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GENERAL DECAY OF SOLUTION TO SOME NONLINEAR

VECTOR EQUATION IN A FINITE DIMENSIONAL HILBERT

SPACE

SARA MOKHTARI

Abstract. The aim of this paper is to establish a general decay result for the

vector equation: u′′+ϕ(∥A
1
2 u∥2)Au+g(u′) = 0, in a finite dimensional Hilbert

space under suitable assumptions on g and ϕ. We can consider the cases where
ϕ degenerate or non-degenerate and we use the multiplier method.

1. Introduction

Let H be a finite dimensional real Hilbert space, with norm denoted by ∥.∥. We
consider first the following nonlinear equation

u′′ + ϕ(∥A 1
2u∥2)Au+ g(u′) = 0, (1)

where A is a positive and symmetric linear operator on H. We denote by (., .) the
inner product in H, A is coercive, which means :

∃λ > 0, ∀u ∈ D(A), (Au, u) ≥ λ∥u∥2

We also define
∀u ∈ H, ∥A 1

2u∥ := ∥u∥
D(A

1
2 )

a norm equivalent to the norm in H. We assume that g and ϕ are locally Lips-
chitz continuous.
The consideration of the more complicated problem (1) is partially motivated by
[5] in which a similar but harder (infinite dimensional) problem with general dis-
sipation was studied with application to some PDE in a bounded domain. Under
Neumann or Dirichlet boundary conditions, and for nonlinearities asymptotically
homogeneous near 0 similar to the ones appearing in (1), they proved the existence
of a global solution in Sobolev spaces to the initial boundary value problem of
the (degenerate or non-degenerate) Kirchhoff equation with weak dissipation and
they establish general stability estimates using the multiplier method and general
weighted integral inequalities.

When ϕ(u) = |u|βu and g(u′) = c|u′|αu′, Haraux in [6] studied the decay rate of
the energy of non trivial solutions to the scalar second order ODE with initial data
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(u0, u1) ∈ R2. In addition, he showed that if α > β
β+2 all non-trivial solutions are

oscillatory and if α < β
β+2 they are non-oscillatory.

We can also consider the equation

(∥u′∥lu′)′ + ∥A 1
2u∥βAu+ g(u′) = 0, (2)

where g is a locally Lipschitz continuous function. The equation (2) has been stud-
ied by Abdelli, Anguiano and Haraux [2], they proved the existence and uniqueness
of a global solution u ∈ C1(R+, H) with ∥u′∥lu′ ∈ C1(R+,H) for any initial data
(u0, u1) ∈ H × H they used some techniques from Abdelli and Haraux [1]. They
used some modified energy function to estimate the rate of decay and they used
the method introduced by Haraux [6]. Finally, they discuss the optimality of these

estimates when g(s) = c∥s∥αs and l < α < β(1+l)+l
β+2 .

In this article, we use some technique from to establish an explicit and general
decay result, depending on g and ϕ. The proof is based on the multiplier method
and makes use of some properties of convex functions, the general Young inequality
and Jensen’s inequality.

The plan of this paper is as follows: In Section 2 we establish some basic pre-
liminary inequalities, and in Section 3 we prove the energy estimates.

2. Assumptions and preliminary results

In order to state and prove our result, we require the following assumptions:
(A1) g : H → H and ϕ : H → H are a locally Lipschitz continuous functions.
(A2) ϕ : R+ → R+ is of the Class C1(R+) satisfying one of the following tow

properties:
Degenerate case: ϕ(s) > 0 on ]0,+∞[ and ϕ is non-decreasing.
Non-degenerate case: there exist m0, m1 such that ϕ(s) ≥ m0 on R+ and

sϕ(s) ≥ m1

∫ s

0

ϕ(τ) dτ on R+. (3)

(A3) g : R→ R is non decreasing function of class C1 and G : R+ → R+ is convex,
increasing and of class C1(R+) ∩ C2(]0,+∞[) satisfying

G(0) = 0 and G is linear on [0, r0] or
G′(0) = 0 and G′′ > 0 on ]0, r0] such that
c2∥g(v)∥2 ≤ c1∥v∥2 ≤ (g(v), v) if ∥v∥ ≥ r0
∥v∥2 + ∥g(v)∥2 ≤ G−1(g(v), v) if ∥v∥ ≤ r0

(4)

where G−1 denotes the inverse function of G and r0, c1, c2 are positive constants.
Remark 1

1. In both the degenerate and the non-degenerate cases, we have
∫ +∞
0

ϕ(τ) dτ =

+∞, and then ϕ̃(s) = 1
2

∫ s
0
ϕ(τ) dτ is a bijection from R+ to R+. On the

other hand, (3) is satisfied in the degenerate case (with m1 = 1) as well.
2. In the degenerate case, it is enough to suppose that

ϕ ∈ C(R+) ∩ C1(]0,+∞[).

In this case, one can easily check that ϕ̃(s) = 1
2

∫ s
0
ϕ(τ) dτ is a convex

function. Indeed, let x1 ̸= 0 and x2 ̸= 0 such that x1 < x2. Because ϕ
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is of the class C1 in [x1, x2] and a non-decreasing function, ϕ̃ is a convex
function. Now if x1 = 0, we have, for all 0 ≤ λ ≤ 1, that

ϕ̃(λx2) =
1

2

∫ λx2

0

ϕ(s) ds =
1

2
λ

∫ x2

0

ϕ(λz) dz,

where we have made the change of variable s = λz . As ϕ is a non-decreasing
function and λx2 ≤ x2 for all λ ∈ [0, 1], it follows that

ϕ̃(λx2) ≤ λϕ̃(x2).

Proposition 1 Let (u0, u1) ∈ H × H and suppose that g and ϕ satisfies (A1).
Then the problem (1) has a unique global solution

u ∈ C(R+,H), u′ ∈ C(R+,H) and u(0) = u0, u′(0) = u1.

We introduce the energy associated to the solution of the problem (1) by

E(t) =
1

2
∥u′∥2 + 1

2
ϕ̃(∥A 1

2u∥2), (5)

where

ϕ̃(s) =

∫ s

0

ϕ(τ) dτ.

By multiplying equation (1) by u′, we obtain easily

d

dt
E(t) = −(g(u′), u′) ≤ 0. (6)

3. Asymptotic behavior

Lemma 1 Assume that (A2) and (A3) hold, then the functional

F (t) =ME(t) + (u, u′),

satisfies the following estimate, for some positive constants M, c, m :

F ′(t) ≤ −mE(t) + c∥u′∥2 + |(u, g(u′))|, (7)

and F (t) ∼ E(t).
Proof. Using (1), (5) and (6), we obtain

F ′(t) = ME′(t) + ∥u′∥2 + (u, u′′)

≤ ∥u′∥2 − (u, ϕ(∥A
1
2 u∥2)Au)− (u, g(u′))

≤ ∥u′∥2 − ϕ(∥A
1
2 u∥2)∥A

1
2 u∥2 − (u, g(u′)).

On the other hand, we have (in both the degenerate and the non-degenerate cases)

sϕ(s) ≥ cϕ̃(s). Then we deduce that

F ′(t) ≤ ∥u′∥2 − cϕ̃(∥A
1
2 u∥2) + |(u, g(u′))|

≤ −mE(t) + c∥u′∥2 + |(u, g(u′))|.

To prove that F (t) ∼ E(t), we show that for some positive constants λ1 and λ2

λ1E(t) ≤ F (t) ≤ λ2E(t). (8)
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Using Young’s inequality and the definition of E, we have (note also that ϕ̃ is a
bijection from R+ to R+)

(u, u′) ≤ 1

2
∥u∥2 + 1

2
∥u′∥2

≤ 1

2
∥A

1
2 u∥2 + E(t)

≤ cϕ̃−1(E(t)) + E(t).

Using the fact that s 7→ ϕ̃−1(s) is non-decreasing, we obtain

(u, u′) ≤ c1E(t),

and

(u, u′) ≥ −1

2
∥u∥2 − 1

2
∥u′∥2

≥ −1

2
∥A

1
2 u∥2 − E(t)

≥ −cϕ̃−1(E(t))− E(t)

≥ −c2E(t).

Then, for M large enough, we obtain (8). This completes the proof.

Theorem 1 Assume that (A2) and (A3) hold. Let ϕ̃(t) =
∫ t
0
ϕ(τ) dτ . Then there

exist w, k, ε > 0 such that the energy E satisfies
A. The degenerate case:

E(t) ≤ φ1

(
ψ−1(kt+ ψ(E(0)))

)
, ∀t ≥ 0, (9)

where ψ(t) =
∫ 1

t
1

wφ(τ) dτ for t > 0{
φ1(s) =

√
s, φ(s) = ϕ̃(s) G is linear on ]0, r0]

φ1(s) = s, φ(s) = s2

ϕ̃−1(s)
G′

(
ε s2

ϕ̃−1(s)

)
if G′(0) = 0 and G′′ > 0 on ]0, r0],

(10)

B. The non-degenerate case:

E(t) ≤ ψ−1(kt+ ψ(E(0))), ∀t ≥ 0, (11)

where ψ(t) =
∫ 1

t
1

wφ(τ) dτ for t > 0{
φ(s) = s G is linear on ]0, r0],
φ(s) = sG′(εs) if G′(0) = 0 and G′′ > 0 on ]0, r0].

(12)

Proof. We now estimate (7).
The degenerate case: we distinguish two cases.
1.G is linear on [0, r0]
If ∥u′∥ ≥ r0, we use Young’s inequality and (6), for any δ > 0, we have

|(u, g(u′))|+ ∥u′∥2 ≤ δ∥u∥2 + C′
δ∥g(u′)∥2 + c(g(u′), u′)

≤ δ∥A
1
2 u∥2 + Cδ(g(u

′), u′)

≤ δ∥A
1
2 u∥2 + Cδ(−E′(t))

≤ δϕ̃−1(E(t)) + Cδ(−E′(t)).

(13)

If ∥u′∥ < r0, we have

∥u′∥2 + |(u, g(u′))| ≤ δϕ̃−1(E(t)) + Cδ(−E′(t)). (14)
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We then use (13) and (14), to deduce from (7)

F ′(t) ≤ −ϕ̃(E(t))
(
m

E(t)

ϕ̃(E(t))
− δ

ϕ̃−1(E(t))

ϕ̃(E(t))

)
+ Cδ(−E′(t)).

Using the fact that ϕ̃ is convex, increasing and choosing δ > 0 small enough, we
obtain

F ′(t) ≤ −dϕ̃(E(t)) + Cδ(−E′(t)). (15)

By Lemma 1 and (15) the function L(t) = F (t) + CδE(t) satisfies

L′(t) ≤ −dφ(L(t)), (16)

where φ(s) = ϕ̃(s), and

L(t) ∼ E(t). (17)

We choose φ(t) = − w
ψ′(t) , where ψ(t) is defined in Theorem 1.

Using (16), we arrive at

(ψ(L(t))′ = L′(t)ψ′(L(t)) ≤ c.

A simple integration leads to

ψ(L(t)) ≤ ct+ ψ(L(0)),

consequently,

L(t) ≤ ψ−1(kt+ ψ(L(0))).

Using (20), we obtain (9).
2. G′(0) = 0 and G′′ > 0 on ]0, r0].
If ∥u′∥ ≥ r0. Using Young’s inequality, we have, for any δ > 0,

|(u, g(u′))|+ ∥u′∥2 ≤ δ∥A
1
2 u∥2 + Cδ∥g(u′)∥2 + ∥u′∥2

≤ δϕ̃−1(E(t)) + Cδ(∥g(u′)∥2 + ∥u′∥2)

≤ δϕ̃−1(E(t)) + Cδ(−E′(t)),

(18)

and if ∥u′∥ < r0, we have

|(u, g(u′))|+ ∥u′∥2 ≤ δ∥u∥2 + Cδ∥g(u′)∥2 + ∥u′∥2

≤ δϕ̃−1(E(t)) + CδG
−1(g(u′), u′).

(19)

By Lemma 1, (18) and (19), for δ small enough, the function L(t) = F (t)+CδE(t)
satisfies

L′(t) ≤ − E2(t)

ϕ̃−1(E(t))

(
m

ϕ̃−1(E(t))

E(t)
− δ

( ϕ̃−1(E(t))

E(t)

)2)
,+CδG

−1(g(u′), u′),

and

L(t) ∼ E(t). (20)

Using the fact that s→ s

ϕ̃−1(s)
is non-decreasing and choosing δ > 0 small enough,

we obtain

L′(t) ≤ −d
E2(t)

ϕ̃−1(E(t))
+ CδG

−1(g(u′), u′). (21)

For c0 > 0, we define Ẽ by

Ẽ(t) = G′
(
ε

E2(t)

ϕ̃−1(E(t))

)
L(t) + c0E(t).
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Then, we see easily that, for a1, a2 > 0

a1Ẽ(t) ≤ E(t) ≤ a2Ẽ(t). (22)

By recalling that E′ ≤ 0, G′ > 0, G′′ > 0 on (0, r0] and using the fact that
s2 7→ s

ϕ̃−1(s)
is non-decreasing, we obtain making use of (5) and (21), we obtain

Ẽ′(t) = ε
( E2(t)

ϕ̃−1(E(t))

)′
G′′

(
ε

E2(t)

ϕ̃−1(E(t))

)
L(t) +G′

(
ε

E2(t)

ϕ̃−1(E(t))

)
L(′t) + c0E

′(t), (23)

making use of (5) and (21), we obtain from (23) that

Ẽ′(t) ≤ −d
E2(t)

ϕ̃−1(E(t))
G′

(
ε

E2(t)

ϕ̃−1(E(t))

)
+ CδG

−1(g(u′), u′)G′
(
ε

E2(t)

ϕ̃−1(E(t))

)
+ c0E

′(t).

(24)

On the other hand, let G∗ denote the dual function of the convex function G (in
the sense of Young, see Arnold [4], p. 46 , for the definition, and Lasiecka [7].
Because G > 0 on ]0, 1] and G(0) = 0, we can assume, without loss generality,
that G defines a bijection from R+ to R+. Then G∗ is the Legendre transform of
G, which is given by (see Arnold [4], p. 61-62, Lasiecka [7], Liu and Zuazua [8],
Alabau-Boussouira [3] and others ).

G∗(s) = s(G′)−1(s)−G[(G′)−1(s)],

and G satisfies the generalized Young’s inequality

AB ≤ G∗(A) +G(B)

with A = G′
(
ε E2(t)

ϕ̃−1(E(t))

)
and B = G−1(g(u′), u′)

G′
(
ε

E2(t)

ϕ̃−1(E(t))

)
G−1(g(u′), u′) ≤ G∗

(
G′

(
ε

E2(t)

ϕ̃−1(E(t))

))
+ (g(u′), u′)

≤ ε
E2(t)

ϕ̃−1(E(t))
G′

(
ε

E2(t)

ϕ̃−1(E(t))

)
+ (g(u′), u′),

(25)

Choosing c0 > Cδ and ε small enough, we obtain and

Ẽ′(t) ≤ −k1
E2(t)

ϕ̃−1(E(t))
G′

(
ε

E2(t)

ϕ̃−1(E(t))

)
= −k1φ

(
ε

E2(t)

ϕ̃−1(E(t))

)
, (26)

where φ(t) = tG′(εt). Since

φ′(t) = G′(εt) + tεG′′(εt).

and G is convex on (0, ε], we find that φ′(t) > 0 and φ(t) > 0 on (0, 1]. By setting

H(t) =
a21Ẽ

2(t)

ϕ̃−1(E(0))
(a1 is given in (22)). we easily see that, by (22), we have

H(t) ∼ Ẽ2(t).

using (26), we arrive at

H ′(t) ≤ −k2φ(H(t)),

where φ(t) = − w
ψ′(t) and ψ(t) =

∫ 1

t
1

wφ(τ) dτ , hence

(ψ(H(t))′ = H ′(t)ψ′(H(t)) ≤ k.

By integrating over (0, t), we get

ψ(H(t)) ≤ kt+ ψ(H(0)).
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Consequently,

H(t) ≤ ψ−1(kt+ ψ(H(0))). (27)

Using (22) and (27), we obtain (9).
The non-degenerate case: we distinguish two cases.
1.G is linear on [0, r0]
For ∥u′∥ ≥ r0, we have, thanks to Young’s inequality, for any δ > 0

|(u, g(u′))| ≤ δ∥u∥2 + Cδ∥g(u′)∥2

≤ δ∥A
1
2 u∥2 + Cδ(g(u

′), u′)

≤ δ∥A
1
2 u∥2 + Cδ(−E′(t))

≤ δϕ̃−1(E(t)) + Cδ(−E′(t))

≤ δ
ϕ̃−1(E(t))

E(t)
E(t) + Cδ(−E′(t)).

Using the fact that ϕ̃−1(s) < cs and choosing δ > 0 small enough. we have

|(u, g(u′))| ≤ cδE(t) + Cδ(−E′(t)),

and

∥u′∥2 ≤ c(g(u′), u′) ≤ c(−E′(t)),

then

∥u′∥2 + |(u, g(u′))| ≤ cδE(t) + Cδ(−E′(t)), (28)

and for ∥u′∥ < r0, we have

∥u′∥2 + |(u, g(u′))| ≤ cδE(t) + Cδ(−E′(t)) (29)

By Lemma 1, (28) and (29), we obtain

F ′(t) ≤ −(m− cδ)E(t) + Cδ(−E′(t))

≤ −dE(t) + Cδ(−E′(t)),

we take L(t) = F (t) + CδE(t) and L ∼ E, we have

E′(t) ≤ −dE(t).

A simple integration leads to

E(t) ≤ c′e−c
′′t = cψ−1(c′′t),

where φ(s) = s.
2.G is non-linear on [0, r0]
For ∥u′∥ ≥ r0, we have, thanks to Young’s inequality, for any δ > 0

|(u, g(u′))| ≤ δ∥u∥2 + Cδ∥g(u′)∥2

≤ δϕ̃−1(E(t)) + Cδ(−E′(t)).

Using fact that ϕ̃−1(s) < cs and choosing δ > 0 small enough. we have

|(u, g(u′))| ≤ cδE(t) + Cδ(−E′(t)),

and

∥u′∥2 ≤ c(g(u′), u′) ≤ c(−E′(t)),

then

∥u′∥2 + |(u, g(u′))| ≤ cδE(t) + Cδ(−E′(t)),
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and for ∥u′∥ < r0, we have

∥u′∥2 + |(u, g(u′))| ≤ cδE(t) + ∥u′∥2 + C(δ)∥g(u′)∥2

≤ cδE(t) + c(∥u′∥2 + ∥g(u′)∥2)

≤ cδE(t) + cG−1(g(u′), u′)

F ′(t) ≤ −(m− cδ)E(t) + cG−1(g(u′), u′) + Cδ(−E′(t))

≤ −dE(t) + cG−1(g(u′), u′) + Cδ(−E′(t))

we take L(t) = F (t) + CδE(t) and L ∼ E

L′(t) ≤ −dE(t) + cG−1(g(u′), u′), (30)

we define H by

H(t) = G′
(
ε
E(t)

E(0

)
L(t) + c0E(t).

Then, we see easily that, for λ1, λ2 > 0

λ1H(t) ≤ E(t) ≤ λ2H(t) (31)

By recalling that E′ ≤ 0, G′ > 0, G′′ > 0 on (0, r0] and making use of (5) and (30),
we obtain

H ′(t) = ε
E′(t)

E(0)
G′′

(
ε
E(t)

E(0)

)
L(t) +G′

(
ε
E(t)

E(0)

)
L′(t) + c0E

′(t)

≤ −dE(t)G′
(
ε
E(t)

E(0)

)
+ cG′

(
ε
E(t)

E(0)

)
G−1(g(u′), u′) + c0E

′(t).

(32)

Let G∗ be the convex conjugate of G in the sense of Young (see Arnold [4], p.
61-62), then

G∗(s) = s(G′)−1(s)−G[(G′)−1(s)], if s ∈ (0, G′(r0)], (33)

and G satisfies the generalized Young’s inequality

AB ≤ G∗(A) +G(B) if A ∈ (0, G′(r0)], B ∈ (0, r0], (34)

with A = G′(εE(t)/E(0)) and B = G−1(g(u′), u′), using (6) and (32)-(34)

H ′(t) ≤ −dE(t)G′
(
ε
E(t)

E(0)

)
+ cG∗

((
ε
E(t)

E(0)

))
+ (g(u′), u′) + c0E

′(t)

≤ −dE(t)G′
(
ε
E(t)

E(0)

)
+ cε

E(t)

E(0)
G′

(
ε
E(t)

E(0)

)
− cE′(t) + c0E

′(t).

Choosing c0 > c and ε small enough, we obtain

H ′(t) ≤ −k
E(t)

E(0)
G′

(
ε
E(t)

E(0)

)
= −kφ

(E(t)

E(0)

)
, (35)

where φ(s) = sG′(εs) and Ẽ0(t) =
λ1H(t)
E(0) , (λ1 is given in (31)), we easily see that,

by (31), we have

Ẽ0(t) ∼ E(t). (36)

Using (35), we arrive at

Ẽ′
0(t) ≤ −kφ(Ẽ0(t)),

where φ(t) = − w
ψ′(t) and ψ(t) =

∫ 1

t
1

wφ(τ) dτ , hence

(ψ(Ẽ0(t))
′ = Ẽ0

′
(t)ψ′(t) ≤ k.
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A simple integration leads to

ψ(Ẽ0(t)) ≤ kt+ ψ(Ẽ0(0)).

Consequently,

Ẽ0(t) ≤ ψ−1(kt+ ψ(Ẽ0(0))). (37)

Using (36) and (37) we obtain (11). This completes the proof of Theorem.
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