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GEOMETRIC VIRTUES OF THIRD-ORDER DIFFERENTIAL

EQUATION USING ADMISSIBLE FUNCTIONS IN A COMPLEX

DOMAIN

RABHA W. IBRAHIM

Abstract. We investigate geometric properties of solutions of the following

third-order differential equation:

w′′′(z) + a(z)w′′(z) + b(z)w′(z) + c(z)w(z) = 0,

subject to the initial conditions w(0) = 0, w′(0) = 1 and w′′(0) = 0, where
a(z), b(z) and c(z) are analytic in the open unit disk (OUD). We indicate that
the above differential equation has a univalent and starlike solution in the open
unit disk. We employ the concept of admissible functions and we extend the

study into some complex Banach spaces.

1. Introduction

Recently, the outcomes of the third order have been investigated by a large
number of mathematicians, and they have obtained many results for some special
cases. Sufficient conditions imposed for the boundedness of all solutions of the
equation

w′′′(z) = P (z, w,w′, w′′), (1)

where P is a polynomial whose coefficients are functions in the independent variable
z. Moreover, the existence and the uniqueness of the solutions of (1) established.
This class of differential equations occurs in the flow of thin films of viscous fluid
with a free surface [1]-[4]. Newly, in [5], the author studied the geometry of solutions
of the Chazy′s equation (third order differential equation) in the complex plane,
using semi-completeness of complex manifolds. In [6], the authors discussed the
geometric properties (convexity) of solutions of the initial-value problem which
contains the following third-order linear differential equations:

w′′′(z) +Q(z)w′(z) = 0, (2)

subject to the initial conditions w(0) = 0 and w′(0) = 1.

2010 Mathematics Subject Classification. 30C45.

Key words and phrases. analytic function; univalent function; unit disk.
Submitted Nov. 5, 2017.

101



102 RABHA W. IBRAHIM EJMAA-2018/6(2)

In this paper, We propose some geometric properties of solutions of the following
third-order differential equation:

w′′′(z) + a(z)w′′(z) + b(z)w′(z) + c(z)w(z) = 0, (3)

subject to the initial conditions w(0) = 0, w′(0) = 1 and w′′(0) = 0, where a(z), b(z)
and c(z) are analytic in the open unit disk. We indicate that equation (3) has
a univalent and starlike solution in OUD. We utilize the concept of admissible
functions.

The class of admissible functions in a complex domain plays an important role in
the theory of differential subordination. This function implies dominants of various
differential subordinations and differential inequalities that would be difficult to
find directly. There are diverse processes to utilize this type of functions; the first
process concerns with the equation of the boundary of the complex domain Ω is
known. The second process deals with the geometry of Ω. While the third process
involves subordination chains. Moreover, this class of functions is extended to a
complex Banach space to have extra applications [7]. Applications are illustrated to
determine the Ulam stability of fractional differential equations in complex domain
[8]-[10]. Recently, Antonino & Miller presented applications of results to third-order
differential inequalities, third-order differential subordinations, univalent functions
and Bessel functions [11].

2. Preliminaries

Let H[a, n] be the class of all analytic functions in OUD U := {ζ ∈ C : |ζ| < 1}
of the form ϕ(ζ) = a+ φnζ

n + φn+1ζ
n+1 + ... with H[0, 1] ≡ H0. And let A be the

class of functions ϕ(ζ) formalized by

ϕ(ζ) = ζ +
∞∑

n=2

φnζ
n, ζ ∈ U. (4)

In addition, consider S and C are subclasses of A including functions which are,
respectively, univalent and convex in U. It is well known that; if the function ϕ(ζ)
given by (4) is in the class S, then |φn| ≤ n, n ∈ N\{1}, where N := {1, 2, 3, ...}.
Equality holds for the Koebe function ϕ(ζ) = ζ

(1−ζ)2 , ζ ∈ U. Also, if the function

ϕ(ζ) given by (1) is in the class C, then |φn| ≤ 1, n ∈ N. Equality holds for the

function ϕ(ζ) = ζ
1−ζ , ζ ∈ U.

A function ϕ ∈ A is called starlike of order ν if it satisfies the following inequality

ℜ{ζϕ
′(ζ)

ϕ(ζ)
} > ν, (ζ ∈ U)

for some 0 ≤ ν < 1. We symbolize this class by S∗(ν).

A function ϕ ∈ A is called convex of order ν if it satisfies the following inequality

ℜ{ζϕ
′′(ζ)

ϕ′(ζ)
+ 1} > ν, (ζ ∈ U)

for some 0 ≤ ν < 1. We typify this class by C(ν). Note that ϕ ∈ C(ν) if and only if
ζϕ′ ∈ S∗(ν).
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Definition 1 Let Ω,Σ be two sets in C, let q be analytic in U such that q(0) = a
and let Φ(r, s, t; ζ) : C3 × U → C. If a function q satisfies

{Φ(q(ζ), ζq′(ζ), ζ2q′′(ζ); ζ) | ζ ∈ U} ⊂ Ω ⇒ q(U) ⊂ Σ (5)

then Φ is called an admissible function. We symbolize this class by Φn[Ω, q]. As a
special case, if |a| < M, M > 0, we put Φn[Ω, q] ≡ Φn[Ω,M, a] and if Ω = Σ, we
signify Φn[Ω,M, a] ≡ Φn[M,a].

For example, let q(z) = 1+z
1−z , z ∈ U, Ω = q(U) and ϕ(r, s, t; z) = r2s2. A simple

calculation yields ϕ ∈ Φ[q(U), q], where

ℜ{(p(z))2.(zp′(z))2} > 0,

for some analytic function p(z).

The following result can be located in [7].

Theorem 1 Let p ∈ H[a, n]. If Φ ∈ Φn[M,a], then

|Φ(p(ζ), ζp′(ζ), ζ2p′′(ζ); ζ)| < M ⇒ |p(z)| < M.

Definition 2 Let HM be the set of complex functions Φ(u, v, w) ∈ Φn[M,a] satis-
fying:

(i) Φ(u, v, w) is continuous in a domain D ⊂ C× C× C,

(ii) (0,O) ∈ D and |Φ(0,O)| < M ,

(iii) |Φ(Meiθ,Keiθ, Leiθ)| ≥M when (Meiθ,Keiθ, Leiθ) ∈ D, θ is real and K,L ≥
M .

Example 3 Obviously that the following function Φ(u, v, w) is in HM : Φ(u, v) =
ρu+ v + w where 0 ≤ ρ < 1 and D = C× C× C.

Definition 4 Let Φ ∈ HM with corresponding domain D . We indicate by BM (Φ)
those functions w(z) = w1z + w2z

2 + · · · which are analytic in U gratifying

(i) (w(z), zw′(z), z2w′′(z)) ∈ D ,

(ii) |Φ(w(z), zw′(z), z2w′′(z))| < M (z ∈ U).

Example 5 Clearly, that the set BM (Φ) is not empty since for any Φ ∈ HM it is
true that ω(z) = ω1z ∈ BM (Φ) for |ω1| sufficiently small depending on Φ.

Definition 6 [7] Let X,Y be complex Banach spaces. The class of admissible
functions G′(X,Y ), involves of those functions ϱ : X2 × U → Y that achieve the
admissibility conditions:

∥ϱ(r, ks, ; z)∥ ≥ 1, when ∥r∥ = 1, ∥s∥ = 1, k ≥ 1.

Definition 7 [8] Let X,Y be complex Banach spaces. The extend class of admissi-
ble functions G′′(X,Y ), encompasses of those functions ϱ : X3 ×U → Y that fulfill
the admissibility conditions:



104 RABHA W. IBRAHIM EJMAA-2018/6(2)

∥ϱ(r, ks, lt; z)∥ ≥ 1, when ∥r∥ = 1, ∥s∥ = 1, ∥t∥ = 1,

( z ∈ U, k ≥ 1, l ≥ 1).

We need the following results:

Lemma 8[7] Let ϱ ∈ G′(X,Y ). If p : U → X is the holomorphic vector-valued
function defined in U with p(0) = Θ, then

∥∥∥ϱ(p(z), zp′(z)); z)∥∥∥ < 1 =⇒ ∥p(z)∥ < 1.

Lemma 9 [8] Let ϱ ∈ G′′(X,Y ). If p : U → X is the holomorphic vector-valued
function defined in the unit disk U with p(0) = Θ, then

∥∥∥ϱ(p(z), zp′(z), z2p′′(z); z)∥∥∥ < 1 =⇒ ∥p(z)∥ < 1.

Lemmas 8 and 9, allow us to solve first and second order differential inequalities
in Banach spaces respectively. Moreover, they employed to investigate Ulam sta-
bility for some classes of complex fractional differential equations in sense of the
Srivastava-Owa operators [9, 10]. Note that the second differential equation was
studied by Saitoh [11, 12] using different approach.

3. Geometric properties

Our first main result is the following theorem.

Theorem 10 Let a(z), b(z) and c(z) be analytic in U, with

b(z) =
a2(z)

4
+

3a′(z)

2

and

c(z) =
a(z)b(z)

2
− a3(z)

8
+
a′′(z)

2
− a(z)a′(z)

4
.

Let w(z)(z ∈ U) be the solution of (3) with w(0) = 0, w?(0) = 1, w′′(0) = 0. If
|a(z)| < 1 then w(z) is starlike in U .

Proof. To find a relation on a(z), b(z) and c(z) we define the transformation
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w(z) = exp(−1

2

∫ z

0

a(ξ)dξ)v(z),

w′(z) = exp(−1

2

∫ z

0

a(ξ)dξ)v′(z)− exp(−1

2

∫ z

0

a(ξ)dξ)v(z).
a(z)

2
,

w′′(z) = exp(−1

2

∫ z

0

a(ξ)dξ)v′′(z)− exp(−1

2

∫ z

0

a(ξ)dξ)v′(z).a(z)

+ exp(−1

2

∫ z

0

a(ξ)dξ)v(z).(
a2(z)

4
− a′(z)

2
)

w′′′(z) = exp(−1

2

∫ z

0

a(ξ)dξ)v′′′(z)− exp(−1

2

∫ z

0

a(ξ)dξ)v′′(z).
3a(z)

2

+ exp(−1

2

∫ z

0

a(ξ)dξ)v′(z).(
3a2(z)

4
− 3a′(z)

2
)

+ exp(−1

2

∫ z

0

a(ξ)dξ)v(z)(
3a(z)a′(z)

4
− a′′(z)

2
− a3(z)

8
).

(6)

This reduces (3) into the form

v′′′(z)− a(z)

2
v′′(z) = 0. (7)

Now by letting

u(z) =
zv′(z)

v(z)
− 1,

we obtain

|Φ(u, zu′, z2u′′; z)| < 1, z ∈ U,

where Φ(u, zu′, z2u′′; z) = z2u′′(z)+ zu′(z)−u2(z)− 3u(z). It is clear that Φ ∈ H1,
where

(i) Φ(u, v, w) is continuous in a domain D ⊂ C× C× C,

(ii) (0,O) ∈ D and |Φ(0,O)| < 1 ,

(iii) |Φ(eiθ,Keiθ, Leiθ)| ≥ 1 when (eiθ,Keiθ, Leiθ) ∈ D, θ is real and K,L ≥ 1. By
Theorem 2.1, we receive that

|u(z)| < 1, z ∈ U.

Thus, we conclude that

|zv
′(z)

v(z)
− 1| < 1 (z ∈ ∆).

This yields that ℜ{ zv′(z)
v(z) } > 0. Since

v(z) = exp(
1

2

∫ z

0

a(ξ)dξ)w(z),

then logarithmically differentiating of the last assertion, implies

zw′(z)

w(z)
=
zv′(z)

v(z)
− z

2
a(z), |a(z)| < 1.
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Hence ℜ{ zw′(z)
w(z) } > 0 and consequently, w(z) is starlike in U. This completes the

proof.

Example 11 Let a(z) = z in (3), then the equation has a starlike solution w(z) in
U of the form

w(z) = exp(−1/4 ∗ z2) ∗ z, z ∈ U.

Next, we discuss the starlikeness of solution when a(z) is a constant function. Then

in view of Theorem 10, this leads that b(z) = a2

4 and c(z) = 0. Therefore, we have

w′′′(z) + aw′′(z) +
a2

4
w′(z) = 0, (8)

subject to the initial conditions w(0) = 0, w′(0) = 1 and w′′(0) = 0. We have the
following result:

Theorem 12 Let |a| < 1 and w(z)(z ∈ U) be the solution of (8) with w(0) = 0,
w?(0) = 1, w′′(0) = 0. Then w(z) is starlike in U .

Proof. By putting

ω(z) =
zw′(z)

w(z)
− 1,

we obtain

|Ψ(ω, zω′, z2ω′′; z)| < 1

4
, z ∈ U,

where Ψ(ω, zω′, z2ω′′; z) = −a2

4 . It is clear that Ψ ∈ H 1
4
, where

(i) Ψ(., ., .) is continuous in a domain D ⊂ C× C× C,
(ii) (0,O) ∈ D and |Ψ(0,O)| < 1

4 ,

(iii) |Ψ(eiθ,Keiθ, Leiθ)| ≥ 1
4 when (eiθ,Keiθ, Leiθ) ∈ D, θ is real and K,L ≥ 1

4 . By
Theorem 1, we get

|ω(z)| < 1, z ∈ U.

Thus, we conclude that

|zw
′(z)

w(z)
− 1| < 1 (z ∈ ∆).

This implies that ℜ{ zw′(z)
w(z) } > 0 and completes the proof.

Example 13 Let a = 1 in [8], then the equation

w′′′(z) + w′′(z) +
1

4
w′(z) = 0

has a starlike solution in U which takes the form

w(z) = 4− 4 ∗ exp(−1/2 ∗ z)− exp(−1/2 ∗ z) ∗ z, z ∈ U.
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4. Bounded solutions

In this section, we discuss the boundedness of solutions in complex Banach spaces
using Lemma 8 and Lemma 9. Consider (3) in complex Banach spaces.

Theorem 14 Let a, b : U → C be complex valued functions. And let w : U → X,
(X is a complex Banach space) be a holomorphic vector-valued function satisfying
the equation

w′′′(z) + a(z)w′′(z) + b(z)w′(z) = 0 (9)

and defined in U with w(0) = Θ, w′ ̸= 0. If |b(z)| < 1 then w(z) is bounded in U .

Proof. By utilizing the transform

f(z) =
zw′′(z)

w′(z)
,

(9) reduces to the form

zf ′(z) + (za(z)− 1)f(z) + f2(z) = −z2b(z), z ∈ U.

Equivalently to

Φ(f(z), zf ′(z); z) = −z2b(z), z ∈ U,

where Φ satisfies Definition 6 for some k ≥ 1. Moreover, it fulfills that

∥Φ(f(z), zf ′(z); z)∥ ≤ |b(z)| < 1, z ∈ U.

In view of Lemma 8 we have ∥f(z)∥ < 1, this yields that

∥z
2w′′(z)

zw′(z)
∥ < 1.

If we let φ(w, zw′(z), z2w′′(z); z) := z2w′′(z)
zw′(z) then φ ∈ G′′(X,Y ) for sufficient k and

ℓ. Thus according to Lemma 9, we have ∥w∥ < 1 in the open unit disk U and
consequently it is bounded.

Theorem 15 Let a, b, c : U → C be complex valued functions. And let w : U → X,
(X is a complex Banach space) be a holomorphic vector-valued function satisfied
equation (3) and defined in U with w(0) = Θ. If |c(z)| < 1 then w(z) is bounded
in U .

Proof. By employing the transform

f(z) =
zw′(z)

w(z)
,

(3) implies that

z2f ′′(z)−zf ′(z)+F (f, f2, f3)+za(z)(zf ′(z)−f(z)+f2)+z2b(z)f(z) = −z2c(z), z ∈ U.

Equivalently to

Ψ(f(z), zf ′(z), z2f ′′; z) = −z2c(z), z ∈ U,

where Ψ satisfies Definition 7 for some k, ℓ ≥ 1. Furthermore, it satisfies

∥Ψ(f(z), zf ′(z), z2f ′′; z)∥ < 1, z ∈ U.
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Hence, in virtue of Lemma 9, we receive ∥f(z)∥ < 1, this implies that

∥zw
′(z)

w(z)
∥ < 1.

If we put ψ(w, zw′(z); z) := zw′(z)
w(z) then ψ ∈ G′(X,Y ) for sufficient k and ℓ. There-

fore, according to Lemma 8, we have ∥w∥ < 1 in the open unit disk U and conse-
quently it is bounded.

Example 16 Let a(z) = b(z) = 1
4 in Eq. (9), then the solution takes the form

w(z) = 1+7/15
√
(15)exp(−1/8z)sin(1/8

√
(15)z)−exp(−1/8z)cos(1/8

√
(15)z), z ∈ U.

Example 17 Let a(z) = b(z) = 0, c(z) = 1
4 in (3), then the solution takes the form

w(z) = −1/3 ∗ 2(2/3) ∗ exp(−1/2 ∗ 2(1/3) ∗ z)

+ 1/3 ∗
√

(3) ∗ 2(2/3) ∗ exp(1/4 ∗ 2(1/3) ∗ z) ∗ sin(1/4 ∗
√
(3)

∗ 2(1/3) ∗ z) + 1/3 ∗ 2(2/3) ∗ exp(1/4 ∗ 2(1/3) ∗ z) ∗ cos(1/4 ∗
√
(3) ∗ 2(1/3) ∗ z), z ∈ U.

5. Conclusion

We investigated geometric properties of solutions of third-order differential equa-
tion in the open unit disk. We showed that this differential equation has a univalent
and starlike solution in the open unit disk. We applied some kinds of admissible
functions and extended the study into some complex Banach spaces.
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