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CERTAIN PROPERTIES OF A NEW SUBCLASS OF

p-VALENTLY CLOSE TO CONVEX FUNCTIONS

PREM PRATAP VYAS AND SHASHI KANT

Abstract. In the present paper we introduce and investigate an intresting

subclass K(k)
p (α, β) analytic and p-valently close to convex functions in the

open unit disk U. For functions belonging to K(k)
p (α, β), we derive several

properties coefficient estimates, sufficient condition, distortion theorem and

inclusion relationships.

1. Introduction and definitions

Let Ap denote the class of all functions of the form

f(z) = zp +

∞∑
n=1

ap+nz
p+n (p ∈ N) (1)

which are analytic in the open unit disk, U = {z ∈ C : |z| < 1}. In particular, we
write A1 = A.
For any two analytic functions f and g in U, we say that f is subordinate to
g in U, written as f(z) ≺ g(z) if there exist a schwarz function w(z) such that
f(z) = g(w(z)), for z ∈ U. In particular, if g is univalent in U, then f is subordinate
to g iff f(0) = g(0) and f(U) ⊂ g(U).
A function f ∈ Ap, is said to be p-valently starlike of order γ (0 ≤ γ < p) in U if it
satisfies the inequality [5]

Re
(zf ′

(z)

f(z)

)
> γ (z ∈ U)

or equivalently

zf
′
(z)

f(z)
≺ p+ (p− 2γ)z

1− z
(z ∈ U).

The class of all p-valent starlike functions of order γ in U is denoted by S∗
p (γ). Also,

we denote that

S∗
p (0) = S∗

p , S∗
1 (γ) = S∗(γ) and S∗

1 (0) = S∗.
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A function f ∈ Ap, is said to be p-valently close-to-convex of order γ (0 ≤ γ < p)
in U if g ∈ S∗

p (γ) and satisfies the inequality [9]

Re
(zf ′

(z)

g(z)

)
> γ (z ∈ U)

or equivalently

zf
′
(z)

g(z)
≺ p+ (p− 2γ)z

1− z
(z ∈ U).

The class of all p-valent close-to-convex functions of order γ in U is denoted by
Kp(γ). Also, we denote that

Kp(0) = Kp, K1(γ) = K(γ) and K1(0) = K.

Recently, Bulut [3] discussed a class K(k)
s (γ, p) for analytic and p-valently close-to-

convex functions. A function f ∈ Ap is said to be in the class K(k)
s (γ, p) if there

exist a function g ∈ S∗
p(

(k−1)p
k ) (k ∈ N is a fixed integer), such that

Re
(z(k−1)p+1f

′
(z)

gk(z)

)
> γ (z ∈ U; 0 ≤ γ < p),

where gk is defined by the equality

gk(z) =
k−1∏
v=0

ε−vpg(εvz); ε = e
2πι
k . (2)

Here assuming g ∈ S∗
p(

(k−1)p
k ) makes gk(z)

z(k−1)p a p-valant starlike function which in
turn implies the close-to-convexity of f. By simple calculution, we see that f(z) ∈
K(k)

s (γ, p) if and only if∣∣∣z(k−1)p+1f
′
(z)

gk(z)
− p
∣∣∣ < ∣∣∣z(k−1)p+1f

′
(z)

gk(z)
+ p− 2γ

∣∣∣ (3)

Recently several similar classes of K(k)
s (γ, p) for analytic and univalent function have

been defined and investigated, some of them we refer to [4, 7, 11, 12, 13, 14, 15, 17].

Motivated essentially by the above mentioned class K(k)
s (γ, p) and the above refered

works for analytic and univalent functions, we now introduce a new class for p-valent
analytic function in the following manner:
Definition 1. For 0 ≤ α ≤ 1 and 0 < β ≤ 1, a function f ∈ Ap is said to be in the

class K(k)
p (α, β), if there exist a function g ∈ S∗

p(
(k−1)p

k ) (k ∈ N is a fixed integer),
such that ∣∣∣z(k−1)p+1f

′
(z)

gk(z)
− p
∣∣∣ < β

∣∣∣αz(k−1)p+1f
′
(z)

gk(z)
+ p
∣∣∣ (4)

where gk is defined by the equality (2).

Remark.(i) For p=1, we get the class K(k)
1 (α, β) studied by Wang [16].

(ii) For p=1 and k=2, we get the class K(2)
1 (α, β) studied by Wang [15].

In the present paper, we derive several properties including coefficient estimates,
sufficient condition, distortion theorem and inclusion relationships for function be-

longing to the class K(k)
p (α, β).

In order to prove our main result for the function class K(k)
p (α, β), we need the
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following lemmas:
Lemma 1. [3] If

g(z) = zp +
∞∑

n=1

bp+nz
p+n ∈ S∗

p(
(k − 1)p

k
),

then

G(z) =
gk(z)

z(k−1)p
= zp +

∞∑
n=1

Bp+nz
p+n ∈ S∗

p , (5)

where gk is given by (2).
Lemma 2. [2] Let G(z) ∈ S∗

p given by (5) and µ be a complex number, then∣∣∣Bp+2 − µB2
p+1

∣∣∣ ≤ p
(
max{1, |1 + 2p(1− 2µ)|}

)
.

Let Ω be class of analytic functions of the form:

w(z) = w1z + w2z
2 + ... (z ∈ U), (6)

in the unit disk U satisfying the condition |w(z)| < 1.
Lemma 3. ([6], p.10) If w(z) ∈ Ω, then for any complex number µ:

|w1| ≤ 1, |w2 − µw2
1| ≤ 1 + (|µ| − 1)|w2

1| ≤ max{1, |µ|}.

The result is sharp for the functions w(z) = z or w(z) = z2.
Lemma 4. Let the function K(z) = p + k1z + k2z

2 + k3z
3 + ... (z ∈ U) be

analytic in the unit disk U, and satisfies the condition∣∣∣ K(z)− p

αK(z) + p

∣∣∣ < β (z ∈ U),

for 0 ≤ α ≤ 1 and 0 < β ≤ 1, if and only if there exist an analytic function ϕ in
the unit disk U, such that |ϕ(z)| ≤ β (z ∈ U), and

K(z) =
p− pzϕ(z)

1 + αzϕ(z)
, (z ∈ U).

Proof. Assume that the function

zf
′
(z)

G(z)
= p+ k1z + k2z

2 + k3z
3 + ... = K(z) (z ∈ U),

satisfies the condition∣∣ K(z)− p

αK(z) + p

∣∣ < β (z ∈ U).

Setting

k(z) =
p−K(z)

p+ αK(z)
,

we see that the function k(z) is analytic in U, satisfies the inequality |k(z)| < β for
z ∈ U and k(0) = 0. Now, by using schwarz’s lemma, we get that the function k(z)
has of the form k(z) = zϕ(z), where ϕ(z) is analytic in U and satisfies |ϕ(z)| ≤ β
for z ∈ U. Thus, we obtain

K(z) =
p− pk(z)

1 + αk(z)
=
p− pzϕ(z)

1 + αzϕ(z)
.
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Conversely, if

K(z) =
p− pzϕ(z)

1 + αzϕ(z)

and |ϕ(z)| ≤ β for z ∈ U, then K is analytic in the unit disk U. so we get∣∣∣ K(z)− p

αK(z) + p

∣∣∣ = |zϕ(z)| ≤ β|z| < β (z ∈ U),

which completes the proof of our lemma.
Lemma 5. [8] Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1. Then

1 +A1z

1 +B1z
≺ 1 +A2z

1 +B2z
.

Let f(z) = Σ∞
n=1anz

n and g(z) = Σ∞
n=1bnz

n be two analytic functions defined in D.
Then there Hadamard product (or convolution) is the function (f ∗ g)(z) defined
by

(f ∗ g)(z) = Σ∞
n=1anbnz

n.

The classes of starlike and convex functions are closed under convolution with
convex function. The following lemma is required for our next result.
Lemma 6. [10] Let ψ and ϕ be convex in U and suppose f ≺ ψ, then

f ∗ ϕ = ψ ∗ ϕ.

2. Main results

First of all, we show in which way our class is associated with the appropriate
subordination.
Theorem 1. A function f(z) ∈ K(k)

p (α, β) if and only if there exits gk(z) satisfying
the condition (2) such that

1

p

zf
′
(z)

G(z)
≺ 1 + βz

1− αβz
(z ∈ U), (7)

where G(z) is given by (5).

Proof. Let f(z) ∈ K(k)
p (α, β). Then, for α ̸= 1 and β ̸= 1, squaring and expanding

both sides of (4), we see that the region of 1
p
zf

′
(z)

G(z) for z ∈ U is contained in the

disk C whose center is (1+αβ2)
(1−α2β2) and radius is [β(1+α)]

(1−α2β2) . Since q(z) = 1+βz
1−αβz maps

the unit disk U to the disk C and q(z) is univalent in U, we obtain the relation (7).
Conversely, assume that the relation (7) holds true. Then we have

1

p

zf
′
(z)

G(z)
≺ 1 + βz

1− αβz
,

(0 ≤ α ≤ 1, 0 < β ≤ 1; z ∈ U),
where w(z) is analytic in U, w(0) = 0 and |w(z)| < 1 for z ∈ U. Therefore from

the above equation, we obtain the inequality (4), that is, f(z) ∈ K(k)
p (α, β).

Theorem 2. Let 0 ≤ α ≤ 1, 0 < β ≤ 1, f given by (1) and g ∈ S∗
p

(
(k−1)p

k

)
are

such that the condition (4) holds. Then, for n ≥ 1, we have

|mam − pBm|2−(1+α)2β2p2 ≤
m−1∑
n=1

{
(α2β2−1)n2|an|2+(β2−1)p2|Bn|2+2p(αβ2+1)n|anBn|

}
(8)
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where the coefficients Bn are given in (5).
Proof. Suppose that the condition (4) is satisfied then by lemma 4, we have

zf ′(z)

G(z)
=
p− pzϕ(z)

1 + αzϕ(z)
(z ∈ U),

where ϕ is an analytic functions in U, ϕ(z) ≤ 1 for z ∈ U and G(z) is given by (5).
From the above equality, we obtain that

[αzf ′(z) + pG(z)] zϕ(z) = pG(z)− zf ′(z) . (9)

Now, we put

zϕ(z) =
∞∑

n=1

tnz
n (z ∈ U).

Thus from (9), we find that(
(1 + α)p+

∞∑
n=1

α(p+ n)ap+nz
n + p

∞∑
n=1

Bp+nz
n

) ∞∑
n=1

tnz
n

= p

∞∑
n=1

Bp+nz
n −

∞∑
n=1

(p+ n)ap+nz
n . (10)

Equating the coefficient of zm in (10), we have

pBp+m−(p+m)ap+m = (1+α)ptm+(α(p+1)ap+1+pBp+1)tm−1+...+(α(p+m−1)ap+m−1+pBp+m−1)t1

which shows that pBp+n − (p+n)ap+n on the right hand side of (10) depends only
on ap+1, Bp+1, ap+2, Bp+2, ..., ap+n−1, Bp+n−1, of left-hand side. Hence , for n ≥ 1,
we can write as(

(1 + α)p+
m−1∑
n=1

(αnan + pBn)z
n

)
zϕ(z) =

m∑
n=1

(pBn − nan)z
n +

∞∑
n=m+1

cnz
n .

(11)
Using the fact that |zϕ(z)| ≤ β|z| < β for all z ∈ U in (11), this reduce to inequality∣∣∣∣∣(1 + α)p+

m−1∑
n=1

(αnan + pBn)z
n

∣∣∣∣∣β >
∣∣∣∣∣

m∑
n=1

(pBn − nan)z
n +

∞∑
n=m+1

cnz
n

∣∣∣∣∣ .
Then squaring the above inequality and integrating along |z| = r < 1, we obtain

β2

∫ 2π

0

∣∣∣∣∣(1 + α)p+
m−1∑
n=1

(αnan + pBn)r
neinθ

∣∣∣∣∣
2

dθ

>

∫ 2π

0

∣∣∣∣∣
m∑

n=1

(pBn − nan)r
neinθ +

∞∑
n=m+1

cnr
neinθ

∣∣∣∣∣
2

dθ .

Using now the Paraseval’s inequality, we obtain

β2

(
(1 + α)2p2 +

m−1∑
n=1

|αnan + pBn|2r2n
)
>

m∑
n=1

|pBn−nan|2r2n+
∞∑

n=m+1

|cn|2r2n .

Letting r → 1 in this inequality, we get
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m∑
n=1

|nan − pBn|2 ≤ β2

(
(1 + α)2p2 +

m−1∑
n=1

|αnan + pBn|2
)
.

Hence we deduce that

|mam − pBm|2−(1+α)2β2p2 ≤
m−1∑
n=1

{
(α2β2−1)n2|an|2+(β2−1)p2|Bn|2+2p(αβ2+1)n|anBn|

}
,

and thus we obtain the inequality (8). Which completes the proof of Theorem 2.

Theorem 3. Let 0 ≤ α ≤ 1, 0 < β ≤ 1, f given by (1) and g ∈ S∗
p

(
(k−1)p

k

)
such

that

(1 + αβ)
∞∑

n=1

(p+ n)|ap+n|+ (1 + β)p
∞∑

n=1

|Bp+n| < (1 + α)βp , (12)

where the coefficients Bp+n are given by (5), then f ∈ K(k)
p (α, β).

Proof. For f given by (1)) and gk defined by (2), we set

Λ =
∣∣∣zf ′

(z)− p
gk(z)

z(k−1)p

∣∣∣− β
∣∣∣αzf ′

(z) + p
gk(z)

z(k−1)p

∣∣∣
=
∣∣∣ ∞∑
n=1

(p+n)ap+nz
p+n−p

∞∑
n=1

Bp+nz
p+n
∣∣∣−β∣∣∣(1+α)pzp+α ∞∑

n=1

(p+n)ap+nz
p+n+p

∞∑
n=1

Bp+nz
p+n
∣∣∣

Λ ≤
∞∑

n=1

(p+ n)|ap+n||z|p+n + p
∞∑

n=1

|Bp+n||z|p+n

−β
(
(1 + α)p|z|p − α

∞∑
n=1

(p+ n)|ap+n||z|p+n − p
∞∑

n=1

|Bp+n||z|p+n
)

= −(1 + α)βp|z|p + (1 + αβ)
∞∑

n=1

(p+ n)|ap+n||z|p+n + (1 + β)p
∞∑

n=1

|Bp+n||z|p+n

=
(
− (1 + α)βp+ (1 + αβ)

∞∑
n=1

(p+ n)|ap+n|+ (1 + β)p
∞∑

n=1

|Bp+n|
)
|z|p.

From the inequality (12), we obtain that Λ < 0.
Thus we have ∣∣∣zf ′

(z)− p
gk(z)

z(k−1)p

∣∣∣ < β
∣∣∣αzf ′

(z) + p
gk(z)

z(k−1)p

∣∣∣
which is equivalent to (4). Hence f ∈ K(k)

p (α, β). This completes the proof of
Theorem 3.
Theorem 4. If f ∈ K(k)

p (α, β), then for |z| = r (0 ≤ r < 1), we have

(i)
p(1− βr)rp−1

(1 + αβr)(1 + r)2p
≤ |f

′
(z)| ≤ p(1 + βr)rp−1

(1− αβr)(1− r)2p
(13)

(ii)

∫ r

0

p(1− βτ)τp−1

(1 + αβτ)(1 + τ)2p
dτ ≤ |f(z)| ≤

∫ r

0

p(1 + βτ)τp−1

(1− αβτ)(1− τ)2p
dτ (14)
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Proof. If f ∈ K(k)
p (α, β), then there exist a function g ∈ S∗

p(
(k−1)p

k ) such that
(4) holds. (i) From Lemma 1 it follows that the function G(z) given by (5) is
p−valently starlike function.Hence from [1, Theorem 1] we have

rp

(1 + r)2p
≤ |G(z)| ≤ rp

(1− r)2p
(|z| = r (0 ≤ r < 1)). (15)

Let us define Ψ(z) by

Ψ(z) =
zf

′
(z)

G(z)
(z ∈ U),

then by (7), we have

(p− pβr)

(1 + αβr)
≤ |Ψ(z)| ≤ (p+ pβr)

(1− αβr)
(z ∈ U). (16)

Thus from (15) and (16), we get the inequalities (13).
(ii) Let z = reιθ (0 < r < 1). If l denotes the closed line-segment in the complex
ζ−plane from ζ = 0 and ζ = z, i.e. l = [0, reιθ], then we have

f(z) =

∫
l

f
′
(ζ)dζ =

∫ r

0

f
′
(τeιθ)eιθdτ (|z| = r (0 ≤ r < 1)).

Thus, by using the upper estimate in (13), we have

|f(z)| =
∣∣ ∫

l

f
′
(ζ)dζ

∣∣ ≤ ∫ r

0

|f
′
(τeιθ)|dτ ≤

∫ r

0

p(1 + βτ)τp−1

(1− αβτ)(1− τ)2p
dτ (|z| = r (0 ≤ r < 1)),

which yields the right hand of the inequality in (14).
In order to prove the lower bound in (14), let z0 ∈ U with |z0| = r (0 < r < 1),
such that
|f(z0)| = min{|f(z)| : |z| = r}.
It is sufficient to prove that the left-hand side inequality holds for this point z0.
Moreover, we have

|f(z)| ≥ |f(z0)| (|z| = r (0 ≤ r < 1)).

The image of the closed line-segment l0 = [0, f(z0)] by f−1 is a piece of arc Γ
included in the closed disk Ur given by

Ur = {z : z ∈ C and |z| ≤ r (0 ≤ r < 1)},
that is, Γ = f−1(l0) ⊂ Ur. Hence, in accordance with (13),we obtain

|f(z0)| =
∫
l0

|dw| =
∫
Γ

|f
′
(ζ)||dζ| ≥

∫ r

0

p(1− βτ)τp−1

(1 + αβτ)(1 + τ)2p
dτ.

This finishes the proof of the inequality (14).
Theorem 5. Let −1 ≤ −α2β2 ≤ −α1β1 < β1 ≤ β2 ≤ 1 Then.

K(k)
p (α1, β1) ⊂ K(k)

p (α2, β2)

Proof. Suppose that f ∈ K(k)
p (α1, β1) Then

1

p

zf
′
(z)

G(z)
≺ 1 + β1z

1− α1β1z

since −1 ≤ −α2β2 ≤ −α1β1 < β1 ≤ β2 ≤ 1. By Lemma 5, we have

1

p

zf
′
(z)

G(z)
≺ 1 + β1z

1− α1β1z
≺ 1 + β2z

1− α2β2z
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it follows that f(z) ∈ K(k)
p (α2, β2), which implies the inclusion result.

Theorem 6. For a function f(z) given by (1) is in the class K(k)
p (α, β) and µ ∈ C,

the following estimates holds.

|ap+2 − µa2p+1| ≤ 2(1 + α)βp
∣∣∣ p

p+ 2
− 2µp2

(p+ 1)2

∣∣∣+ p2

p+ 2
µ1 +

(1 + α)(1 + αβ)βp

p+ 2
µ2

(17)
where

µ1 = max
{
1,
∣∣1 + 2p

(
1− 2µp(p+ 2)

(p+ 1)2
)∣∣} (18)

and

µ2 = max
{
1,
∣∣ (1 + α)(p+ 2)βµp− (1 + αβ)(p+ 1)2

(1 + αβ)(1 + p)2
∣∣}. (19)

Proof. Let f ∈ K(k)
p (α, β), then

1

p

zf
′
(z)

G(z)
=

1 + βw(z)

1− αβw(z)
(z ∈ U), (20)

where G(z) is given by (5) and w(z) is schwarz function given by (6) which is
analytic in U with w(0) = 0 and |w(z)| < 1.
Using the series expansions in (20), we have

1+
(p+ 1

p
ap+1−Bp+1

)
z+

(p+ 2

p
ap+2−

p+ 1

p
ap+1Bp+1+(B2

p+1−Bp+2)
)
z2+ ...

= 1 + (1 + α)βw1z + (1 + α)(1 + αβ)β(w2
1 + w2)z

2 + ... . (21)

Equating of coefficients in (21) gives us

ap+1 =
p

p+ 1

(
(1 + α)βw1 +Bp+1

)
,

ap+2 =
p

p+ 2

(
(1 + α)βw1Bp+1 + (1 + α)(1 + αβ)β(w2

1 + w2) +Bp+2

)
.

Therefore, we have

|ap+2−µa2p+1| ≤
p

p+ 2

∣∣∣Bp+2−
µ(p2 + 2p)

(p+ 1)2
B2

p+1

∣∣∣+(1+α)β
∣∣∣ p

p+ 2
− 2µp2

(p+ 1)2

∣∣∣|w1||Bp+1|

+
p

p+ 2
(1+α)(1 +αβ)β

∣∣∣w2 −
(µ(1 + α)β(p2 + 2p)− (1 + αβ)(p+ 1)

(1 + αβ)(p+ 1)2

)
w2

1

∣∣∣. (22)
Now, the desired result follows upon using lemma 2 and lemma 3 in (22).

Theorem 7. If f(z) ∈ K(k)
p (α, β), then there exists

q(z) ≺ 1 + βz

1− αβz

such that for all s and t with |s| ≤ 1 and |t| ≤ 1,

tp−1f
′
(sz)q(tz)

sp−1f ′(tz)q(sz)
≺
( 1− tz

1− sz

)2p
. (23)

Proof. Let f(z) ∈ K(k)
p (α, β), then there exist g(z) ∈ S∗

p

(
(k−1)p

k

)
.

Suppose

q(z) =
1

p

zf
′
(z)

G(z)
, (24)
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where

G(z) =
gk(z)

z(k−1)p
.

Then by (7) ,we have

q(z) ≺ 1 + βz

1− αβz

logarithmic derivative of (24), implies

zf
′′
(z)

f ′(z)
− zq

′
(z)

q(z)
+ 1− p =

zG
′
(z)

G(z)
− p . (25)

Since G(z) ∈ S∗
p ,

1

p

zG
′
(z)

G(z)
≺ 1 + z

1− z
,

so
zG

′
(z)

G(z)
− p ≺ 2pz

1− z
. (26)

From (25) and (26), we have

zf
′′
(z)

f ′(z)
− zq

′
(z)

q(z)
+ 1− p ≺ 2pz

1− z
. (27)

For s and t such that |s| ≤ 1 and |t| ≤ 1, the function

h(z) =

∫ z

0

s

1− su
− t

1− tu
du (28)

is convex in U.
Applying Lemma 6, we have(zf ′′

(z)

f ′(z)
− zq

′
(z)

q(z)
+ 1− p

)
∗ h(z) ≺ 2pz

1− z
∗ h(z).

Given any function k(z) analytic in U, with k(0) = 0, we have

(k ∗ h)(z) =
∫ sz

tz

k(u)
du

u
(z ∈ U),

which implies that

log
[ (sz)1−pf

′
(sz)q(tz)

(tz)1−pf ′(tz)q(sz)

]
≺ log

[ 1− tz

1− sz

]2p
which is equivalent to (23). This completes the proof of Theorem 7.

References

[1] M. K. Aouf, On a class of p-valent starlike functions of order α, Internat. J. Math. Sci. 10(4),
733-744, 1987.

[2] M. K. Aouf, R.M. El-Ashwah and H.M. Zayed, Feket-Szego inequalities for p-valent starlike

and convex functions of complex order, J. Egyptian Math. Soc. 22, 190-196, 2014.
[3] S. Bulut, Certain properties of a new subclass of analytic and p-valently close-to-convex

functions, arXiv:1612.08735, 24 Dec 2016.
[4] N. E. Cho, Oh S. Kwon and V. Ravichandran, Coefficient, distortion and growth inequalities

for certain close-to-convex functions, J. Ineq. Appl. 1, 100, 2011.
[5] E. G. Goluzina, On the coefficients of a class of functions, regular in a disk and having an

integral representation in it, J. of Soviet Math. 6, 606-617, 1974.

[6] F. R. Keogh and E.P. Merkes, A coefficient inequality for certain classes of analytic functions,
Proc. Amer. Math. Soc. 20, 8-12, 1969.



194 PREM PRATAP VYAS AND SHASHI KANT EJMAA-2018/6(2)

[7] J. Kowalczyk and E. Les-Bomba, On a subclass of close-to-convex functions, Appl. Math.

Lett. 23, 1147-1151, 2010.
[8] M. S. Liu, On a subclass of p-valent close-to-convex functions of order β and type α, J. Math.

Study, 30, 102-104, 1997.
[9] A. E. Livingston, p-valent close-to-convex functions, Trans. Amer. Math. Soc. 115, 161-179,

1965.
[10] S. T. Ruschewehy and T. Sheil-Small, Hadamard products of schlicht functions and the

Polya-Schoenberg conjecture , Comment. Math. Helv. 48, 119-135, 1973.
[11] A. Soni and S. Kant, A new subclass of close-to-convex functions with fekete-szego problem,

J. Rajasthan Acad. Phy. Sci. 12(2), 1-14, 2013.
[12] B. Seker, On certain new subclass of close-to-convex functions, Appl. Math. Comput. 218,

1041-1045, 2011.
[13] B. Seker and N. E. Cho, A subclass of close-to-convex functions, Hacettepe J. Math. Stat.

42(4), 373-379, 2013.
[14] T. V. Sudharsan, P. Balasubrahmanyam and K. G. subramanian, On functions starlike with

respect to symmetric and conjugate points, Twiwanese J. Math. 2(1), 57-68, 1998.
[15] Z. G. Wang, C. Y. Gao and S. M. Yuan, On certain subclass of close-to-convex functions,

Acta Math. Acad. Paedagog. Nyhazi (N.S.), 22, 171-177, 2006.
[16] Z. G. Wang, C. Y. Gao and S. M. Yuan, On certain new subclass of close-to-convex functions,

Matematicki Vesnik 58, 119-124, 2006.

[17] Q. H. Xu, H. M. Srivastava and Z. Li, A certain subclass of analytic and close-to-convex
functions, Appl. Math. Lett. 24, 396-401, 2011.

Prem Pratap Vyas and Shashi Kant
Department of Mathematics, Government Dungar College, Bikaner-334001, INDIA

E-mail address: prempratapvyas@gmail.com

E-mail address: drskant.2007@yahoo.com


