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VIBRATION CONTROL OF A NONLINEAR DYNAMICAL

SYSTEM EXCITED AT SIMULTANEOUS RESONANCE CASE

W. A. EL-GANAINI

Abstract. Within this article, an active Positive Position Feedback (PPF)
controller is applied to suppress the horizontal vibration of a nonlinear mag-

netic levitation system. The purposed controller is designed to have a natural

frequency equal to the excitation frequency of the magnetic levitation system.
The multiple scales perturbation method is adopted to derive two nonlinear

algebraic equations that describe the whole system vibration amplitudes in

terms of the system and controller parameters. The solution’s stability is
studied utilizing the indirect method of Lyapunov. Then, numerical valida-

tions for the obtained analytical results are performed. The analyses illustrated
a good agreement between the numerical and analytical solution, and showed

the high efficiency of the PPF controller in suppressing the system vibrations

in the presence of primary resonance and 1:1 internal resonance. Eventually,
a comparison with previously published work is included.

1. Introduction

One of the high advanced technologies is the magnetic levitation systems which
have various engineering applications like clean energy in wind turbines, trans-
portation systems in magnetic levitation train, building facilities in fans, nuclear
engineering in the centrifuge of nuclear reactor, civil engineering in elevators?etc.
In all these applications, we can find common features such as the lack of con-
tact and thus no friction. The oscillatory motions of such applications should be
eliminated or suppressed to increases the efficiency and the life of the system and
reduces the maintenance costs. For all these reasons, the technique of passive and
active control is applied to suppress the nonlinear vibration of those systems to its
minimum possible level.
Jo et al. [1-2], studied dynamic vibration absorber depending on quadratic nonlin-
ear coupling as passive controller to reduce the vibration amplitude of primary and
parametric resonance of a nonlinear oscillator. The applied absorber is a pendu-
lum with tip mass that attached vertically to the body and was designed to have
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a natural frequency in the neighborhood of twice that of the main system. Fur-
thermore, the authors showed experimentally that the nonlinear vibration absorber
reduced the primary resonance amplitude with a reduction ratio of about 45%, but
in the case of principal parametric resonance, the steady state amplitude became
close to zero. Yabuno et al. [3] studied the effect of parametric resonance due
to asymmetric nonlinearity of restoring force. They concluded that the instability
region of the trivial steady state due to the parametric excitations depends on the
value of subharmonic excitation with order half. Warminski et al. [4] discussed an
active positive position feedback (PPF) controller to mitigate the nonlinear vibra-
tions of a nonlinear composite beam. The PPF controller exhibited high efficiency
in suppressing the system vibration amplitude. Shin et al. [5] investigated the ac-
tive vibration control of clamped beams using PPF controllers with a pair-actuator
(sensor/moment). They showed that the PPF controller has alleviated the system
instability produced by the sensor/moment pair actuator. Eissa and Sayed [6-7]
presented a comparison between active and passive vibration control of non-linear
simple pendulum. The authors showed that the velocity feedback is better than
the quadratic and cubic velocity feedback for transversally tuned absorber, where
the active controller effectiveness decreases with increasing the order of velocity
feedback. In addition, they applying acceleration and displacement feedback for
longitudinal tuned absorber and provided that each of them depends on the nature
of the system to be controlled. Furthermore, Eissa and Sayed [8], studied the vibra-
tion reduction of a three DOF nonlinear spring pendulum using an active vibration
control. Amer et al. [9-10] applied two simple active control methods based on
the linear velocity and acceleration feedback to suppress the nonlinear vibration of
a an aircraft twin-tail system when subjected to harmonic, parametric, and exter-
nal excitation. They concluded that the acceleration feedback has high efficiency
in reducing the twin-tail system vibrating. Sayed and Kamel [11] discussed the
vibration control of a nonlinear dynamical system via an active control algorithm
depending on the 1:2 and 1:3 internal resonance cases. El-Ganaini et al. [12-13],
discussed chaotic vibration suppression via time delay absorber of a beam under
multi-parametric excitations. They concluded the absorber effectiveness (Ea) is
infinity theoretically at simultaneous resonance case (Ω = 2ω1 and ω1 = ω2), while
at simultaneous resonance case (Ω1 = ω1 and Ω1 = ω2) Ea is about 700. An active
controller for suppressing a nonlinear system vibration by applying PPF is studied
by El-Ganaini et al. [14]. They showed that the good benefit of using this con-
troller is that if its natural frequency is tuned in the neighborhood of the measured
excitation frequency, its effectiveness (Ea) can be reached about 625. As the PPF
controller has high feasibility and wide applicability in nonlinear vibration control,
it is still the up to date and a common controller in suppressing the vibrations of
different nonlinear dynamical systems, where Eissa and Saeed [15], and Saeed and
Kamel [16], recently published two papers concerning the lateral vibration control
of the nonlinear Jeffcott rotor system. In this paper, PPF controller is connected
to the nonlinear system presented in Refs [1-2] as shown in Fig. 1. In this system,
the vertically levitated body is guided by horizontal magnetic forces on both sides,
where one of these magnets is under an external periodic excitation. The frequency
response equations that describe the steady state oscillations of the given system is
derived applying MSPT method [17]. The stability analysis is performed to deter-
mine the stable and unstable regions for both system and controller. A comparison
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between the obtained analytical results and the numerical simulations is held and
showed a good agreement.

Figure 1. Magnetic Levitation system

2. Perturbation analysis

The nonlinear differential equation governing the magnetic levitation system
vibrations under periodic primary excitation is given as follows (See Ref. [1]):

ÿ + 2µ1ẏ + y + αy3 = 2k2fy cos(Ωt) + 3k3fy
2 cos(Ωt)− 3k3f

2y cos2(Ωt)

+ k1f cos(Ωt)− k2f
2 cos2(Ωt) + k3f

3 cos3(Ωt) (1)

After the PPF controller is applied to the suggested system [14, 15], the modified
equations of motion will be in the form:

ÿ + 2µ1ẏ + y + αy3 = 2k2fy cos(Ωt) + 3k3fy
2 cos(Ωt)− 3k3f

2y cos2(Ωt)

+ k1f cos(Ωt)− k2f
2 cos2(Ωt) + k3f

3 cos3(Ωt) + c1z (2.a)

z̈ + 2µ2ż + ω2
2z = c2y (2.b)

In equations (2.a) and (2.b), a new scaling for the system and controller param-
eters depending on their values is considered such that:

µ1 = ε2µ̂1, µ2 = ε2µ̂2, c1 = ε2ĉ1, c2 = ε2ĉ2, f = ε3f̂ (3)

Applying the MSPT [17], we suppose the uniform expansion of y and z as:

y(T0, T1; ε) = εy1(T0, T1) + ε3y2(T0, T1) +O(ε5) (4.a)

z(T0, T1; ε) = εz1(T0, T1) + ε3z2(T0, T1) +O(ε5) (4.b)
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where T0 = t, T1 = ε2t are the fast and slow time scales respectively. In terms
of T0 and T1, the time derivatives are transformed into the following:

d

dt
= D0 + ε2D1,

d2

dt2
= D0

2 + 2ε2D1D0; Di =
∂

∂Ti
, i = 0, 1 (5)

Substituting equations (3) to (5) into equations (2.a) and (2.b) and equating
coefficients of the powers of ε, the following set of linear differential equations are
obtained

O(ε) :

(D0
2 + 1)y1 = 0 (6.a)

(D0
2 + ω2

2)z1 = 0 (6.b)

O(ε3) :

(D0
2 + 1)y2 = −2D1D0y1 − 2µ̂1D0y1 − αy1

3 +
k1f̂

2
(eiΩT0 + e−iΩT0) + ĉ1z1

(7.a)

(D0
2 + ω2

2)z2 = −2D1D0z1 − 2µ̂2D0z1 + ĉ2y1 (7.b)

The general solutions of equations (6.a) and (6.b) are expressed in the complex
form as:

y1(T0, T1) = A1(T1)eiT0 + Ā1(T1)e−iT0 (8.a)

z1(T0, T1) = A2(T1)eiω2T0 + Ā2(T1)e−iω2T0 (8.b)

where the quantities A1(T1) and A2(T1) are unknown complex functions in T1.
Substituting equations (8) into equations (7), we get the following:

(D0
2 + 1)y2 = (−2iD1A1 − 2iµ̂1A1 − 3αA1

2Ā1)eiT0 − αA1
3e3iT0 +

k1f̂

2
eiΩT0

+ ĉ1A2e
iω2T0 + cc (9.a)

(D0
2 + ω2

2)z2 = (−2iω2D1A2 − 2iµ̂2ω2A2)eiω2T0 + ĉ2A1e
iT0 + cc (9.b)

where cc denotes the complex conjugate of the preceding terms. The particular
solutions of equations (9) are

y2(T0, T1) =
α

8
A1

3e3iT0 +
k1

2(1− Ω2)
f̂ eiΩT0 +

ĉ1
1− ω2

2
A2e

iω2T0 + cc (10.a)
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z2(T0, T1) =
ĉ2

ω2
2 − 1

A1e
iT0 + cc (10.b)

The normalized resonance cases that concluded from the approximate solution
in equations (10) are reported as:

(i) Primary Resonance: Ω = 1
(ii) Internal Resonance: ω2 = 1

(iii) Simultaneous resonance: Ω = 1 and ω2 = 1

The case of simultaneous resonance case (Ω = 1 and ω2 = 1) is considered
in this work because it represents the worst resonance case. The stability of the
vibrating system near this simultaneous resonance is studied by proposing detuning
parameters σ1 and σ2 such that:

Ω = 1 + σ1 = 1 + ε2σ̂1 (11.a)

ω2 = 1 + σ2 = 1 + ε2σ̂2 (11.b)

The solvability conditions of equations (9) can be obtained by inserting equations
(11) into equations (9), and eliminating the secular and small-divisor terms, the
following are obtained:

− 2iD1A1 − 2iµ̂1A1 − 3αA2
1A1 +

k1f̂

2
eiσ̂1T1 + ĉ1A2e

iσ̂2T1 = 0 (12.a)

− 2iω2D1A2 − 2iµ̂2ω2A2 + ĉ2A1e
−iσ̂2T1 = 0 (12.b)

To analyze equation (12), we can express A1(T1) and A2(T1) in the polar form
as follows:

A1(T1) =
â1

2
eiβ1 ⇒ D1A1(T1) =

1

2
â′1e

iβ1 +
i

2
a1β

′
1e
iβ1 (13.a)

A2(T1) =
â2

2
eiβ2 ⇒ D1A2(T1) =

1

2
â′2e

iβ2 +
i

2
a2β

′
2e
iβ2 (13.b)

where â1 and â2 are the steady-state amplitudes of the main system and con-
troller, respectively, and β1 and β2 are the phases of the main system and controller,
respectively. Substituting equations (13) into equations (12), we get

− iâ′1eiβ1 + â1β
′
1e
iβ1 − iµ̂1â1e

iβ1 − 3

8
αâ3

1e
iβ1 +

k1f̂

2
eiσ̂1T1 +

ĉ1
2
â2e

i(σ̂2T1+β2) = 0

(14.a)
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− iω2â
′
2e
iβ2 + ω2â2β

′
2e
iβ2 − iµ̂2ω2â2e

iβ2 +
ĉ2
2
â1e
−i(σ̂2T1−β1) = 0 (14.b)

Return back every scaled parameter into its original form, we have

µ̂1 =
µ1

ε2
, µ̂2 =

µ2

ε2
, ĉ1 =

c1
ε2
, ĉ2 =

c2
ε2
, f̂ =

f

ε3
, â1 =

a1

ε
, â2 =

a2

ε
, σ̂1 =

σ1

ε2
, σ̂2 =

σ2

ε2

(15)

Substituting equation (15) into equations (14), we get that:

− iȧ1e
iβ1 + a1β̇1e

iβ1 − iµ1a1e
iβ1 − 3

8
αa3

1e
iβ1 +

k1f

2
eiσ1t +

c1
2
a2e

i(σ2t+β2) = 0

(16.a)

− iω2ȧ2e
iβ2 + ω2a2β̇2e

iβ2 − iµ2ω2a2e
iβ2 +

c2
2
a1e
−i(σ2t−β1) = 0 (16.b)

Dividing equations (16.a) and (16.b) by eiβ1 and eiβ2 , respectively, and separat-
ing the real and imaginary parts leads to the following equations:

ȧ1 = −µ1a1 +
c1
2
a2 sinϕ2 +

k1f

2
sinϕ1 (17.a)

a1β̇1 =
3α

8
a3

1 −
c1
2
a2 cosϕ2 −

k1f

2
cosϕ1 (17.b)

ȧ2 = −µ2a2 −
c2

2ω2
a1 sinϕ2 (17.c)

a2β̇2 = − c2
2ω2

a1 cosϕ2 (17.d)

whereϕ1 = σ1t− β1 , ϕ2 = σ2t− β1 + β2 (18)

Eliminating β̇1 and β̇2 from equations (17) using equations (18), we get the
following autonomous system of equations:

ȧ1 = −µ1a1 +
c1
2
a2 sinϕ2 +

k1f

2
sinϕ1 (19.a)

ϕ̇1 = σ1 −
3α

8
a2

1 +
c1
2

a2

a1
cosϕ2 +

k1f

2

1

a1
cosϕ1 (19.b)

ȧ2 = −µ2a2 −
c2

2ω2
a1 sinϕ2 (19.c)
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ϕ̇2 = σ2 −
3α

8
a2

1 +
c1
2

a2

a1
cosϕ2 +

k1f

2

1

a1
cosϕ1 −

c2
2ω2

a1

a2
cosϕ2 (19.d)

The behavior of the system response before and after control can be described by
the obtained the steady state equations from (19), which describe the modulation
of amplitudes and phases of the vibrating system.

3. Equilibrium Solution and stability analysis

The steady state response of both system and controller can be obtained, by
setting ȧ1 = ȧ2 = ϕ̇1 = ϕ̇2 = 0 into equation (19), yield:

µ1a1 =
c1
2
a2 sinϕ2 +

k1f

2
sinϕ1 (20.a)

− σ1a1 +
3α

8
a3

1 =
c1
2
a2 cosϕ2 +

k1f

2
cosϕ1 (20.b)

− µ2a2 =
c2

2ω2
a1 sinϕ2 (20.c)

(σ2 − σ1)a2 =
c2

2ω2
a1 cosϕ2 (20.d)

Eliminating ϕ1 and ϕ2 from equations (20), we get:

c22
4ω2

2

a2
1 = (µ2

2 + (σ2 − σ1)
2
)a2

2 (21)

k2
1f

2

4
a2

1 = (µ1a
2
1 +

c1µ2ω2

c2
a2

2)
2

+ (−σ1a
2
1 +

3α

8
a4

1 −
c1ω2(σ2 − σ1)

c2
a2

2)
2

(22)

The steady state solution of the given system can be obtained by solving the
frequency-response equations (21) and (22) in terms of the system and controller
parameters. The stability of the equilibrium points is studied by checking the
Eigenvalues of the Jacobian matrix. So, let:

an = an1 + an0 and ϕn = ϕn1 + ϕn0; (n = 1, 2) (23)

where an0 and ϕn0 are the steady state solutions for both the system and con-
troller, an1 and ϕn1 are small perturbation about the steady state solutions (an0

and ϕn0). Substituting equations (23) into equations (19), keeping only the linear
terms in an1 and ϕn1, we get the following linearized system:
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ȧ11

ϕ̇11

ȧ21

ϕ̇21

 =


r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44



a11

ϕ11

a21

ϕ21

 (24)

where the above square matrix is the system Jacobian matrix and its coefficients
rij : {i, j = 1, 2, 3, 4} are given in the appendix. The stability of the steady-state
solutions of equations (21) and (22) depends on the Eigenvalues of the Jacobian
matrix. Accordingly, we can be obtained the following characteristic equation:

λ4 + ζ1λ
3 + ζ2λ

2 + ζ3λ+ ζ4 = 0 (25)

where λ denotes the Eigenvalues of the Jacobian matrix and ζ1, ζ2, ζ3, ζ4 are
given in the appendix. According to the Routh-Hurwitz criterion, the equilibrium
solutions ( an0 and ϕn0 ) is asymptotically stable if and only if:

ζ1 > 0 , ζ1ζ2 − ζ3 > 0 , ζ3(ζ1ζ2 − ζ3)− ζ2
1ζ4 > 0 , ζ4 > 0 (26)

4. Numerical Simulations

For the given system parameters, the selected values are given by: µ1 = 0.02, µ2 =
0.001, ω2 = 1, α = 0.894, k1 = 0.5, k2 = 0.547, k3 = 0.447, c1 = c2 = 0.3 and
f = 0.05, unless specifying otherwise. Fig. 2 shows the main system (i.e. mag-
netic levitation system) time history without control when Ω = 1, where the steady
state vibration amplitude is about 0.3394, while the controlled main system and
controller amplitudes time history at Ω = 1 is shown in Fig. 3. For different initial
conditions, we found that the system steady state amplitude is insensitive to initial
conditions. Also from Fig. 3, we see that the system steady state amplitude is
about 0.0015, and the controller effectiveness Ea is about 226. The comparison
between analytical and numerical solution for both the main system and the con-
troller is shown in Figs 4 and 5. A good validation of the frequency response curves
is plotted to compare analytical solution using MSPT method and the numerical
simulation applying Runge-Kutta algorithm. Fig. 6 shows a comparison for the
force response curves of the main system and the controller and we conclude that
both solutions are in a good agreement.

5. Effect of different parameters on the system response

In this section, the behavior of the vibrating system is studied through the effects
of different parameters on the main system and controller. The frequency response
curves for the main system before control application gives open loop case as shown
in Fig. 7, and we find the steady state amplitude is a monotonic increasing function
to the excitation force amplitude. In addition, when the force amplitude increases,
the curve is bent to the right denoting hardening effect and the jump phenomenon
appears clearly due to the domination of the nonlinearity.
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Figure 2. Main system time history without control (Ω = 1)

Figure 3. Main system and controller time histories with control
(Ω = 1)

Figure 4. Frequency response curve for the system without con-
trol at f = 0.05

Fig. 8 illustrates the frequency response curves for the main system with control,
which gives closed loop case. It is found two peaks are produced at the values
σ1 = −0.11 and σ1 = 0.23, so they are creating a bandwidth in-between about 0.44
. In addition, in this figure, the minimum system amplitude occurs at σ1 = 0 and
the most effective operating point for the controller is to work within σ1 = ±0.1
approximately.
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Figure 5. Main system and controller frequency response curves
at f = 0.05

Figure 6. Main system and controller frequency response curves
at σ1 = σ2 = 0

Figure 7. Frequency response curves of the system without con-
trol for different values of f

Figs 9 and 10 show the effects of different values of the control signal gain c1
and the feedback signal gain c2 on the frequency response curves for both the main
system and the controller. It is clear from increasing c1 and c2 that the bandwidth
between the two peaks increases which gives more flexibility for the controller job.
This can increase the safety factor because the value of σ1 may deviate from 0 and
go towards one of the values where the peaks are located. It is to be noticed that
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Figure 8. Frequency response curves of the main system with
control for σ2 = 0

Figure 9. Frequency response curves of the main system and con-
troller at different values of c1

Figure 10. Frequency response curves of the main system and
controller at different values of c2

the peaks values are not affected for the main system by variation of either c1 or
c2.

The effects of different values of the controller linear damping µ2 on the frequency
response curves are demonstrated in Fig. 11. From this figure, we can see that
increasing the parameter µ2 reduces the amplitudes of the two peaks of the main
system and the controller. Also, we have the main system amplitude at σ1 = 0
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Figure 11. Frequency response curves of the main system and
controller at different values of µ2

Figure 12. Frequency response curves of the main system and
controller at different values of σ2

increases slightly when the energy transfer between the main system and controller
decreases. It is also noted that the bandwidth is not affected by changing µ2.

Fig. 12 shows the effects of varying the detuning parameter σ2 on the frequency
response curves of both the system and the controller. We note that the system
amplitude is at its minimum value when −0.1 ≤ σ2 = σ1 ≤ 0.1. We conclude
that if we could tune the natural frequency of controller ω2 to the value of the
measured excitation frequency Ω, we can always get the relation σ2 = σ1 to achieve
a minimum value of the system amplitude.

The force response curves for the main system without and with the control is
shown Fig. 13. From this figure we observe that the relation between the system
amplitude and the excitation force without control is a nonlinear relation which
produces large system amplitudes for a slight increase in the excitation force. When
the control is applied, the relation became horizontal, so increasing the excitation
force largely produces an extremely small change in the system amplitude denoting
a saturation case. On the other hand, the controller amplitude increases linearly
with the excitation force.

6. Conclusions

In this paper, MSPT technique was applied to derive an approximate solution
for the magnetic levitation system which is coupled to an active positive position
feedback (PPF) controller. A system of four first order differential equations was
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Figure 13. Force response curves of the main system and con-
troller at different values of σ1 = σ2 = 0

derived to describe the nonlinear behavior of the amplitudes and phases of the main
system and controller. A stability analysis was performed to determine the stable
and unstable regions of operation for both the main system and the controller and
then, the effects of varying different parameters on them were studied. The analysis
showed that:

(1) After control, two peaks are located but they were separated by a band-
width. This bandwidth can be controlled (widened or narrowed) by con-
trolling the control signal gain c1 and the feedback signal gain c2.

(2) The peaks amplitudes of both the main system and the controller decreases
by increasing the controller-damping coefficient µ2, while the main system
amplitude increases slightly at σ1 = 0. This variation exhibited a case of
saturation for the size of the bandwidth.

(3) For an optimum performance of operation of PPF controller, the natural
frequency of the controller ω2 should be tuned to the measured value of
the excitation frequency Ω. Therefore, we can guarantee the validity of the
relation −0.1 ≤ σ2 = σ1 ≤ 0.1 , which made the amplitudes of both the
main system and the controller at minimum levels.

(4) In case of mistuning, the variation of the detuning parameter σ2 in the
range −0.1 ≤ σ2 ≤ 0.1 was good for the main system amplitude to be at
small values less than 0.055.

(5) The relation between the main system amplitude and the excitation force
became almost horizontal denoting a saturation case for the main system
amplitude while the controller amplitude increased linearly with the exci-
tation force.

In previous work regarding vibration control of the magnetically levitated body
[1], Jo and Yabuno proposed a new type of a nonlinear passive vibration absorber
that was connected to the main system. They designed it at a natural frequency in
the neighborhood of twice that of the main system. They showed experimentally
that the nonlinear vibration absorber has reduced the primary resonance amplitude
by about 45%. This means that the controller effectiveness is about 2. A case of
parametric resonance is studied in [2] for the same model, the steady state ampli-
tude became close to zero by applying the same absorber in [1]. PPF controller
was applied for vibrations of a nonlinear cantilever beam in [14]. El-Ganaini et al.
showed that it is necessary to tune the controller natural frequency to the external
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excitation one. They concluded that the controller effectiveness is about 625.
In the present work, a PPF controller was applied to reduce the vibrations of the
magnetic levitation system shown in Fig. 1. If the natural frequency of the con-
troller ω2 was tuned to the measured value of the excitation frequency Ω, then the
perfect tuning is done (σ1 = σ2) and the system amplitude was at its minimum
level. It was also noticed from Fig. 12 that the best range of minimum system
amplitudes for the perfect tuning is −0.1 ≤ σ2 = σ1 ≤ 0.1 where the controller ef-
fectiveness Ea is about 226. The analysis also revealed that the bandwidth could be
controlled by the control signal gain c1 and the feedback signal gain c2. Increasing
the linear damping of the controller µ2 decreases the system peaks amplitudes but
also increased the minimum main system amplitude slightly. Finally, the relation
between the system amplitude and the excitation force became horizontal near zero
value denoting a saturation case for the system amplitude.

Appendix

r11 = −µ1, r12 =
k1f

2
cosϕ1, r13 =

c1
2

sinϕ2, r14 =
c1
2
a2 cosϕ2,

r21 = −3α

4
a1 −

c1
2

a2

a2
1

cosϕ2 −
k1f

2a2
1

cosϕ1, r22 = −k1f

2a1
sinϕ1,

r23 =
c1

2a1
cosϕ2, r24 = −c1

2

a2

a1
sinϕ2,

r31 = − c2
2ω2

sinϕ2, r32 = 0, r33 = −µ2, r34 = − c2
2ω2

a1 cosϕ2,

r41 = −3α

4
a1 −

c1
2

a2

a2
1

cosϕ2 −
k1f

2a2
1

cosϕ1 −
c2

2ω2a2
cosϕ2, r42 = −k1f

2a1
sinϕ1,

r43 =
c1

2a1
cosϕ2 +

c2
2ω2

a1

a2
2

cosϕ2, r44 = −c1
2

a2

a1
sinϕ2 +

c2
2ω2

a1

a2
sinϕ2

ζ1 = −r11 − r22 − r33 − r44

ζ2 = r33r44 − r21r12 + r11r44 − r42r24 + r11r33 − r31r13 − r41r14 − r32r23 − r34r43

+ r11r22 + r22r33 + r22r44

ζ3 = r31r12r23 + r31r13r44 + r32r23r44 + r11r32r23 + r22r34r43 + r32r43r24 + r31r43r14

+ r21r12r44 + r21r12r33 + r11r42r24 − r11r22r44 − r11r22r33 + r21r32r13 + r31r22r13

+ r41r12r24 + r21r42r14 − r22r33r44 + r41r14r33 + r41r13r34 + r41r22r14 + r42r23r34

+ r42r24r33 − r11r33r44 + r11r34r43

ζ4 = r11r22r33r44 − r11r22r34r43 − r11r32r43r24 − r11r32r23r44 − r11r42r23r34

− r11r42r24r33 − r21r12r33r44 + r21r12r34r43 − r21r32r43r14 − r21r32r13r44

− r21r42r13r34 − r21r42r14r33 − r31r12r23r44 − r31r12r43r24 − r31r22r43r14

− r31r22r13r44 + r31r42r13r24 − r31r42r23r14 − r41r12r23r34 − r41r12r24r33

− r41r22r14r33 − r41r22r13r34 − r41r32r13r24 + r41r32r23r14
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