Electronic Journal of Mathematical Analysis and Applications Vol. 6(2) July 2018, pp. 51-59. ISSN: 2090-729X(online) http://fcag-egypt.com/Journals/EJMAA/

OSCILLATION CRITERIA FOR DELAY DYNAMIC EQUATIONS ON TIME SCALES

ÖZKAN ÖCALAN AND SERMİN ÖZTÜRK

ABSTRACT. The present paper is dedicated to examine the oscillatory behavior of all solutions of first order delay dynamic equation

$$x^{\Delta}(t) + p(t)x(\tau(t)) = 0 \quad \text{for } t \in [t_0, \infty)_{\mathbb{T}}.$$
(*)

We obtain a new oscillation criterion for this equation on time scale $\mathbb T.$ In particular, we show that all solutions of (*) oscillate under the condition

$$M > 2m + \frac{2}{\lambda_1} - 1$$

is satisfied when M < 1 and $0 < m \leq \frac{1}{e}$ such that the numbers m and M are defined as

$$m = \liminf_{t \to \infty} \int_{\tau(t)}^{t} p(s) \Delta s$$

and

$$M = \limsup_{t \to \infty} \int_{\tau(t)}^{t} p(s) \Delta s$$

where $\lambda_1 \in [1, e]$ is the unique root of the equation $\lambda = e^{m\lambda}$.

1. INTRODUCTION

In this paper, we study the oscillatory behavior of solutions of the first-order delay dynamic equation

$$x^{\Delta}(t) + p(t)x(\tau(t)) = 0 \quad \text{for } t \in [t_0, \infty)_{\mathbb{T}},$$
 (1.1)

where \mathbb{T} is a time scale that is unbounded above with $t_0 \in \mathbb{T}$, $p \in C_{rd}([t_0, \infty)_{\mathbb{T}}, \mathbb{R}^+)$, $\tau \in C_{rd}([t_0, \infty)_{\mathbb{T}}, \mathbb{T})$ is nondecreasing on \mathbb{T} and

$$\tau(t) \le t, \lim_{t \to \infty} \tau(t) = \infty \quad \text{for } t \in \mathbb{T}$$
 (1.2)

and $\sup \mathbb{T} = \infty$.

For a reader not familiar to the time scale calculus, it will be helpful to introduce the following introductory information. A time scale, which inherits the standard topology on \mathbb{R} , is a nonempty closed subset of reals. In this paper, a time scale

²⁰¹⁰ Mathematics Subject Classification. 34C10, 34N05, 39A12, 39A21.

Key words and phrases. Oscillation, time scale, delay dynamic equation.

Submitted May 4, 2017.

will be denoted by the symbol \mathbb{T} , and the intervals with a subscript \mathbb{T} are used to denote the intersection of the usual interval with \mathbb{T} . For $t \in \mathbb{T}$, we define the forward jump operator $\sigma : \mathbb{T} \to \mathbb{T}$ by $\sigma := \inf(t, \infty)_{\mathbb{T}}$ while the backward jump operator $\rho : \mathbb{T} \to \mathbb{T}$ is defined by $\rho := \sup(-\infty, t)_{\mathbb{T}}$, and the graininess function $\mu : \mathbb{T} \to \mathbb{R}_0^+$ is defined as $\mu(t) := \sigma(t) - t$. A point $t \in \mathbb{T}$ is called right-dense if $\sigma(t) = t$ and/or equivalently $\mu(t) = 0$ holds; otherwise it is called right-scattered, and similarly left-dense and left scattered points are defined with respect to the backward jump operator. We also need the set \mathbb{T}^{κ} as follows: If \mathbb{T} has a left-scattered maximum m, then $\mathbb{T}^{\kappa} = \mathbb{T} - \{m\}$. Otherwise, $\mathbb{T}^{\kappa} = \mathbb{T}$. A function $f : \mathbb{T} \to \mathbb{R}$ is said to be Δ -differentiable at the point $t \in \mathbb{T}^{\kappa}$ provided that there exists $f^{\Delta}(t)$ such that for every $\varepsilon > 0$ there exists a neighborhood U of t such that

$$\left| \left[f(\sigma(t) - f(s)) - f^{\Delta}(t) \left[\sigma(t) - s \right] \right| \le \varepsilon \left| \sigma(t) - s \right| \text{ for all } s \in U.$$

We shall mean the Δ -derivative of a function when we only say derivative if it is not mentioned explicitly. A function $f : \mathbb{T} \to \mathbb{R}$ is called rd-continuous provided it is continuous at right-dense points in \mathbb{T} , and its left-sided limits exist (finite) at left-dense points in \mathbb{T} . The set of rd-continuous functions $f : \mathbb{T} \to \mathbb{R}$ will be denoted by $C_{rd}(\mathbb{T},\mathbb{R})$.

The set of functions $f : \mathbb{T} \to \mathbb{R}$ that are differentiable and whose derivative is rd-continuous is denoted by $C^1_{rd}(\mathbb{T},\mathbb{R})$. For $s,t \in \mathbb{T}$ and a function $f \in C_{rd}(\mathbb{T},\mathbb{R})$, the Δ -integral is defined by

$$\int_{s}^{s} f(\eta)\Delta(\eta) = F(t) - F(s)$$

where $F \in C^1_{rd}(\mathbb{T},\mathbb{R})$ is an anti-derivative of f, i.e., $F^{\Delta} = f$ on \mathbb{T}^{κ} . Every rdcontinuous function has an antiderivative. In particular, if $t_0 \in \mathbb{T}$ then F is defined by

$$F(t) = \int_{t_0}^t f(\eta) \Delta(\eta) \text{ for } t \in \mathbb{T}$$

which is an antiderivative of f. And, for $t \in \mathbb{T}^{\kappa}$

$$\int_{t}^{\sigma(t)} f(\eta) \Delta(\eta) = \mu(t) f(t).$$

It is obvious that if $f^{\Delta} \ge 0$, then f is nondecreasing.

A function $f \in C_{rd}(\mathbb{T},\mathbb{C})$ is called regressive if $1 + f\mu \neq 0$ on \mathbb{T}^{κ} , and $f \in C_{rd}(\mathbb{T},\mathbb{C})$ is called positively regressive if $1 + f\mu > 0$ on \mathbb{T}^{κ} . The set of regressive functions and the set of positively regressive functions are denoted by $\mathcal{R}(\mathbb{T},\mathbb{C})$ and $\mathcal{R}^+(\mathbb{T},\mathbb{R})$ respectively. $\mathcal{R}^-(\mathbb{T},\mathbb{R})$ is defined similarly. For simplicity, we denote the set of regressive constants by $\mathcal{R}_c(\mathbb{T},\mathbb{C})$. Similarly, we define the sets $\mathcal{R}_c^+(\mathbb{T},\mathbb{R})$ and $\mathcal{R}_c^-(\mathbb{T},\mathbb{R})$.

A function $x : \mathbb{T} \to \mathbb{R}$ is called a solution of the equation (1.1), if x(t) is delta differentiable for $t \in \mathbb{T}^{\kappa}$ and it satisfies the equation (1.1) for $t \in \mathbb{T}$. We say that a solution x of equation (1.1) has a generalized zero at t if x(t) = 0 or $\mu(t) > 0$ and $x(t)x(\sigma(t)) < 0$. Let $\sup \mathbb{T} = \infty$ and then a nontrivial solution x of equation (1.1) is called oscillatory on $[t, \infty)$ if it has arbitrarirly large generalized zeros in $[t, \infty)$.

In recent years, there has been an increasing interest in the oscillation of solutions of some dynamic equations. See [1-27] and the references cited therein. However, few papers ([3,25-27]) deal with only delay dynamic equations even in the case of first order linear equations.

Supposing $\mathbb{T} = \mathbb{R}$, then Eq. (1.1) is reduced to the first order delay differential equation

$$x'(t) + p(t)x(\tau(t)) = 0 , \quad t \ge t_0.$$
(1.3)

Many authors studied the oscillatory behavior of Eq. (1.3), ([4, 8-11, 13-16, 18-20, 23-24]).

Similarly, in case that $\mathbb{T} = \mathbb{N}$, Eq. (1.1) turns into

$$\Delta x(n) + p(n)x(\tau(n)) = 0 \quad , \quad n = 0, 1, \dots$$
(1.4)

Recently, many studies are performed on the oscillation of solutions of Eq. (1.4), [5-7, 21-22].

In 2002, Zhang and Deng [26], studied the oscillatory behavior of solutions of the following delay differential equation on time scales

$$x^{\Delta}(t) + p(t)x(\tau(t)) = 0$$
 , $t \ge t_0$, $t \in \mathbb{T}$

where $p \in C_{rd}(\mathbb{T}, \mathbb{R}^+)$, $\tau \in C_{rd}(\mathbb{T}, \mathbb{T})$ and $\tau(t) < t$ for $t \in \mathbb{T}$, and $\sup \mathbb{T} = \infty$. They proved the following result by the help of cylinder transforms.

Theorem 1. Define

$$\alpha = \limsup_{t_0 \to \infty} \sup_{\lambda \in E} \left\{ \lambda \exp_{-\lambda p}(\tau(t), t) \right\}$$
(1.5)

where

$$\exp_{-\lambda p}(\tau(t), t) = \exp \int_{\tau(t)}^{t} \xi_{\mu(s)}(-\lambda p(s)) \Delta s,$$

 $E = \{\lambda : \lambda > 0, \ 1 - \lambda p(t)\mu(t) > 0\}, \ and$

$$\xi_h(z) = \begin{cases} \frac{Log(1+hz)}{h} &, \text{ if } h \neq 0\\ z &, \text{ if } h = 0 \end{cases}$$

If $\alpha < 1$, then all solutions of Eq.(1.1) are oscillatory.

In 2005, Bohner [3] gave the following result by using exponential functions notation for any time scale \mathbb{T} .

Theorem 2. If Eq.(1.1) has an eventually positive solution, then α satisfies the condition $\alpha \geq 1$ defined by (1.5).

Following these studies, Sahiner and Stavroulakis [25] gave the following result for Eq.(1.1).

Theorem 3. Assume that there exists a positive constant L such that

$$\liminf_{t \to \infty} \int_{\tau(t)}^{t} p(s) \Delta s > L \tag{1.6}$$

and

$$\limsup_{t \to \infty} \int_{\tau(t)}^{t} p(s)\Delta s > 1 - \frac{L^2}{4}.$$
(1.7)

Then Eq.(1.1) is oscillatory.

In 2005, the following criterias were given by Zhang et al. [27] for all solutions of Eq.(1.1) to be oscillatory.

Theorem 4. Assume that (1.2) and the following inequality holds

$$\limsup_{t \to \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s > 1, \tag{1.8}$$

then all solutions of Eq.(1.1) are oscillatory.

Theorem 5. Assume that (1.2) holds and $m \in [0, \frac{1}{e}]$. Furthermore,

$$\limsup_{t \to \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s > \frac{1 + \ln \lambda_1}{\lambda_1} - \frac{1 - m - \sqrt{1 - 2m - m^2}}{2}, \tag{1.9}$$

where $\lambda_1 \in [1, e]$ is the unique root of the equation $\lambda = e^{m\lambda}$, then all solutions of Eq.(1.1) are oscillatory.

This work is inspired by [27], [22] and [14]. In this paper, we use these studies to find a new criteria for all solutions of Eq.(1.1) to be oscillatory. The purpose of the present paper is essentially to extend these results to the dynamic equations on time scale \mathbb{T} . Finally, two examples are given for certain cases.

2. Main Results

In this section, we give an oscillatory criteria for all solutions of Eq.(1.1). Here, we set

$$m = \liminf_{t \to \infty} \int_{\tau(t)}^{t} p(s) \Delta s.$$
(2.1)

Lemma 1 ([27, Lemma 2.3]). Let x(t) be an eventually positive solution of Eq.(1.1) and $m \in [0, (1/e)]$. Then

$$\liminf_{t \to \infty} \frac{x(\tau(t))}{x(t)} \ge \lambda_1, \tag{2.2}$$

where $\lambda_1 \in [1, e]$ is the unique root of the equation $\lambda = e^{m\lambda}$.

Lemma 2. Let x(t) be an eventually positive solution of Eq.(1.1) and $m \in [0, (1/e)]$. Assume that $\tau(t)$ is nondecreasing and there exists $\theta > 0$ such that

$$\int_{\tau(u)}^{\tau(t)} p(s)\Delta s \ge \theta \int_{u}^{t} p(s)\Delta s \quad \text{for all } \tau(t) \le u \le t.$$
(2.3)

Then

$$\liminf_{t \to \infty} \frac{x(\sigma(t))}{x(\tau(t))} \ge \frac{1 - m - \sqrt{(1 - m)^2 - 4A}}{2},\tag{2.4}$$

where A is given by

$$A = \frac{e^{\lambda_1 \theta m} - \lambda_1 \theta m - 1}{(\lambda_1 \theta)^2}$$
(2.5)

and $\lambda_1 \in [1, e]$ is the unique root of the equation $\lambda = e^{m\lambda}$.

Proof. If m = 0, then obviously inequality (2.4) holds.

If $m \neq 0$, then let x(t) be eventually positive solution of Eq.(1.1). Define the functions $\overline{x}, \overline{p}, \overline{\tau}$ on \mathbb{R} as follows

$$\overline{x}(t) = \begin{cases} x(t), & t \in \mathbb{T}, \\ x(s) + (x(\sigma(s)) - x(s))\frac{t-s}{\sigma(s)-s}, & s < t < \sigma(s), \ s \in \mathbb{T}, \end{cases}$$
$$\overline{p}(t) = \begin{cases} p(t), & t \in \mathbb{T}, \\ p(s), & s < t < \sigma(s), \ s \in \mathbb{T}, \end{cases}$$
$$\overline{\tau}(t) = \begin{cases} \tau(t), & t \in \mathbb{T}, \\ \tau(s), & s < t < \sigma(s), \ s \in \mathbb{T}. \end{cases}$$

Clearly, these functions are well defined under the assumption on \mathbb{T} . It is easy to see that the function \overline{x} is continuous, nonincreasing and eventually positive on \mathbb{R} , and the function $\overline{\tau}$ is nondecreasing on \mathbb{R} with $\lim_{t\to\infty}\overline{\tau}(t) = \infty, t \in \mathbb{R}$. And $\overline{p}(t) \geq 0$, for $t \geq t_0, t \in \mathbb{R}$.

From the proof of Lemma 2.4 in [27] we know that \overline{x} is a solution of the following differential equation

$$\overline{x}'_{+}(t) + \overline{p}(t)\overline{x}(\overline{\tau}(t)) = 0, \quad t \ge t_0, \ t \in \mathbb{R},$$
(2.6)

where $\overline{x}'_{+}(t)$ means the right derivative of \overline{x} at t.

On the other hand, from (2.3), we get

$$\int_{\overline{\tau}(u)}^{\overline{\tau}(t)} \overline{p}(s) \Delta s \ge \theta \int_{u}^{t} \overline{p}(s) \Delta s \quad \text{ for all } \overline{\tau}(t) \le u \le t.$$

Therefore, from Lemma 2 in [14] we have

$$\overline{x}(t) \ge \frac{1}{2} \left[1 - m - \sqrt{(1 - m)^2 - 4A} \right] \overline{x}(\overline{\tau}(t)).$$

for $t \in \mathbb{R}$.

If
$$s \leq t < \sigma(s), s \in \mathbb{T}$$
, then we have $\overline{x}(\overline{\tau}(t)) = \overline{x}(\tau(s)) = x(\tau(s))$. So, we get

$$\overline{x}(t) \ge \frac{1}{2} \left[1 - m - \sqrt{(1 - m)^2 - 4A} \right] x(\tau(s)).$$

Let $t \to \sigma(s) - 0$ and from the continuity of \overline{x} ,

$$\overline{x}(\sigma(s)) \ge \frac{1}{2} \left[1 - m - \sqrt{(1-m)^2 - 4A} \right] x(\tau(s)).$$

It should be noted that $\lim_{t\to\sigma(s)=0} \overline{x}(t) = \overline{x}(\sigma(s)) = x(\sigma(s))$. Thus, we prove that for all $s \leq t < \sigma(s), s \in \mathbb{T}$,

$$x(\sigma(s)) \ge \frac{1}{2} \left[1 - m - \sqrt{(1 - m)^2 - 4A} \right] x(\tau(s)).$$

Finally, we obtain (2.4).

Theorem 6. Consider the Eq.(1.1) and let M < 1, $m \in [0, \frac{1}{e}]$. Assume that (1.2) holds and there exists $\theta > 0$ such that (2.3) holds. If $\tau(t)$ is nondecreasing and

$$M > \frac{1 + \ln \lambda_1}{\lambda_1} - \frac{1 - m - \sqrt{(1 - m)^2 - 4A}}{2},$$
(2.7)

where $\lambda_1 \in [1, e]$ is the unique root of the equation $\lambda = e^{k\lambda}$ and A is given by (2.5), then all solutions of Eq.(1.1) oscillate.

Proof. If m = 0, then the inequality (2.7) reduces to (1.8). Thus with the help of Theorem 1.4, we get the conclusion.

Let $0 < m \leq \frac{1}{e}$. Assume for the sake of contradiction that x is an eventually positive solution of Eq.(1.1). Then there exists $t_0 \leq t_1 \in \mathbb{T}$ such that $x(\tau(t)) > 0$ for $t > t_1$. We define $\overline{x}, \overline{\tau}, \overline{p}$ as in Lemma 2.2, then \overline{x} satisfies the delay differential equation (2.6). From Lemma 2.1 and Lemma 2.2, it follows that

$$\liminf_{t \to \infty} \frac{x(\tau(t))}{x(t)} \ge \lambda_1, \quad \liminf_{t \to \infty} \frac{x(\sigma(t))}{x(\tau(t))} \ge \frac{1 - m - \sqrt{(1 - m)^2 - 4A}}{2} := \beta$$

Hence, for $\forall \varepsilon > 0$ such that $\varepsilon < \min\left\{\lambda_1, \frac{1-m-\sqrt{(1-m)^2-4A}}{2}\right\}$, we have

$$\frac{x(\tau(t))}{x(t)} \ge \lambda_1 - \varepsilon, \quad \frac{x(\sigma(t))}{x(\tau(t))} \ge \beta - \varepsilon, \text{ for } t > t_2 \ge t_1, \quad t \in \mathbb{T}.$$

By the definitions of $\overline{x}, \overline{\tau}, \overline{p}$ in Lemma 2.2, we also have

$$\frac{\overline{x}(\overline{\tau}(t))}{\overline{x}(t)} \ge \lambda_1 - \varepsilon, \quad \frac{\overline{x}(\sigma(t))}{\overline{x}(\overline{\tau}(t))} \ge \beta - \varepsilon, \text{ for } t > t_2, \quad t \in \mathbb{R}.$$

Hence, for a fixed $t > t_2, t \in \mathbb{R}$, there exists $t^* \in (\overline{\tau}(t), t), t^* \in \mathbb{R}$ such that

$$\frac{\overline{x}(\overline{\tau}(t))}{\overline{x}(t^*)} = \lambda_1 - \varepsilon.$$

Integrating Eq.(2.6) from t^* to $\sigma(t)$ and using the monotonicity of \overline{x} and $\overline{\tau}$, we have

$$0 = \overline{x}(\sigma(t)) - \overline{x}(t^*) + \int_{t^*}^{\sigma(t)} \overline{x}(\overline{\tau}(s))\overline{p}(s)ds$$
$$= \overline{x}(\sigma(t)) - \overline{x}(t^*) + \int_{t^*}^t \overline{x}(\overline{\tau}(s))\overline{p}(s)ds + \int_t^{\sigma(t)} \overline{x}(\overline{\tau}(s))\overline{p}(s)ds$$
$$\geq \overline{x}(\sigma(t)) - \overline{x}(t^*) + \overline{x}(\overline{\tau}(t)) \int_{t^*}^{\sigma(t)} \overline{p}(s)ds$$

and then,

$$\int_{t^*}^{\sigma(t)} \overline{p}(s) ds \le \frac{\overline{x}(t^*)}{\overline{x}(\overline{\tau}(t))} - \frac{\overline{x}(\sigma(t))}{\overline{x}(\overline{\tau}(t))} < \frac{1}{\lambda_1 - \varepsilon} - (\beta - \varepsilon).$$
(2.8)

Dividing Eq.(2.6) by $\overline{x}(t)$ and integrating it from $\tau(t)$ to t^* , we have

$$\int_{\tau(t)}^{t^*} \frac{\overline{x}'_+(s)}{\overline{x}(s)} ds = -\int_{\tau(t)}^{t^*} \overline{p}(s) \frac{\overline{x}(\overline{\tau}(t))}{\overline{x}(s)} ds \le -(\lambda_1 - \varepsilon) \int_{\tau(t)}^{t^*} \overline{p}(s) ds$$

and then

$$\int_{\tau(t)}^{t^*} \overline{p}(s) ds \le -\frac{1}{\lambda_1 - \varepsilon} \int_{\tau(t)}^{t^*} \frac{\overline{x}'_+(s)}{\overline{x}(s)} ds = \frac{\ln(\lambda_1 - \varepsilon)}{\lambda_1 - \varepsilon}.$$
(2.9)

On the other hand, from [27] we get

$$\int_{t_1}^{t_2} \overline{p}(s) ds = \int_{t_1}^{t_2} p(s) \Delta s \quad , \quad \forall t_1 \le t_2 \quad , \quad t_1, t_2 \in \mathbb{T}.$$

Combining inequalities (2.8) and (2.9), we have

$$\int_{\tau(t)}^{\sigma(t)} p(s)\Delta s = \int_{\tau(t)}^{\sigma(t)} \overline{p}(s)ds \le \frac{1 + \ln(\lambda_1 - \varepsilon)}{\lambda_1 - \varepsilon} - (\beta - \varepsilon).$$

Letting $t \to \infty$ and $\varepsilon \to 0$, we have

$$\limsup_{t \to \infty} \int_{\tau(t)}^{\sigma(t)} p(s) \Delta s \le \frac{1 + \ln \lambda_1}{\lambda_1} - \frac{1 - m - \sqrt{(1 - m)^2 - 4A}}{2},$$

which contradicts to (2.7). Thus, the proof is completed.

Remark 1. Observe that when $\theta = 1$, then

$$A = \frac{e^{\lambda_1 m} - \lambda_1 m - 1}{(\lambda_1)^2}$$

and (2.7) reduces to

$$M > 2m + \frac{2}{\lambda_1} - 1.$$

Now, we give two examples in cases $\mathbb{T} = \mathbb{R}$ and $\mathbb{T} = \mathbb{N}$.

Example 1. For $\mathbb{T} = \mathbb{R}$, consider the delay differential equation

$$x'(t) + \frac{1}{e}x(t - \sin^2\sqrt{t} - 1) = 0, \qquad (2.10)$$

where $p = \frac{1}{e}$, a = 1 and $pa = \frac{1}{e}$. Then

$$m = \liminf_{t \to \infty} \int_{\tau(t)}^{t} \frac{1}{e} ds = \liminf_{t \to \infty} \frac{1}{e} (\sin^2 \sqrt{t} + 1) = \frac{1}{e}$$

and

$$M = \limsup_{t \to \infty} \int_{\tau(t)}^{t} \frac{1}{e} ds = \limsup_{t \to \infty} \frac{1}{e} (\sin^2 \sqrt{t} + 1) = \frac{1}{e} + \frac{1}{e} = \frac{2}{e}$$

Thus, according to Theorem 2.3, all solutions of Eq.(2.10) oscillate.

Example 2. For $\mathbb{T} = \mathbb{N}$, consider the following delay difference equation

$$\Delta x(n) + p(n)x(n-5) = 0 \quad , \quad n = 0, 1, \dots,$$
(2.11)

where

$$p(6n) = p(6n+1) = \ldots = p(6n+4) = \frac{1}{5e},$$

 $p(6n+5) = \frac{1}{5e} + 0.113 , n = 0, 1, \ldots$

Ę	5	7	7	

Then

$$m = \liminf_{n \to \infty} \sum_{s=n-5}^{n-1} p(s) = \frac{1}{e} \cong 0.3678 \quad and \ \lambda_1 = e$$

and

$$M = \limsup_{n \to \infty} \sum_{s=n-5}^{n} p(s) = \frac{6}{5e} + 0.113 \cong 0.55446 < 1$$

hold. Since

$$M = 0.55446 > 2m + \frac{2}{\lambda_1} - 1 \cong 0.47135,$$

all solutions of Eq. (2.11) oscillate by Theorem 2.3.

In [22], the authors gave some incorrect results. Finally, we give a correction to the [22].

Correction.

i) In Lemma 2.1 [22], the condition (2.1) was given by

$$p(\tau(n)) \Delta(\tau(n)) \ge \theta p(n).$$

This condition should be changed as follows

$$\sum_{j=\tau(u)}^{\tau(n)-1} p(j) \ge \theta \sum_{j=u}^{n-1} p(j) \quad \text{for all } \tau(n) \le u \le n.$$

ii) In the proof of Lemma 2.1 [22], the $\sigma(t)$ is defined as follows

$$\sigma(t) = \tau(n) + (\Delta \tau(n)) (t - n)$$
 for $n \le t < n + 1, n = 0, 1, \dots$

This definition should be changed as follows

$$\sigma(t) = \tau(n) \text{ for } n \le t < n+1, \ n = 0, 1, \dots$$

References

- M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhauser, Boston, 2001.
- [2] M. Bohner and A Peterson, Advances in Dynamic Equations on Time Scales, Birkhauser, Boston 2003.
- [3] M. Bohner, Some Oscillation criteria for first order delay dynamic equations, Far East J. Appl. Math., 18 (3), (2005), 289-304.
- [4] J. Chao, On the oscillation of linear differential equations with deviating arguments, Math. in Practice and Theory, 1 (1991), 32-40.
- [5] G. E. Chatzarakis, R. Koplatadze and I. P. Stavroulakis, Oscillation criteria of first order linear difference equations with delay argument, Nonlinear Anal., 68 (2008), 994-1005.
- [6] G. E. Chatzarakis, R. Koplatadze and I. P. Stavroulakis, Optimal oscillation criteria for first order difference equations with delay argument, Pacific J. Math., 235 (2008), 15-33.
- [7] G. E. Chatzarakis, Ch. G. Philos and I. P. Stavroulakis, On the oscillation of the solutions to linear difference equations with variable delay, Electron. J. Differential Equations, (2008), No. 50, 15 pp.
- [8] E. M. Elabbasy and T. S. Hassan, Oscillation criteria for first order delay differential equations, Serdica Math. J., 30 (2004), no. 1, 71–86.
- [9] A. Elbert, I. P. Stavroulakis. Oscillation and non-oscillation criteria for delay differential equations, Proc. Amer. Math. Soc., 123 (1995), 1503–1510.
- [10] L. H. Erbe and B. G. Zhang, Oscillation for first order linear differential equations with deviating arguments, Differential Integral Equations, 1 (1988), no. 3, 305-314.
- [11] L. H. Erbe and B. G. Zhang, Oscillation of discrete analogues of delay equations, Differential Integral Equations, 2 (1989), 300-309.

58

- [12] S. Hilger, Analysis on measure chains—a unified approach to continuous and discrete calculus, Results in Mathematics, 18 (1990), no. 1-2, 18-56.
- [13] J. Jaros and I. P. Stavroulakis, Oscillation tests for delay equations, Rocky Mountain J. Math., 29 (1999), 197-207.
- [14] M. Kon, Y. G. Sficas and I. P. Stavroulakis, Oscillation criteria for delay equations, Proc. Amer. Math. Soc., 128 (2000), 2989-2997.
- [15] R. G. Koplatadze and G. Kvinikadze, On the oscillation of solutions of first order delay differential inequalities and equations, Georgian Math. J., 1 (1994), 675-685.
- [16] M. K. Kwong, Oscillation of first order delay equations, J. Math. Anal. Appl., 156 (1991), 274-286.
- [17] G. Ladas, V. Lakshmikantham and L. S. Papadakis, Oscillations of higher-order retarted differential equations generated by the retarted arguments, Delay and Functional Differential Equations and their Applications, Academic Press, New York, (1972), 219-231.
- [18] G. Ladas, Sharp conditions for oscillations caused by delays, Applicable Anal., 9 (1979), 93-98.
- [19] G. Ladas, I. P. Stavroulakis, On delay differential inequalities of first order, Funkcial. Ekvac., 25 (1982), no. 1, 105–113.
- [20] G. Ladas, Y. G. Sficas and I. P. Stavroulakis, Functional differential inequalities and equations with oscillating coefficients, Trends in Theory and Practice of Nonlinear Differential Equations, (Arlington, Tx. 1982), 277-284, Lecture Notes in Pure and Appl. Math., 90 Marcel Dekker, New York, 1984.
- [21] G. Ladas, Ch. G. Philos and Y. G. Sficas, Sharp conditions for the oscillation of delay difference equations, J. Appl. Math. Simulation, 2 (1989), 101-111.
- [22] Ö. Öcalan and S. Ş. Öztürk, An oscillation criterion for first order difference equations, Result in Mathematics, 68 (2015), no. 1-2, 105-116.
- [23] Ch. G. Philos and Y. G. Sficas, An oscillation criterion for first order linear delay differential equations, Canad. Math. Bull., 41 (1998), 207-213.
- [24] Y. G. Sficas and I. P. Stavroulakis. Oscillation criteria for first order delay equations. Bull. London Math. Soc., 35 (2003), 239–246.
- [25] Y. Şahiner and I. P. Stavroulakis, Oscillations of first order delay dynamic equations, Dynamic Systems and Applications, 15 (2006), 645-656.
- [26] B. G., Zhang and X. Deng, Oscillation of delay differential equations on time scales, Mathematical and Computer Modelling, 36 (2002), 1307-1318.
- [27] B. G. Zhang, X. Yan and X. Liu, Oscillation criteria of certain delay dynamic equations on time scales, Journal of Difference Equations and Applications, 11 (2005), no. 10, 933-946.

Ozkan Ocalan

AKDENIZ UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, ANTALYA, TURKEY *E-mail address:* ozkanocalan@akdeniz.edu.tr

Sermİn Öztürk

AFYON KOCATEPE UNIVERSITY, FACULTY OF SCIENCE AND ARTS, DEPARTMENT OF MATHEMATICS, AFYONKARAHİSAR, TURKEY

E-mail address: ssahin@aku.edu.tr