.N.S., Kouba, Algiers, Algeria

E-mail address: moussaoui@ens-kouba.dz

[^0]: 2010 Mathematics Subject Classification. 35G30, 47H05, 35D30, 74H25.
 Key words and phrases. Monotone operator, hemicontinuous operator, demicontinuous operator, Minty-Browder monotone theorem, weak solution, uniqueness, higher-order BVPs.

 Submitted May 16, 2017.

