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OSCILLATION CRITERIA FOR DELAY DYNAMIC EQUATIONS

ON TIME SCALES

ÖZKAN ÖCALAN AND SERMİN ÖZTÜRK

Abstract. The present paper is dedicated to examine the oscillatory behavior
of all solutions of first order delay dynamic equation

x∆(t) + p(t)x(τ(t)) = 0 for t ∈ [t0,∞)T . (*)

We obtain a new oscillation criterion for this equation on time scale T. In

particular, we show that all solutions of (∗) oscillate under the condition

M > 2m+
2

λ1
− 1

is satisfied when M < 1 and 0 < m ≤ 1
e
such that the numbers m and M are

defined as

m = lim inf
t→∞

t∫
τ(t)

p(s)∆s

and

M = lim sup
t→∞

t∫
τ(t)

p(s)∆s

where λ1 ∈ [1, e] is the unique root of the equation λ = emλ.

1. Introduction

In this paper, we study the oscillatory behavior of solutions of the first-order
delay dynamic equation

x∆(t) + p(t)x(τ(t)) = 0 for t ∈ [t0,∞)T , (1.1)

where T is a time scale that is unbounded above with t0 ∈ T, p ∈ Crd([t0,∞)T ,R+),
τ ∈ Crd([t0,∞)T ,T) is nondecreasing on T and

τ(t) ≤ t, lim
t→∞

τ(t) = ∞ for t ∈ T (1.2)

and supT = ∞.
For a reader not familiar to the time scale calculus, it will be helpful to introduce

the following introductory information. A time scale, which inherits the standard
topology on R, is a nonempty closed subset of reals. In this paper, a time scale
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will be denoted by the symbol T, and the intervals with a subscript T are used to
denote the intersection of the usual interval with T. For t ∈ T, we define the forward
jump operator σ : T → T by σ := inf(t,∞)T while the backward jump operator
ρ : T → T is defined by ρ := sup(−∞, t)T, and the graininess function µ : T → R+

0

is defined as µ(t) := σ(t)− t. A point t ∈ T is called right-dense if σ(t) = t and/or
equivalently µ(t) = 0 holds; otherwise it is called right-scattered, and similarly
left-dense and left scattered points are defined with respect to the backward jump
operator. We also need the set Tκ as follows: If T has a left-scattered maximum
m, then Tκ = T− {m}. Otherwise, Tκ = T. A function f : T → R is said to be
∆-differentiable at the point t ∈ Tκ provided that there exists f∆(t) such that for
every ε > 0 there exists a neighborhood U of t such that∣∣[f(σ(t)− f(s)]− f∆(t) [σ(t)− s]

∣∣ ≤ ε |σ(t)− s| for all s ∈ U.

We shall mean the ∆-derivative of a function when we only say derivative if it is
not mentioned explicitly. A function f : T → R is called rd-continuous provided
it is continuous at right-dense points in T, and its left-sided limits exist (finite) at
left-dense points in T. The set of rd-continuous functions f : T → R will be denoted
by Crd(T,R).

The set of functions f : T → R that are differentiable and whose derivative is
rd-continuous is denoted by C1

rd(T,R). For s, t ∈ T and a function f ∈ Crd(T,R),
the ∆-integral is defined by

t∫
s

f(η)∆(η) = F (t)− F (s)

where F ∈ C1
rd(T,R) is an anti-derivative of f , i.e., F∆ = f on Tκ. Every rd-

continuous function has an antiderivative. In particular, if t0 ∈ T then F is defined
by

F (t) =

t∫
t0

f(η)∆(η) for t ∈ T

which is an antiderivative of f . And, for t ∈ Tκ

σ(t)∫
t

f(η)∆(η) = µ(t)f(t).

It is obvious that if f∆ ≥ 0, then f is nondecreasing.
A function f ∈ Crd(T,C) is called regressive if 1 + fµ ̸= 0 on Tκ, and f ∈

Crd(T,C) is called positively regressive if 1 + fµ > 0 on Tκ. The set of regressive
functions and the set of positively regressive functions are denoted by R(T,C) and
R+(T,R) respectively. R−(T,R) is defined similarly. For simplicity, we denote the
set of regressive constants by Rc(T,C). Similarly, we define the sets R+

c (T,R) and
R−

c (T,R).
A function x : T → R is called a solution of the equation (1.1), if x(t) is delta

differentiable for t ∈ Tκ and it satisfies the equation (1.1) for t ∈ T. We say that a
solution x of equation (1.1) has a generalized zero at t if x(t) = 0 or µ(t) > 0 and
x(t)x(σ(t)) < 0. Let supT = ∞ and then a nontrivial solution x of equation (1.1)
is called oscillatory on [t,∞) if it has arbitrarirly large generalized zeros in [t,∞).
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In recent years, there has been an increasing interest in the oscillation of solutions
of some dynamic equations. See [1-27] and the references cited therein. However,
few papers ([3,25-27]) deal with only delay dynamic equations even in the case of
first order linear equations.

Supposing T = R, then Eq. (1.1) is reduced to the first order delay differential
equation

x′(t) + p(t)x(τ(t)) = 0 , t ≥ t0. (1.3)

Many authors studied the oscillatory behavior of Eq. (1.3), ([4, 8-11, 13-16, 18–20,
23-24]).

Similarly, in case that T = N, Eq. (1.1) turns into
∆x(n) + p(n)x(τ(n)) = 0 , n = 0, 1, .... (1.4)

Recently, many studies are performed on the oscillation of solutions of Eq. (1.4),
[5-7, 21-22].

In 2002, Zhang and Deng [26], studied the oscillatory behavior of solutions of
the following delay differential equation on time scales

x∆(t) + p(t)x(τ(t)) = 0 , t ≥ t0 , t ∈ T
where p ∈ Crd(T,R+), τ ∈ Crd(T,T) and τ(t) < t for t ∈ T, and supT = ∞. They
proved the following result by the help of cylinder transforms.

Theorem 1. Define

α = lim sup
t0→∞

sup
λ∈E

{
λ exp−λp(τ(t), t)

}
(1.5)

where

exp−λp(τ(t), t) = exp

t∫
τ(t)

ξµ(s)(−λp(s))∆s,

E = {λ : λ > 0, 1− λp(t)µ(t) > 0}, and

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0
z , if h = 0

.

If α < 1, then all solutions of Eq.(1.1) are oscillatory.

In 2005, Bohner [3] gave the following result by using exponential functions
notation for any time scale T.

Theorem 2. If Eq.(1.1) has an eventually positive solution, then α satisfies the
condition α ≥ 1 defined by (1.5).

Following these studies, Şahiner and Stavroulakis [25] gave the following result
for Eq.(1.1).

Theorem 3. Assume that there exists a positive constant L such that

lim inf
t→∞

t∫
τ(t)

p(s)∆s > L (1.6)

and

lim sup
t→∞

t∫
τ(t)

p(s)∆s > 1− L2

4
. (1.7)
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Then Eq.(1.1) is oscillatory.

In 2005, the following criterias were given by Zhang et al. [27] for all solutions
of Eq.(1.1) to be oscillatory.

Theorem 4. Assume that (1.2) and the following inequality holds

lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s > 1, (1.8)

then all solutions of Eq.(1.1) are oscillatory.

Theorem 5. Assume that (1.2) holds and m ∈ [0, 1
e ]. Furthermore,

lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s >
1 + lnλ1

λ1
− 1−m−

√
1− 2m−m2

2
, (1.9)

where λ1 ∈ [1, e] is the unique root of the equation λ = emλ, then all solutions of
Eq.(1.1) are oscillatory.

This work is inspired by [27], [22] and [14]. In this paper, we use these studies
to find a new criteria for all solutions of Eq.(1.1) to be oscillatory. The purpose of
the present paper is essentially to extend these results to the dynamic equations on
time scale T. Finally, two examples are given for certain cases.

2. Main Results

In this section, we give an oscillatory criteria for all solutions of Eq.(1.1).
Here, we set

m = lim inf
t→∞

t∫
τ(t)

p(s)∆s. (2.1)

Lemma 1 ([27, Lemma 2.3]). Let x(t) be an eventually positive solution of Eq.(1.1)
and m ∈ [0, (1/e)]. Then

lim inf
t→∞

x(τ(t))

x(t)
≥ λ1, (2.2)

where λ1 ∈ [1, e] is the unique root of the equation λ = emλ.

Lemma 2. Let x(t) be an eventually positive solution of Eq.(1.1) and m ∈ [0, (1/e)].
Assume that τ(t) is nondecreasing and there exists θ > 0 such that

τ(t)∫
τ(u)

p(s)∆s ≥ θ

t∫
u

p(s)∆s for all τ(t) ≤ u ≤ t. (2.3)

Then

lim inf
t→∞

x(σ(t))

x(τ(t))
≥

1−m−
√
(1−m)2 − 4A

2
, (2.4)

where A is given by

A =
eλ1θm − λ1θm− 1

(λ1θ)2
(2.5)

and λ1 ∈ [1, e] is the unique root of the equation λ = emλ.
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Proof. If m = 0, then obviously inequality (2.4) holds.
If m ̸= 0, then let x(t) be eventually positive solution of Eq.(1.1). Define the

functions x, p, τ on R as follows

x(t) =

{
x(t), t ∈ T,
x(s) + (x(σ(s))− x(s)) t−s

σ(s)−s , s < t < σ(s), s ∈ T,

p(t) =

{
p(t), t ∈ T,
p(s), s < t < σ(s), s ∈ T,

τ(t) =

{
τ(t), t ∈ T,
τ(s), s < t < σ(s), s ∈ T.

Clearly, these functions are well defined under the assumption on T. It is easy
to see that the function x is continuous, nonincreasing and eventually positive on
R, and the function τ is nondecreasing on R with limt→∞ τ(t) = ∞, t ∈ R. And
p(t) ≥ 0, for t ≥ t0, t ∈ R.

From the proof of Lemma 2.4 in [27] we know that x is a solution of the following
differential equation

x
′

+(t) + p(t)x(τ(t)) = 0, t ≥ t0, t ∈ R, (2.6)

where x
′

+(t) means the right derivative of x at t.
On the other hand, from (2.3),we get

τ(t)∫
τ(u)

p(s)∆s ≥ θ

t∫
u

p(s)∆s for all τ(t) ≤ u ≤ t.

Therefore, from Lemma 2 in [14] we have

x(t) ≥ 1

2

[
1−m−

√
(1−m)2 − 4A

]
x(τ(t)).

for t ∈ R.
If s ≤ t < σ(s), s ∈ T, then we have x(τ(t)) = x(τ(s)) = x(τ(s)). So, we get

x(t) ≥ 1

2

[
1−m−

√
(1−m)2 − 4A

]
x(τ(s)).

Let t → σ(s)− 0 and from the continuity of x,

x(σ(s)) ≥ 1

2

[
1−m−

√
(1−m)2 − 4A

]
x(τ(s)).

It should be noted that lim
t→σ(s)−0

x(t) = x(σ(s)) = x(σ(s)). Thus, we prove that for

all s ≤ t < σ(s), s ∈ T,

x(σ(s)) ≥ 1

2

[
1−m−

√
(1−m)2 − 4A

]
x(τ(s)).

Finally, we obtain (2.4). �
Theorem 6. Consider the Eq.(1.1) and let M < 1, m ∈

[
0, 1

e

]
. Assume that (1.2)

holds and there exists θ > 0 such that (2.3) holds. If τ(t) is nondecreasing and

M >
1 + lnλ1

λ1
−

1−m−
√
(1−m)2 − 4A

2
, (2.7)

where λ1 ∈ [1, e] is the unique root of the eqution λ = ekλ and A is given by (2.5),
then all solutions of Eq.(1.1) oscillate.
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Proof. If m = 0, then the inequality (2.7) reduces to (1.8). Thus with the help of
Theorem 1.4, we get the conclusion.

Let 0 < m ≤ 1
e . Assume for the sake of contradiction that x is an eventually

positive solution of Eq.(1.1). Then there exists t0 ≤ t1 ∈ T such that x(τ(t)) > 0
for t > t1. We define x, τ , p as in Lemma 2.2, then x satisfies the delay differential
equation (2.6). From Lemma 2.1 and Lemma 2.2, it follows that

lim inf
t→∞

x(τ(t))

x(t)
≥ λ1, lim inf

t→∞

x(σ(t))

x(τ(t))
≥

1−m−
√
(1−m)2 − 4A

2
:= β.

Hence, for ∀ε > 0 such that ε < min

{
λ1,

1−m−
√

(1−m)2−4A

2

}
, we have

x(τ(t))

x(t)
≥ λ1 − ε,

x(σ(t))

x(τ(t))
≥ β − ε, for t > t2 ≥ t1, t ∈ T.

By the definitions of x, τ , p in Lemma 2.2, we also have

x(τ(t))

x(t)
≥ λ1 − ε,

x(σ(t))

x(τ(t))
≥ β − ε, for t > t2, t ∈ R.

Hence, for a fixed t > t2, t ∈ R, there exists t∗ ∈ (τ(t), t), t∗ ∈ R such that

x(τ(t))

x(t∗)
= λ1 − ε.

Integrating Eq.(2.6) from t∗ to σ(t) and using the monotonicity of x and τ , we have

0 = x(σ(t))− x(t∗) +

σ(t)∫
t∗

x(τ(s))p(s)ds

= x(σ(t))− x(t∗) +

t∫
t∗

x(τ(s))p(s)ds+

σ(t)∫
t

x(τ(s))p(s)ds

≥ x(σ(t))− x(t∗) + x(τ(t))

σ(t)∫
t∗

p(s)ds

and then,
σ(t)∫
t∗

p(s)ds ≤ x(t∗)

x(τ(t))
− x(σ(t))

x(τ(t))
<

1

λ1 − ε
− (β − ε). (2.8)

Dividing Eq.(2.6) by x(t) and integrating it from τ(t) to t∗, we have

t∗∫
τ(t)

x
′

+(s)

x(s)
ds = −

t∗∫
τ(t)

p(s)
x(τ(t))

x(s)
ds ≤ − (λ1 − ε)

t∗∫
τ(t)

p(s)ds

and then
t∗∫
τ(t)

p(s)ds ≤ − 1

λ1 − ε

t∗∫
τ(t)

x
′

+(s)

x(s)
ds =

ln (λ1 − ε)

λ1 − ε
. (2.9)
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On the other hand, from [27] we get

t2∫
t1

p(s)ds =

t2∫
t1

p(s)∆s , ∀t1 ≤ t2 , t1, t2 ∈ T.

Combining inequalities (2.8) and (2.9), we have

σ(t)∫
τ(t)

p(s)∆s =

σ(t)∫
τ(t)

p(s)ds ≤ 1 + ln (λ1 − ε)

λ1 − ε
− (β − ε).

Letting t → ∞ and ε → 0, we have

lim sup
t→∞

σ(t)∫
τ(t)

p(s)∆s ≤ 1 + lnλ1

λ1
−

1−m−
√
(1−m)2 − 4A

2
,

which contradicts to (2.7). Thus, the proof is completed. �

Remark 1. Observe that when θ = 1, then

A =
eλ1m − λ1m− 1

(λ1)2

and (2.7) reduces to

M > 2m+
2

λ1
− 1.

Now, we give two examples in cases T = R and T = N.

Example 1. For T = R, consider the delay differential equation

x′(t) +
1

e
x(t− sin2

√
t− 1) = 0, (2.10)

where p = 1
e , a = 1 and pa = 1

e . Then

m = lim inf
t→∞

t∫
τ(t)

1

e
ds = lim inf

t→∞

1

e
(sin2

√
t+ 1) =

1

e

and

M = lim sup
t→∞

t∫
τ(t)

1

e
ds = lim sup

t→∞

1

e
(sin2

√
t+ 1) =

1

e
+

1

e
=

2

e
.

Thus, according to Theorem 2.3, all solutions of Eq.(2.10) oscillate.

Example 2. For T = N, consider the following delay difference equation

∆x(n) + p(n)x(n− 5) = 0 , n = 0, 1, . . . , (2.11)

where

p(6n) = p(6n+ 1) = . . . = p(6n+ 4) =
1

5e
,

p(6n+ 5) =
1

5e
+ 0.113 , n = 0, 1, . . . .
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Then

m = lim inf
n→∞

n−1∑
s=n−5

p(s) =
1

e
∼= 0.3678 and λ1 = e

and

M = lim sup
n→∞

n∑
s=n−5

p(s) =
6

5e
+ 0.113 ∼= 0.55446 < 1

hold. Since

M = 0.55446 > 2m+
2

λ1
− 1 ∼= 0.47135,

all solutions of Eq.(2.11) oscillate by Theorem 2.3.

In [22], the authors gave some incorrect results. Finally, we give a correction to
the [22].

Correction.
i) In Lemma 2.1 [22], the condition (2.1) was given by

p (τ(n))∆ (τ(n)) ≥ θp(n).

This condition should be changed as follows

τ(n)−1∑
j=τ(u)

p(j) ≥ θ
n−1∑
j=u

p(j) for all τ(n) ≤ u ≤ n.

ii) In the proof of Lemma 2.1 [22], the σ(t) is defined as follows

σ(t) = τ(n) + (∆τ(n)) (t− n) for n ≤ t < n+ 1, n = 0, 1, . . . .

This definition should be changed as follows

σ(t) = τ(n) for n ≤ t < n+ 1, n = 0, 1, . . . .

References

[1] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with
Applications, Birkhauser, Boston, 2001.

[2] M. Bohner and A Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser,
Boston 2003.

[3] M. Bohner, Some Oscillation criteria for first order delay dynamic equations, Far East J.
Appl. Math., 18 (3), (2005), 289-304.

[4] J. Chao, On the oscillation of linear differential equations with deviating arguments, Math.
in Practice and Theory, 1 (1991), 32-40.

[5] G. E. Chatzarakis, R. Koplatadze and I. P. Stavroulakis, Oscillation criteria of first order
linear difference equations with delay argument, Nonlinear Anal., 68 (2008), 994-1005.

[6] G. E. Chatzarakis, R. Koplatadze and I. P. Stavroulakis, Optimal oscillation criteria for first
order difference equations with delay argument, Pacific J. Math., 235 (2008), 15-33.

[7] G. E. Chatzarakis, Ch. G. Philos and I. P. Stavroulakis, On the oscillation of the solutions
to linear difference equations with variable delay, Electron. J. Differential Equations, (2008),

No. 50, 15 pp.
[8] E. M. Elabbasy and T. S. Hassan, Oscillation criteria for first order delay differential equa-

tions, Serdica Math. J., 30 (2004), no. 1, 71–86.
[9] A. Elbert, I. P. Stavroulakis. Oscillation and non-oscillation criteria for delay differential

equations, Proc. Amer. Math. Soc., 123 (1995), 1503–1510.
[10] L. H. Erbe and B. G. Zhang, Oscillation for first order linear differential equations with

deviating arguments, Differential Integral Equations, 1 (1988), no. 3, 305-314.

[11] L. H. Erbe and B. G. Zhang, Oscillation of discrete analogues of delay equations, Differential
Integral Equations, 2 (1989), 300-309.



EJMAA-2018/6(2) OSCILLATION CRITERIA FOR DELAY DYNAMIC 59

[12] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus,

Results in Mathematics, 18 (1990), no. 1-2, 18-56.
[13] J. Jaros and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J.

Math., 29 (1999), 197-207.
[14] M. Kon, Y. G. Sficas and I. P. Stavroulakis, Oscillation criteria for delay equations, Proc.

Amer. Math. Soc., 128 (2000), 2989-2997.
[15] R. G. Koplatadze and G. Kvinikadze, On the oscillation of solutions of first order delay

differential inequalities and equations, Georgian Math. J., 1 (1994), 675-685.
[16] M. K. Kwong, Oscillation of first order delay equations, J. Math. Anal. Appl., 156 (1991),

274-286.
[17] G. Ladas, V. Lakshmikantham and L. S. Papadakis, Oscillations of higher-order retarted

differential equations generated by the retarted arguments, Delay and Functional Differential
Equations and their Applications, Academic Press, New York, (1972), 219-231.

[18] G. Ladas, Sharp conditions for oscillations caused by delays, Applicable Anal., 9 (1979),
93-98.

[19] G. Ladas, I. P. Stavroulakis, On delay differential inequalities of first order, Funkcial. Ekvac.,
25 (1982), no. 1, 105–113.

[20] G. Ladas, Y. G. Sficas and I. P. Stavroulakis, Functional differential inequalities and equations
with oscillating coefficients, Trends in Theory and Practice of Nonlinear Differential Equa-
tions, (Arlington, Tx. 1982), 277-284, Lecture Notes in Pure and Appl. Math., 90 Marcel

Dekker, New York, 1984.
[21] G. Ladas, Ch. G. Philos and Y. G. Sficas, Sharp conditions for the oscillation of delay

difference equations, J. Appl. Math. Simulation, 2 (1989), 101-111.
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