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THIRD HANKEL DETERMINANT FOR A CLASS OF

ANALYTIC UNIVALENT FUNCTIONS

PRAVATI SAHOO

Abstract. Let A denote the class of all normalized analytic function f in the

unit disc U of the form f(z) = z +
∑∞

n=2 anz
n. The objective of this paper is

to obtain an upper bound to the third Hankel determinant denoted by H3(1)
for certain subclass of univalent functions, using Toeplitz determinants.

1. Introduction

Let A denote the class of all analytic functions defined on the unit disc U = {z :
|z| < 1} with the normalization condition f(0) = 0 = f ′(0)− 1. So f ∈ A has the
form

f(z) = z +
∞∑

n=2

anz
n. (1)

Let S be the class of all functions f ∈ A which are univalent in U. A function

f ∈ A is said to be starlike if it satisfies the condition Re{ zf ′(z)
f(z) } > 0, for z ∈ U.

Let P denote the class of functions p(z), has the form

p(z) = 1 +
∞∑

n=1

cnz
n, (2)

which are regular in the open unit disc U and satisfy Re p(z) > 0, for z ∈ U. Here
p(z) is called the Caratheodory function [5].

Definition 1 ([4]) For α ≥ 0, a function f ∈ A with f(z)f ′(z)
z ̸= 0 said to be

alpha-close-to-convex function if for a starlike function ϕ(z), satisfies the condition

Re

{
(1− α)

zf ′(z)

ϕ(z)
+ α

(zf ′(z))′

ϕ′(z)

}
> 0, z ∈ U.

We denote Cα be the class of all alpha-close-to-convex functions. This class was
introduced and studied by Chichra [4]. We denote the subclass of Cα by R̃α for
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which ϕ(z) = z.

Definition 2 ([4]) Let R̃α be the class of all functions f ∈ A which satisfy

Re(f ′(z) + αzf ′′(z)) > 0, for all z ∈ U.

For α = 0, R̃α ≡ R0, the class of functions whose derivative has positive real part.
These classes have been studied by many authors (see [4, 15, 16, 20]). It is well
known that the nth coefficient is bounded by n, for f ∈ S. Also the bounds for
the coefficients give information about the geometric properties of the univalent
functions. For example, the growth and distortion properties of the normalized
univalent function are determined by studying the bound of its second coefficient.
In the recent years, several authors considered a more general coefficient problem
of this type, which is the Hankel determinant problem.
Definition 3 The q-th Hankel determinant of f(z) for q ≥ 1 and n ≥ 1 is defined
by Pommerenke [22] as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1

an+1 an+2 . . . an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

∣∣∣∣∣∣∣∣∣ . (3)

The Hankel determinants have been considered by several authors, to investigate
its rate of growth as n → ∞ and to determine the bounds of it for different specific
values of q and n, (see [6, 13, 17, 18, 19]). It is interesting to note that, H2(1) =
|a3 − a22|, the Fekete-Szegö functional for µ = 1 (see [9]). The Hankel determinant
in the case of q = 2 and n = 2, is known as the second Hankel determinant
(functional), given by

H2(2) =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a4 − a23. (4)

The bounds of H2(2) were obtained for various subclasses of univalent and multiva-
lent analytic functions by many authors existed in the literature [2, 8, 14]. Similarly,
the third Hankel determinant in the case of q = 3 and n = 1, denoted by H3(1), is
defined by

H3(1) =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣ . (5)

For f ∈ A, a1 = 1, we have

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22)

and by applying triangle inequality, we obtain

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a4 − a2a3|+ |a5||a3− a22|. (6)

Recently, Babola [1], Bansal et.al [2], Prajapat et.al [23] and Vamshee Krishna et.al
[10], have studied the third Hankel determinant H3(1) and obtained its bound for
various subclasses of univalent and multivalent analytic functions. Motivated by
the result obtained by Chichra [4], Babalola [1] and Vamshee Krishna et.al [10], we
obtain an upper bound to the functional |a2a3 − a4| and hence for |H3(1)|, for the
function f(z) in the class R̃α.



324 PRAVATI SAHOO EJMAA-2018/6(1)

2. Preliminary Results

The following lemmas are required to prove our main results.
Lemma 1 ([21]). If p(z) ∈ P, given by (2), then |ck| ≤ 2, for each k ≥ 1 and the
inequality is sharp for the function p0(z) =

1+z
1−z .

Lemma 2 ([3]). If p(z) ∈ P, given by (2). Then

∣∣∣∣c2 − ρ
c21
2

∣∣∣∣ ≤


2(1− ρ), ρ ≤ 0,

2, 0 ≤ ρ ≤ 2,

2(ρ− 1), ρ ≥ 2.

The inequality is sharp for the function

p(z) =


1+z2

1−z2 , 0 ≤ ρ ≤ 2,

1+z
1−z , ρ ∈ (−∞, 0] ∪ [2,∞).

Lemma 3 ([7]) The power series 1 +
∑∞

n=1 cnz
n, converges in the open unit disc

U to a function in P if and only if the Toeplitz determinants

Dn =

∣∣∣∣∣∣∣∣∣∣∣

2 c1 c2 . . . cn
c−1 2 c1 . . . cn−1

c−2 c−1 2 . . . cn−2

...
...

...
...

c−n c−n+1 c−n+2 . . . 2

∣∣∣∣∣∣∣∣∣∣∣
, n = 1, 2, 3 . . .

and c−k = c̄k, are all non-negative. They are strictly positive except for p(z) =∑∞
k=1 ρkp0(e

itkz), ρk > 0, tk real and tk ̸= tj , for k ̸= j, where p0(z) = 1+z
1−z ; in

this case Dn > 0 for n < (m− 1) and Dn = 0 for n ≥ m.

This necessary and sufficient condition is due to Caratheodory and Toeplitz [7]. We
may assume without restriction that c1 > 0. Hence by using Lemma 3, for n = 2,
we get

D2 =

∣∣∣∣∣∣
2 c1 c2
c̄1 2 c1
c̄2 c̄1 2

∣∣∣∣∣∣ = [8 + 2Re{c21c2} − 2|c2|2 − 4|c1|2] ≥ 0,

which is equivalent to

2c2 = c21 + x(4− c21), (7)

for some x, |x| ≤ 1. For n = 3, we get

D3 =

∣∣∣∣∣∣∣∣
2 c1 c2 c3
c̄1 2 c1 c2
c̄2 c̄1 2 c1
c̄3 c̄2 c̄1 2

∣∣∣∣∣∣∣∣ ≥ 0

and is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)
2| ≤ 2(4− c21)

2 + 2|(2c2 − c21)|2. (8)

By using (7) we get from (8) that

4c3 = c31 + 2c1(4− c21)x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z, (9)
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for some x and z such that |x| ≤ 1 and |z| ≤ 1.

3. Main Results

To obtain our results, we refer to the classical method initiated by Libera and
Zlotkiewicz [11, 12].

Theorem 1. For 0 ≤ α ≤ 1
2 , let f ∈ R̃α. Then

|a2a4 − a23| ≤
4

9(1 + 2α)2
.

Proof. Let f(z) given by (1), be in the class R̃α. Then there exists an analytic
function p ∈ P in the unit disc U with p(0) = 1 such that

f ′(z) + αzf ′′(z) = p(z). (10)

By using the series representations for f ′(z), f ′′(z) and p(z) from (1) and (2) in
(10), we get

1 +

∞∑
n=1

(n+ 1)(1 + nα)an+1z
n = 1 +

∞∑
n=1

cnz
n. (11)

Equating the coefficients of z, z2, z3 of both sides of (11), we have

a2 =
c1

2(1 + α)
; a3 =

c2
3(1 + 2α)

; a4 =
c3

4(1 + 3α)
. (12)

On substituting the values of a2, a3 and a3 from (12) in |a2a4−a23| for the function
f ∈ R̃α, we have

|a2a4 − a23| =
∣∣K(α)

[
9(1 + 2α)2c1c3 − 8(1 + α)(1 + 3α)c22

]∣∣ , (13)

where

K(α) =
1

72(1 + α)(1 + 2α)2(1 + 3α)
. (14)

By substituting the values of c2 and c3 from equations (7) and (9) in the equation
(13), we get

|a2a4 − a23| = K(α)

[
9

4
(1 + 2α)2c1{c31 + 2(4− c21)c1x− c1(4− c21)x

2

+2(4− c21)(1− |x|2)z} − 8

4
(1 + α)(1 + 3α){c21 + (4− c21)x}2

]
.

Then by using the triangle in equality and the fact |z| < 1, we get

|a2a4 − a23| ≤ K(α)

4

[
(1 + 4α+ 12α2)c41 + 2(1 + 4α+ 12α2)c21(4− c21)x

+{(1 + 4α+ 12α2)c21 + 32(1 + α)(1 + 3α)}(4− c21)x
2

+18(1 + 2α)2(4− c21)c1(1− |x|2)
]
. (15)
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On replacing c1 = c, c ∈ [0, 2] and |x| = µ in (15), we get

|a2a4 − a23| ≤ K(α)

4

[
(1 + 4α+ 12α2)c4 + 2(1 + 4α+ 12α2)c2(4− c2)µ

+{(1 + 4α+ 12α2)c2 + 32(1 + α)(1 + 3α)}(4− c2)µ2

+18(1 + 2α)2(4− c2)c− 18(1 + 2α)2(4− c2)cµ2
]

=
K(α)

4

[
(1 + 4α+ 12α2)c4 + 18(1 + 2α)2(4− c2)c

+2(1 + 4α+ 12α2)c2(4− c2)µ+ (1 + 4α+ 12α2)×
(4− c2)(c− 2)(c− β)µ2

]
= F (c, µ) (say), (16)

where

β = β(α) =
16(1 + α)(1 + 3α)

1 + 4α+ 12α2
, 0 ≤ c ≤ 2 and 0 ≤ µ ≤ 1,

and K(α) defined in (14). We next maximize the function F (c, µ) on the closed
square [0, 2]× [0, 1]. Since c− 2 < 0 and c− β < 0, so

∂F

∂µ
=

K(α)

4
[2(1 + 4α+ 12α2)(4− c2){c2 + (c− 2)(c− β)µ}]

=
(1 + 4α+ 12α2)(4− c2){c2 + (c− 2)(c− β)µ}

36(1 + α)(1 + 2α)2(1 + 3α)
> 0.

Thus for a fixed c, F (c, µ) is increasing function of µ and hence it can not have
maximum in the interior of the closed square [0, 2] × [0, 1]. Moreover, for fixed
c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c) (say). (17)

Here

G(c) =
K(α)

4

[
(1 + 4α+ 12α2)c4 + 18(1 + 2α)2(4− c2)c+ 2(1 + 4α+ 12α2)×

c2(4− c2) + (1 + 4α+ 12α2)(4− c2)(c− 2)(c− β)
]
. (18)

Next,

G′(c) = − 1

18(1 + α)(1 + 2α)2(1 + 3α)
[(1+4α+12α2)c3+(5+20α− 12α2)], (19)

so that G′(c) < 0 for 0 ≤ α < 1
2 and c ∈ [0, 2]. Thus G(c) is a decreasing function

in c and so

max
0≤c≤2

G(c) = G(0) =
4

9(1 + 2α)2
. (20)

Hence the desired result follows from (16), (18) and (20).

Theorem 2. For 0 ≤ α ≤ 1
2 , let f ∈ R̃α. Then

|a2a3 − a4| ≤
1

18
√
3(1 + α)(1 + 2α)

[
5(1 + 3α)− 6α2

1 + 3α

]3/2
.

Proof. Let f(z) given by (1), be in the class R̃α. Then substituting the values of

a2, a3 and a3 from (12) in |a2a3 − a4| for the function f ∈ R̃α, we have

|a2a3 − a4| = |M(α) [2(1 + 3α)c1c2 − 3(1 + α)(1 + 2α)c3]| , (21)
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where

M(α) =
1

12(1 + α)(1 + 2α)(1 + 3α)
. (22)

Substituting the values of c2 and c3 from equations (7) and (9) in equation (21),
we get

|a2a3 − a4| = M(α)

∣∣∣∣(1 + 3α)c1{c21 + (4− c21)x} −
3

4
(1 + α)(1 + 2α)×

{c31 + 2(4− c21)c1x− c1(4− c21)x
2 + 2(4− c21)(1− |x|2)z}

∣∣ .
Using the triangle in equality and the fact |z| ≤ 1, after simplifying, we get

|a2a3 − a4| ≤ M(α)

4

[
(1 + 3α− 6α2)c31 + 6(1 + α)(1 + 2α)(4− c21)

+2(1 + 3α− 6α2)c1(4− c21)|x|
+3(1 + α)(1 + 2α)(c1 − 2)(4− c21)|x|2

]
.

On replacing c1 = c, c ∈ [0, 2] and |x| = µ, we get

|a2a3 − a4| ≤ M(α)

4

[
(1 + 3α− 6α2)c3 + 6(1 + α)(1 + 2α)(4− c2)

+2(1 + 3α+ 6α2)c(4− c2)µ+ 3(1 + α)(1 + 2α)(c− 2)(4− c2)µ2
]

= F (c, µ)(Say), (23)

where M(α) defined in (22). We next maximize the function F (c, µ) on the closed
square [0, 2]× [0, 1]. Since c− 2 < 0 and 0 ≤ α ≤ 1

2 , so

∂F

∂µ
=

M(α)

2

[
(4− c2)(1 + 3α− 6α2)c+ 3(1 + α)(1 + 2α)(c− 2)µ

]
> 0.

Thus for a fixed c, F (c, µ) is increasing function of µ and hence it can not have
maximum in the interior of the closed square [0, 2] × [0, 1]. Moreover, for fixed
c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c) (say). (24)

Here

G(c) = −4(1 + 3α)c3 + 4(5 + 15α− 6α2)c. (25)

Next,

G′(c) = −12(1 + 3α)c2 + 4[5(1 + 3α)− 6α2] = 0,

which implies

c0 =

√
5(1 + 3α)− 6α2

3(1 + 3α)
. (26)

So c0 be the critical point of G(c). Since G′′(c0) = −24(1 + 3α)c0 < 0, so G(c) has
maximum at c0. Thus

max
0≤c≤2

G(c) = G(c0) = 8(1 + 3α)

(
5(1 + 3α)− 6α2

3(1 + 3α)

)3/2

. (27)
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Hence the desired result follows from (23), (24) and (27).

Theorem 3 For µ ≥ 0, let f ∈ R̃α. Then

|a3 − µa22| ≤


2

3(1+2α) , 0 ≤ µ ≤ 4(1+α)2

3(1+2α) ,

µ
(1+α)2 − 2

3(1+2α) , µ ≥ 4(1+α)2

3(1+2α) .

The inequality is sharp.
Proof. Let f(z) given by (1), be in the class R̃α. Then substituting the values of

a2 and a3 from (12) in |a3 − µa22| for the function f ∈ R̃α, we have

|a3 − µa22| =
1

3(1 + 2α)

∣∣∣∣c2 − 3(1 + 2α)µ

2(1 + α)2
c21
2

∣∣∣∣ . (28)

Let ρ = 3(1+2α)µ
2(1+α)2 ≥ 0. Then by applying Lemma 2, we get the desired result.

The inequality derived in the above theorem is called as Fekete-Sezgö inequality.
Taking µ = 1 in Theorem 3, we get the following theorem.
Theorem 4 For α ≥ 0, let f ∈ R̃α. Then

|a3 − a22| ≤
2

3(1 + 2α)
.

Theprem 5 If for α ≥ 0, f ∈ R̃α, then

|ak| ≤
2

k(1 + (k − 1)α)
, k ≥ 2.

Proof Let f ∈ R̃α. Then equating the coefficients of zk of both sides of (11), we
get

ak =
ck−1

k(1 + (k − 1)α)
, k ≥ 2.

By using the Lemma 1, we get the desired result.
Theorem 6 If for 0 ≤ α ≤ 1

2 , f ∈ R̃α, then

H3(1) ≤
1

3(1 + 2α)

[
4

5
+

8

9(1 + 2α)
+

1

12
√
3(1 + α)(1 + 2α)

{
5(1 + 3α)− 6α2

1 + 3α

}3/2
]
.

Proof. Let for 0 ≤ α ≤ 1
2 , f ∈ R̃α. Then from (6) we have,

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a4 − a2a3|+ |a5||a3− a22|.

By using the bounds of |a2a4 − a23|, |a2a3 − a4|, |a3− a22|, |a3|, |a4| and |a5| from
Theorem 1, Theorem 2, Theorem 4 and Theorem 5, we get the desired result.

Taking α = 0, in Theorem6, we have the following result.
Corollary 1 If f(z) ∈ R0, then |H3(1)| ≤ 0.742
This inequality coincides with Babalola [1] and Vamashee Krishna et.al [10] for
α = 0.
Remark For α = 0 the results in Theorem 1, Theorem 2, Theorem 4, coincides
with the results due to Babalola [1], and also due to Vamashee Krishna et.al [10]
for α = 0.
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