CERTAIN PROPERTIES OF A NEW SUBCLASS OF p-VALENTLY CLOSE TO CONVEX FUNCTIONS

PREM PRATAP VYAS AND SHASHI KANT

Abstract

In the present paper we introduce and investigate an intresting subclass $\mathcal{K}_{p}^{(k)}(\alpha, \beta)$ analytic and p-valently close to convex functions in the open unit disk \mathbb{U}. For functions belonging to $\mathcal{K}_{p}^{(k)}(\alpha, \beta)$, we derive several properties coefficient estimates, sufficient condition, distortion theorem and inclusion relationships.

1. Introduction and definitions

Let \mathcal{A}_{p} denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad(p \in N) \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk, $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$. In particular, we write $\mathcal{A}_{1}=\mathcal{A}$.
For any two analytic functions f and g in \mathbb{U}, we say that f is subordinate to g in \mathbb{U}, written as $f(z) \prec g(z)$ if there exist a schwarz function $w(z)$ such that $f(z)=g(w(z))$, for $z \in \mathbb{U}$. In particular, if g is univalent in \mathbb{U}, then f is subordinate to g iff $f(0)=g(0)$ and $f(U) \subset g(U)$.
A function $f \in \mathcal{A}_{p}$, is said to be p-valently starlike of order $\gamma(0 \leq \gamma<p)$ in \mathbb{U} if it satisfies the inequality [5]

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\gamma \quad(z \in \mathbb{U})
$$

or equivalently

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{p+(p-2 \gamma) z}{1-z} \quad(z \in \mathbb{U}) .
$$

The class of all p-valent starlike functions of order γ in \mathbb{U} is denoted by $\mathcal{S}_{p}^{*}(\gamma)$. Also, we denote that

$$
\mathcal{S}_{p}^{*}(0)=\mathcal{S}_{p}^{*}, \quad \mathcal{S}_{1}^{*}(\gamma)=\mathcal{S}^{*}(\gamma) \quad \text { and } \quad \mathcal{S}_{1}^{*}(0)=\mathcal{S}^{*}
$$

2010 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic function, close to convex functions, Coefficient estimates, sufficient condition, distortion theorem, inclusion relationships.

Submitted Dec. 18, 2017.

A function $f \in \mathcal{A}_{p}$, is said to be p-valently close-to-convex of order $\gamma(0 \leq \gamma<p)$ in \mathbb{U} if $g \in \mathcal{S}_{p}^{*}(\gamma)$ and satisfies the inequality [9]

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{g(z)}\right)>\gamma \quad(z \in \mathbb{U})
$$

or equivalently

$$
\frac{z f^{\prime}(z)}{g(z)} \prec \frac{p+(p-2 \gamma) z}{1-z} \quad(z \in \mathbb{U})
$$

The class of all p-valent close-to-convex functions of order γ in \mathbb{U} is denoted by $\mathcal{K}_{p}(\gamma)$. Also, we denote that

$$
\mathcal{K}_{p}(0)=\mathcal{K}_{p}, \quad \mathcal{K}_{1}(\gamma)=\mathcal{K}(\gamma) \quad \text { and } \quad \mathcal{K}_{1}(0)=\mathcal{K} .
$$

Recently, Bulut [3] discussed a class $\mathcal{K}_{s}^{(k)}(\gamma, p)$ for analytic and p-valently close-toconvex functions. A function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{K}_{s}^{(k)}(\gamma, p)$ if there exist a function $g \in S_{p}^{*}\left(\frac{(k-1) p}{k}\right)(k \in N$ is a fixed integer $)$, such that

$$
\operatorname{Re}\left(\frac{z^{(k-1) p+1} f^{\prime}(z)}{g_{k}(z)}\right)>\gamma \quad(z \in \mathbb{U} ; 0 \leq \gamma<p)
$$

where g_{k} is defined by the equality

$$
\begin{equation*}
g_{k}(z)=\prod_{v=0}^{k-1} \varepsilon^{-v p} g\left(\varepsilon^{v} z\right) ; \quad \varepsilon=e^{\frac{2 \pi \iota}{k}} \tag{2}
\end{equation*}
$$

Here assuming $g \in S_{p}^{*}\left(\frac{(k-1) p}{k}\right)$ makes $\frac{g_{k}(z)}{z^{(k-1) p}}$ a p-valant starlike function which in turn implies the close-to-convexity of f. By simple calculution, we see that $f(z) \in$ $\mathcal{K}_{s}^{(k)}(\gamma, p)$ if and only if

$$
\begin{equation*}
\left|\frac{z^{(k-1) p+1} f^{\prime}(z)}{g_{k}(z)}-p\right|<\left|\frac{z^{(k-1) p+1} f^{\prime}(z)}{g_{k}(z)}+p-2 \gamma\right| \tag{3}
\end{equation*}
$$

Recently several similar classes of $\mathcal{K}_{s}^{(k)}(\gamma, p)$ for analytic and univalent function have been defined and investigated, some of them we refer to $[4,7,11,12,13,14,15,17]$. Motivated essentially by the above mentioned class $\mathcal{K}_{s}^{(k)}(\gamma, p)$ and the above refered works for analytic and univalent functions, we now introduce a new class for p-valent analytic function in the following manner:
Definition 1. For $0 \leq \alpha \leq 1$ and $0<\beta \leq 1$, a function $f \in \mathcal{A}_{p}$ is said to be in the class $\mathcal{K}_{p}^{(k)}(\alpha, \beta)$, if there exist a function $g \in S_{p}^{*}\left(\frac{(k-1) p}{k}\right)(k \in N$ is a fixed integer $)$, such that

$$
\begin{equation*}
\left|\frac{z^{(k-1) p+1} f^{\prime}(z)}{g_{k}(z)}-p\right|<\beta\left|\frac{\alpha z^{(k-1) p+1} f^{\prime}(z)}{g_{k}(z)}+p\right| \tag{4}
\end{equation*}
$$

where g_{k} is defined by the equality (2).
Remark.(i) For $p=1$, we get the class $\mathcal{K}_{1}^{(k)}(\alpha, \beta)$ studied by Wang [16]. (ii) For $p=1$ and $k=2$, we get the class $\mathcal{K}_{1}^{(2)}(\alpha, \beta)$ studied by Wang [15].

In the present paper, we derive several properties including coefficient estimates, sufficient condition, distortion theorem and inclusion relationships for function belonging to the class $\mathcal{K}_{p}^{(k)}(\alpha, \beta)$.
In order to prove our main result for the function class $\mathcal{K}_{p}^{(k)}(\alpha, \beta)$, we need the
following lemmas:
Lemma 1. [3] If

$$
g(z)=z^{p}+\sum_{n=1}^{\infty} b_{p+n} z^{p+n} \in S_{p}^{*}\left(\frac{(k-1) p}{k}\right)
$$

then

$$
\begin{equation*}
G(z)=\frac{g_{k}(z)}{z^{(k-1) p}}=z^{p}+\sum_{n=1}^{\infty} B_{p+n} z^{p+n} \in S_{p}^{*} \tag{5}
\end{equation*}
$$

where g_{k} is given by (2).
Lemma 2. [2] Let $G(z) \in S_{p}^{*}$ given by (5) and μ be a complex number, then

$$
\left|B_{p+2}-\mu B_{p+1}^{2}\right| \leq p(\max \{1,|1+2 p(1-2 \mu)|\}) .
$$

Let Ω be class of analytic functions of the form:

$$
\begin{equation*}
w(z)=w_{1} z+w_{2} z^{2}+\ldots \quad(z \in \mathbb{U}) \tag{6}
\end{equation*}
$$

in the unit disk \mathbb{U} satisfying the condition $|w(z)|<1$.
Lemma 3. ([6], p.10) If $w(z) \in \Omega$, then for any complex number μ :

$$
\left|w_{1}\right| \leq 1,\left|w_{2}-\mu w_{1}^{2}\right| \leq 1+(|\mu|-1)\left|w_{1}^{2}\right| \leq \max \{1,|\mu|\} .
$$

The result is sharp for the functions $w(z)=z$ or $w(z)=z^{2}$.
Lemma 4. Let the function $K(z)=p+k_{1} z+k_{2} z^{2}+k_{3} z^{3}+\ldots \quad(z \in \mathbb{U})$ be analytic in the unit disk \mathbb{U}, and satisfies the condition

$$
\left|\frac{K(z)-p}{\alpha K(z)+p}\right|<\beta \quad(z \in \mathbb{U})
$$

for $0 \leq \alpha \leq 1$ and $0<\beta \leq 1$, if and only if there exist an analytic function ϕ in the unit disk \mathbb{U}, such that $|\phi(z)| \leq \beta \quad(z \in \mathbb{U})$, and

$$
K(z)=\frac{p-p z \phi(z)}{1+\alpha z \phi(z)}, \quad(z \in \mathbb{U})
$$

Proof. Assume that the function

$$
\frac{z f^{\prime}(z)}{G(z)}=p+k_{1} z+k_{2} z^{2}+k_{3} z^{3}+\ldots=K(z) \quad(z \in \mathbb{U})
$$

satisfies the condition

$$
\left|\frac{K(z)-p}{\alpha K(z)+p}\right|<\beta \quad(z \in \mathbb{U})
$$

Setting

$$
k(z)=\frac{p-K(z)}{p+\alpha K(z)}
$$

we see that the function $k(z)$ is analytic in \mathbb{U}, satisfies the inequality $|k(z)|<\beta$ for $z \in \mathbb{U}$ and $k(0)=0$. Now, by using schwarz's lemma, we get that the function $k(z)$ has of the form $k(z)=z \phi(z)$, where $\phi(z)$ is analytic in \mathbb{U} and satisfies $|\phi(z)| \leq \beta$ for $z \in \mathbb{U}$. Thus, we obtain

$$
K(z)=\frac{p-p k(z)}{1+\alpha k(z)}=\frac{p-p z \phi(z)}{1+\alpha z \phi(z)}
$$

Conversely, if

$$
K(z)=\frac{p-p z \phi(z)}{1+\alpha z \phi(z)}
$$

and $|\phi(z)| \leq \beta$ for $z \in \mathbb{U}$, then K is analytic in the unit disk \mathbb{U}. so we get

$$
\left|\frac{K(z)-p}{\alpha K(z)+p}\right|=|z \phi(z)| \leq \beta|z|<\beta \quad(z \in \mathbb{U})
$$

which completes the proof of our lemma.
Lemma 5. [8] Let $-1 \leq B_{2} \leq B_{1}<A_{1} \leq A_{2} \leq 1$. Then

$$
\frac{1+A_{1} z}{1+B_{1} z} \prec \frac{1+A_{2} z}{1+B_{2} z}
$$

Let $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ and $g(z)=\Sigma_{n=1}^{\infty} b_{n} z^{n}$ be two analytic functions defined in \mathbb{D}. Then there Hadamard product (or convolution) is the function $(f * g)(z)$ defined by

$$
(f * g)(z)=\Sigma_{n=1}^{\infty} a_{n} b_{n} z^{n} .
$$

The classes of starlike and convex functions are closed under convolution with convex function. The following lemma is required for our next result.
Lemma 6. [10] Let ψ and ϕ be convex in \mathbb{U} and suppose $f \prec \psi$, then

$$
f * \phi=\psi * \phi
$$

2. Main Results

First of all, we show in which way our class is associated with the appropriate subordination.
Theorem 1. A function $f(z) \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$ if and only if there exits $g_{k}(z)$ satisfying the condition (2) such that

$$
\begin{equation*}
\frac{1}{p} \frac{z f^{\prime}(z)}{G(z)} \prec \frac{1+\beta z}{1-\alpha \beta z} \quad(z \in \mathbb{U}) \tag{7}
\end{equation*}
$$

where $\mathrm{G}(\mathrm{z})$ is given by (5).
Proof. Let $f(z) \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$. Then, for $\alpha \neq 1$ and $\beta \neq 1$, squaring and expanding both sides of (4), we see that the region of $\frac{1}{p} \frac{z f^{\prime}(z)}{G(z)}$ for $z \in \mathbb{U}$ is contained in the disk \mathbf{C} whose center is $\frac{\left(1+\alpha \beta^{2}\right)}{\left(1-\alpha^{2} \beta^{2}\right)}$ and radius is $\frac{[\beta(1+\alpha)]}{\left(1-\alpha^{2} \beta^{2}\right)}$. Since $q(z)=\frac{1+\beta z}{1-\alpha \beta z}$ maps the unit disk \mathbb{U} to the disk \mathbf{C} and $q(z)$ is univalent in \mathbb{U}, we obtain the relation (7). Conversely, assume that the relation (7) holds true. Then we have

$$
\begin{aligned}
\frac{1}{p} \frac{z f^{\prime}(z)}{G(z)} & \prec \frac{1+\beta z}{1-\alpha \beta z} \\
(0 \leq \alpha \leq 1,0 & <\beta \leq 1 ; z \in \mathbb{U})
\end{aligned}
$$

where $w(z)$ is analytic in $\mathbb{U}, w(0)=0$ and $|w(z)|<1$ for $z \in \mathbb{U}$. Therefore from the above equation, we obtain the inequality (4), that is, $f(z) \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$.
Theorem 2. Let $0 \leq \alpha \leq 1,0<\beta \leq 1, f$ given by (1) and $g \in \mathcal{S}_{p}^{*}\left(\frac{(k-1) p}{k}\right)$ are such that the condition (4) holds. Then, for $n \geq 1$, we have
$\left|m a_{m}-p B_{m}\right|^{2}-(1+\alpha)^{2} \beta^{2} p^{2} \leq \sum_{n=1}^{m-1}\left\{\left(\alpha^{2} \beta^{2}-1\right) n^{2}\left|a_{n}\right|^{2}+\left(\beta^{2}-1\right) p^{2}\left|B_{n}\right|^{2}+2 p\left(\alpha \beta^{2}+1\right) n\left|a_{n} B_{n}\right|\right\}$
where the coefficients B_{n} are given in (5).
Proof. Suppose that the condition (4) is satisfied then by lemma 4, we have

$$
\frac{z f^{\prime}(z)}{G(z)}=\frac{p-p z \phi(z)}{1+\alpha z \phi(z)} \quad(z \in \mathbb{U})
$$

where ϕ is an analytic functions in $\mathbb{U}, \phi(z) \leq 1$ for $z \in \mathbb{U}$ and $\mathrm{G}(\mathrm{z})$ is given by (5). From the above equality, we obtain that

$$
\begin{equation*}
\left[\alpha z f^{\prime}(z)+p G(z)\right] z \phi(z)=p G(z)-z f^{\prime}(z) \tag{9}
\end{equation*}
$$

Now, we put

$$
z \phi(z)=\sum_{n=1}^{\infty} t_{n} z^{n} \quad(z \in \mathbb{U})
$$

Thus from (9), we find that

$$
\begin{gather*}
\left((1+\alpha) p+\sum_{n=1}^{\infty} \alpha(p+n) a_{p+n} z^{n}+p \sum_{n=1}^{\infty} B_{p+n} z^{n}\right) \sum_{n=1}^{\infty} t_{n} z^{n} \\
=p \sum_{n=1}^{\infty} B_{p+n} z^{n}-\sum_{n=1}^{\infty}(p+n) a_{p+n} z^{n} \tag{10}
\end{gather*}
$$

Equating the coefficient of z^{m} in (10), we have
$p B_{p+m}-(p+m) a_{p+m}=(1+\alpha) p t_{m}+\left(\alpha(p+1) a_{p+1}+p B_{p+1}\right) t_{m-1}+\ldots+\left(\alpha(p+m-1) a_{p+m-1}+p B_{p+m-1}\right) t_{1}$
which shows that $p B_{p+n}-(p+n) a_{p+n}$ on the right hand side of (10) depends only on $a_{p+1}, B_{p+1}, a_{p+2}, B_{p+2}, \ldots, a_{p+n-1}, B_{p+n-1}$, of left-hand side. Hence, for $n \geq 1$, we can write as

$$
\begin{equation*}
\left((1+\alpha) p+\sum_{n=1}^{m-1}\left(\alpha n a_{n}+p B_{n}\right) z^{n}\right) z \phi(z)=\sum_{n=1}^{m}\left(p B_{n}-n a_{n}\right) z^{n}+\sum_{n=m+1}^{\infty} c_{n} z^{n} \tag{11}
\end{equation*}
$$

Using the fact that $|z \phi(z)| \leq \beta|z|<\beta$ for all $z \in \mathbb{U}$ in (11), this reduce to inequality

$$
\left|(1+\alpha) p+\sum_{n=1}^{m-1}\left(\alpha n a_{n}+p B_{n}\right) z^{n}\right| \beta>\left|\sum_{n=1}^{m}\left(p B_{n}-n a_{n}\right) z^{n}+\sum_{n=m+1}^{\infty} c_{n} z^{n}\right| .
$$

Then squaring the above inequality and integrating along $|z|=r<1$, we obtain

$$
\begin{aligned}
& \beta^{2} \int_{0}^{2 \pi}\left|(1+\alpha) p+\sum_{n=1}^{m-1}\left(\alpha n a_{n}+p B_{n}\right) r^{n} e^{i n \theta}\right|^{2} d \theta \\
> & \int_{0}^{2 \pi}\left|\sum_{n=1}^{m}\left(p B_{n}-n a_{n}\right) r^{n} e^{i n \theta}+\sum_{n=m+1}^{\infty} c_{n} r^{n} e^{i n \theta}\right|^{2} d \theta .
\end{aligned}
$$

Using now the Paraseval's inequality, we obtain
$\beta^{2}\left((1+\alpha)^{2} p^{2}+\sum_{n=1}^{m-1}\left|\alpha n a_{n}+p B_{n}\right|^{2} r^{2 n}\right)>\sum_{n=1}^{m}\left|p B_{n}-n a_{n}\right|^{2} r^{2 n}+\sum_{n=m+1}^{\infty}\left|c_{n}\right|^{2} r^{2 n}$.
Letting $r \rightarrow 1$ in this inequality, we get

$$
\sum_{n=1}^{m}\left|n a_{n}-p B_{n}\right|^{2} \leq \beta^{2}\left((1+\alpha)^{2} p^{2}+\sum_{n=1}^{m-1}\left|\alpha n a_{n}+p B_{n}\right|^{2}\right)
$$

Hence we deduce that

$$
\left|m a_{m}-p B_{m}\right|^{2}-(1+\alpha)^{2} \beta^{2} p^{2} \leq \sum_{n=1}^{m-1}\left\{\left(\alpha^{2} \beta^{2}-1\right) n^{2}\left|a_{n}\right|^{2}+\left(\beta^{2}-1\right) p^{2}\left|B_{n}\right|^{2}+2 p\left(\alpha \beta^{2}+1\right) n\left|a_{n} B_{n}\right|\right\}
$$

and thus we obtain the inequality (8). Which completes the proof of Theorem 2.
Theorem 3. Let $0 \leq \alpha \leq 1,0<\beta \leq 1, f$ given by (1) and $g \in \mathcal{S}_{p}^{*}\left(\frac{(k-1) p}{k}\right)$ such that

$$
\begin{equation*}
(1+\alpha \beta) \sum_{n=1}^{\infty}(p+n)\left|a_{p+n}\right|+(1+\beta) p \sum_{n=1}^{\infty}\left|B_{p+n}\right|<(1+\alpha) \beta p \tag{12}
\end{equation*}
$$

where the coefficients B_{p+n} are given by (5), then $f \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$.
Proof. For f given by (1)) and g_{k} defined by (2), we set

$$
\begin{gathered}
\Lambda=\left|z f^{\prime}(z)-p \frac{g_{k}(z)}{z^{(k-1) p}}\right|-\beta\left|\alpha z f^{\prime}(z)+p \frac{g_{k}(z)}{z^{(k-1) p}}\right| \\
=\left|\sum_{n=1}^{\infty}(p+n) a_{p+n} z^{p+n}-p \sum_{n=1}^{\infty} B_{p+n} z^{p+n}\right|-\beta\left|(1+\alpha) p z^{p}+\alpha \sum_{n=1}^{\infty}(p+n) a_{p+n} z^{p+n}+p \sum_{n=1}^{\infty} B_{p+n} z^{p+n}\right| \\
\Lambda \leq \sum_{n=1}^{\infty}(p+n)\left|a_{p+n}\right||z|^{p+n}+p \sum_{n=1}^{\infty}\left|B_{p+n}\right||z|^{p+n} \\
=-(1+\alpha) \beta p|z|^{p}+(1+\alpha \beta) \sum_{n=1}^{\infty}(p+n)\left|a_{p+n}\right||z|^{p+n}+(1+\beta) p \sum_{n=1}^{\infty}\left|B_{p+n}\right||z|^{p+n} \\
\left.-\left.\beta\right|^{p}-\alpha \sum_{n=1}^{\infty}(p+n)\left|a_{p+n}\right||z|^{p+n}-p \sum_{n=1}^{\infty}\left|B_{p+n}\right||z|^{p+n}\right) \\
=\left(-(1+\alpha) \beta p+(1+\alpha \beta) \sum_{n=1}^{\infty}(p+n)\left|a_{p+n}\right|+(1+\beta) p \sum_{n=1}^{\infty}\left|B_{p+n}\right|\right)|z|^{p} .
\end{gathered}
$$

From the inequality (12), we obtain that $\Lambda<0$.
Thus we have

$$
\left|z f^{\prime}(z)-p \frac{g_{k}(z)}{z^{(k-1) p}}\right|<\beta\left|\alpha z f^{\prime}(z)+p \frac{g_{k}(z)}{z^{(k-1) p}}\right|
$$

which is equivalent to (4). Hence $f \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$. This completes the proof of Theorem 3.
Theorem 4. If $f \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$, then for $|z|=r(0 \leq r<1)$, we have

$$
\begin{align*}
\text { (i) } \frac{p(1-\beta r) r^{p-1}}{(1+\alpha \beta r)(1+r)^{2 p}} & \leq\left|f^{\prime}(z)\right| \tag{13}
\end{align*} \leq \frac{p(1+\beta r) r^{p-1}}{(1-\alpha \beta r)(1-r)^{2 p}}, ~(i i) \quad \int_{0}^{r} \frac{p(1-\beta \tau) \tau^{p-1}}{(1+\alpha \beta \tau)(1+\tau)^{2 p}} d \tau \leq|f(z)| \leq \int_{0}^{r} \frac{p(1+\beta \tau) \tau^{p-1}}{(1-\alpha \beta \tau)(1-\tau)^{2 p}} d \tau
$$

Proof. If $f \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$, then there exist a function $g \in S_{p}^{*}\left(\frac{(k-1) p}{k}\right)$ such that (4) holds. (i) From Lemma 1 it follows that the function $G(z)$ given by (5) is p-valently starlike function.Hence from [1, Theorem 1] we have

$$
\begin{equation*}
\frac{r^{p}}{(1+r)^{2 p}} \leq|G(z)| \leq \frac{r^{p}}{(1-r)^{2 p}} \quad(|z|=r(0 \leq r<1)) \tag{15}
\end{equation*}
$$

Let us define $\Psi(z)$ by

$$
\Psi(z)=\frac{z f^{\prime}(z)}{G(z)} \quad(z \in \mathbb{U})
$$

then by (7), we have

$$
\begin{equation*}
\frac{(p-p \beta r)}{(1+\alpha \beta r)} \leq|\Psi(z)| \leq \frac{(p+p \beta r)}{(1-\alpha \beta r)} \quad(z \in \mathbb{U}) \tag{16}
\end{equation*}
$$

Thus from (15) and (16), we get the inequalities (13).
(ii) Let $z=r e^{\iota \theta}(0<r<1)$. If l denotes the closed line-segment in the complex ζ-plane from $\zeta=0$ and $\zeta=z$, i.e. $l=\left[0, r e^{\iota \theta}\right]$, then we have

$$
f(z)=\int_{l} f^{\prime}(\zeta) d \zeta=\int_{0}^{r} f^{\prime}\left(\tau e^{\iota \theta}\right) e^{\iota \theta} d \tau \quad(|z|=r(0 \leq r<1))
$$

Thus, by using the upper estimate in (13), we have
$|f(z)|=\left|\int_{l} f^{\prime}(\zeta) d \zeta\right| \leq \int_{0}^{r}\left|f^{\prime}\left(\tau e^{\iota \theta}\right)\right| d \tau \leq \int_{0}^{r} \frac{p(1+\beta \tau) \tau^{p-1}}{(1-\alpha \beta \tau)(1-\tau)^{2 p}} d \tau \quad(|z|=r(0 \leq r<1))$,
which yields the right hand of the inequality in (14).
In order to prove the lower bound in (14), let $z_{0} \in \mathbb{U}$ with $\left|z_{0}\right|=r(0<r<1)$, such that
$\left|f\left(z_{0}\right)\right|=\min \{|f(z)|:|z|=r\}$.
It is sufficient to prove that the left-hand side inequality holds for this point z_{0}.
Moreover, we have

$$
|f(z)| \geq\left|f\left(z_{0}\right)\right| \quad(|z|=r(0 \leq r<1))
$$

The image of the closed line-segment $l_{0}=\left[0, f\left(z_{0}\right)\right]$ by f^{-1} is a piece of arc Γ included in the closed disk \mathbb{U}_{r} given by

$$
\mathbb{U}_{r}=\{z: z \in \mathbb{C} \text { and }|z| \leq r \quad(0 \leq r<1)\},
$$

that is, $\Gamma=f^{-1}\left(l_{0}\right) \subset \mathbb{U}_{r}$. Hence, in accordance with (13), we obtain

$$
\left|f\left(z_{0}\right)\right|=\int_{l_{0}}|d w|=\int_{\Gamma}\left|f^{\prime}(\zeta)\right||d \zeta| \geq \int_{0}^{r} \frac{p(1-\beta \tau) \tau^{p-1}}{(1+\alpha \beta \tau)(1+\tau)^{2 p}} d \tau
$$

This finishes the proof of the inequality (14).
Theorem 5. Let $-1 \leq-\alpha_{2} \beta_{2} \leq-\alpha_{1} \beta_{1}<\beta_{1} \leq \beta_{2} \leq 1$ Then.

$$
\mathcal{K}_{p}^{(k)}\left(\alpha_{1}, \beta_{1}\right) \subset \mathcal{K}_{p}^{(k)}\left(\alpha_{2}, \beta_{2}\right)
$$

Proof. Suppose that $f \in \mathcal{K}_{p}^{(k)}\left(\alpha_{1}, \beta_{1}\right)$ Then

$$
\frac{1}{p} \frac{z f^{\prime}(z)}{G(z)} \prec \frac{1+\beta_{1} z}{1-\alpha_{1} \beta_{1} z}
$$

since $-1 \leq-\alpha_{2} \beta_{2} \leq-\alpha_{1} \beta_{1}<\beta_{1} \leq \beta_{2} \leq 1$. By Lemma 5, we have

$$
\frac{1}{p} \frac{z f^{\prime}(z)}{G(z)} \prec \frac{1+\beta_{1} z}{1-\alpha_{1} \beta_{1} z} \prec \frac{1+\beta_{2} z}{1-\alpha_{2} \beta_{2} z}
$$

it follows that $f(z) \in \mathcal{K}_{p}^{(k)}\left(\alpha_{2}, \beta_{2}\right)$, which implies the inclusion result.
Theorem 6. For a function $f(z)$ given by (1) is in the class $\mathcal{K}_{p}^{(k)}(\alpha, \beta)$ and $\mu \in \mathbb{C}$, the following estimates holds.
$\left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq 2(1+\alpha) \beta p\left|\frac{p}{p+2}-\frac{2 \mu p^{2}}{(p+1)^{2}}\right|+\frac{p^{2}}{p+2} \mu_{1}+\frac{(1+\alpha)(1+\alpha \beta) \beta p}{p+2} \mu_{2}$
where

$$
\begin{equation*}
\mu_{1}=\max \left\{1,\left|1+2 p\left(1-\frac{2 \mu p(p+2)}{(p+1)^{2}}\right)\right|\right\} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{2}=\max \left\{1,\left|\frac{(1+\alpha)(p+2) \beta \mu p-(1+\alpha \beta)(p+1)^{2}}{(1+\alpha \beta)(1+p)^{2}}\right|\right\} \tag{19}
\end{equation*}
$$

Proof. Let $f \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$, then

$$
\begin{equation*}
\frac{1}{p} \frac{z f^{\prime}(z)}{G(z)}=\frac{1+\beta w(z)}{1-\alpha \beta w(z)} \quad(z \in \mathbb{U}) \tag{20}
\end{equation*}
$$

where $\mathrm{G}(\mathrm{z})$ is given by (5) and $w(z)$ is schwarz function given by (6) which is analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1$.
Using the series expansions in (20), we have

$$
\begin{gather*}
1+\left(\frac{p+1}{p} a_{p+1}-B_{p+1}\right) z+\left(\frac{p+2}{p} a_{p+2}-\frac{p+1}{p} a_{p+1} B_{p+1}+\left(B_{p+1}^{2}-B_{p+2}\right)\right) z^{2}+\ldots \\
=1+(1+\alpha) \beta w_{1} z+(1+\alpha)(1+\alpha \beta) \beta\left(w_{1}^{2}+w_{2}\right) z^{2}+\ldots \tag{21}
\end{gather*}
$$

Equating of coefficients in (21) gives us

$$
\begin{gathered}
a_{p+1}=\frac{p}{p+1}\left((1+\alpha) \beta w_{1}+B_{p+1}\right) \\
a_{p+2}=\frac{p}{p+2}\left((1+\alpha) \beta w_{1} B_{p+1}+(1+\alpha)(1+\alpha \beta) \beta\left(w_{1}^{2}+w_{2}\right)+B_{p+2}\right)
\end{gathered}
$$

Therefore, we have

$$
\begin{align*}
& \left|a_{p+2}-\mu a_{p+1}^{2}\right| \leq \frac{p}{p+2}\left|B_{p+2}-\frac{\mu\left(p^{2}+2 p\right)}{(p+1)^{2}} B_{p+1}^{2}\right|+(1+\alpha) \beta\left|\frac{p}{p+2}-\frac{2 \mu p^{2}}{(p+1)^{2}}\right|\left|w_{1}\right|\left|B_{p+1}\right| \\
& \quad+\frac{p}{p+2}(1+\alpha)(1+\alpha \beta) \beta\left|w_{2}-\left(\frac{\mu(1+\alpha) \beta\left(p^{2}+2 p\right)-(1+\alpha \beta)(p+1)}{(1+\alpha \beta)(p+1)^{2}}\right) w_{1}^{2}\right| . \tag{22}
\end{align*}
$$

Now, the desired result follows upon using lemma 2 and lemma 3 in (22).
Theorem 7. If $f(z) \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$, then there exists

$$
q(z) \prec \frac{1+\beta z}{1-\alpha \beta z}
$$

such that for all s and t with $|s| \leq 1$ and $|t| \leq 1$,

$$
\begin{equation*}
\frac{t^{p-1} f^{\prime}(s z) q(t z)}{s^{p-1} f^{\prime}(t z) q(s z)} \prec\left(\frac{1-t z}{1-s z}\right)^{2 p} . \tag{23}
\end{equation*}
$$

Proof. Let $f(z) \in \mathcal{K}_{p}^{(k)}(\alpha, \beta)$, then there exist $g(z) \in \mathcal{S}_{p}^{*}\left(\frac{(k-1) p}{k}\right)$. Suppose

$$
\begin{equation*}
q(z)=\frac{1}{p} \frac{z f^{\prime}(z)}{G(z)} \tag{24}
\end{equation*}
$$

where

$$
G(z)=\frac{g_{k}(z)}{z^{(k-1) p}}
$$

Then by (7), we have

$$
q(z) \prec \frac{1+\beta z}{1-\alpha \beta z}
$$

logarithmic derivative of (24), implies

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+1-p=\frac{z G^{\prime}(z)}{G(z)}-p \tag{25}
\end{equation*}
$$

Since $G(z) \in \mathcal{S}_{p}^{*}$,

$$
\frac{1}{p} \frac{z G^{\prime}(z)}{G(z)} \prec \frac{1+z}{1-z}
$$

So

$$
\begin{equation*}
\frac{z G^{\prime}(z)}{G(z)}-p \prec \frac{2 p z}{1-z} \tag{26}
\end{equation*}
$$

From (25) and (26), we have

$$
\begin{equation*}
\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+1-p \prec \frac{2 p z}{1-z} \tag{27}
\end{equation*}
$$

For s and t such that $|s| \leq 1$ and $|t| \leq 1$, the function

$$
\begin{equation*}
h(z)=\int_{0}^{z} \frac{s}{1-s u}-\frac{t}{1-t u} d u \tag{28}
\end{equation*}
$$

is convex in \mathbb{U}.
Applying Lemma 6, we have

$$
\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}+1-p\right) * h(z) \prec \frac{2 p z}{1-z} * h(z)
$$

Given any function $k(z)$ analytic in \mathbb{U}, with $k(0)=0$, we have

$$
(k * h)(z)=\int_{t z}^{s z} k(u) \frac{d u}{u} \quad(z \in \mathbb{U})
$$

which implies that

$$
\log \left[\frac{(s z)^{1-p} f^{\prime}(s z) q(t z)}{(t z)^{1-p} f^{\prime}(t z) q(s z)}\right] \prec \log \left[\frac{1-t z}{1-s z}\right]^{2 p}
$$

which is equivalent to (23). This completes the proof of Theorem 7.

References

[1] M. K. Aouf, On a class of p-valent starlike functions of order α, Internat. J. Math. Sci. 10(4), 733-744, 1987.
[2] M. K. Aouf, R.M. El-Ashwah and H.M. Zayed, Feket-Szego inequalities for p-valent starlike and convex functions of complex order, J. Egyptian Math. Soc. 22, 190-196, 2014.
[3] S. Bulut, Certain properties of a new subclass of analytic and p-valently close-to-convex functions, arXiv:1612.08735, 24 Dec 2016.
[4] N. E. Cho, Oh S. Kwon and V. Ravichandran, Coefficient, distortion and growth inequalities for certain close-to-convex functions, J. Ineq. Appl. 1, 100, 2011.
[5] E. G. Goluzina, On the coefficients of a class of functions, regular in a disk and having an integral representation in it, J. of Soviet Math. 6, 606-617, 1974.
[6] F. R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20, 8-12, 1969.
[7] J. Kowalczyk and E. Les-Bomba, On a subclass of close-to-convex functions, Appl. Math. Lett. 23, 1147-1151, 2010.
[8] M. S. Liu, On a subclass of p-valent close-to-convex functions of order β and type α, J. Math. Study, 30, 102-104, 1997.
[9] A. E. Livingston, p-valent close-to-convex functions, Trans. Amer. Math. Soc. 115, 161-179, 1965.
[10] S. T. Ruschewehy and T. Sheil-Small, Hadamard products of schlicht functions and the Polya-Schoenberg conjecture, Comment. Math. Helv. 48, 119-135, 1973.
[11] A. Soni and S. Kant, A new subclass of close-to-convex functions with fekete-szego problem, J. Rajasthan Acad. Phy. Sci. 12(2), 1-14, 2013.
[12] B. Seker, On certain new subclass of close-to-convex functions, Appl. Math. Comput. 218, 1041-1045, 2011.
[13] B. Seker and N. E. Cho, A subclass of close-to-convex functions, Hacettepe J. Math. Stat. 42(4), 373-379, 2013.
[14] T. V. Sudharsan, P. Balasubrahmanyam and K. G. subramanian, On functions starlike with respect to symmetric and conjugate points, Twiwanese J. Math. 2(1), 57-68, 1998.
[15] Z. G. Wang, C. Y. Gao and S. M. Yuan, On certain subclass of close-to-convex functions, Acta Math. Acad. Paedagog. Nyhazi (N.S.), 22, 171-177, 2006.
[16] Z. G. Wang, C. Y. Gao and S. M. Yuan, On certain new subclass of close-to-convex functions, Matematicki Vesnik 58, 119-124, 2006.
[17] Q. H. Xu, H. M. Srivastava and Z. Li, A certain subclass of analytic and close-to-convex functions, Appl. Math. Lett. 24, 396-401, 2011.

Prem Pratap Vyas and Shashi Kant
Department of Mathematics, Government Dungar College, Bikaner-334001, IndiA
E-mail address: prempratapvyas@gmail.com
E-mail address: drskant.2007@yahoo.com

