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SOLVABILITY OF A COUPLED SYSTEM OF

URYSOHN-STIELTJES INTEGRAL EQUATIONS

M. M. A. AL-FADEL

Abstract. In this paper, we study the existence of continuous solutions x, y ∈
C(I) of the coupled system of Urysohn-Stieltjes integral equations

x(t) = p1(t) + λ1

∫ 1

0
f1(t, s, x(s), y(s)) dsg1(t, s), t ∈ I

y(t) = p2(t) + λ2

∫ 1

0
f2(t, s, x(s), y(s)) dsg2(t, s), t ∈ I.

1. Introduction and Preliminaries

The Volterra-Stieltjes integral equations and Urysohn-Stieltjes integral equations
have been studied by J. Banaś and some other authors (see [1]-[9] and [14]- [16]).
Consider the Urysohn-Stieltjes integral equation

x(t) = p(t) +

∫ 1

0

f(t, s, x(s)) dsg(t, s), t ∈ I = [0, 1]. (1)

J. Banaś (see [3]) proved the existence of at least one solution x ∈ C(I) to the
equation (1), where g : I × I → R is nondecreasing in the second argument on
I and the symbol ds indicates the integration with respect to s.

For the definition, background and properties of the Stieltjes integral we refer to
Banaś [1]. However, the coupled system of integral equations have been studied,
recently, by some authors (see [11]-[12],[13]).

In this paper, we generalize this result for the coupled system of Urysohn-Stieltjes

2010 Mathematics Subject Classification. 74H10, 45G10, 47H30.
Key words and phrases. Coupled system, continuous solution, Stieltjes integral, Schauder fixed

point theorem.
Submitted Sep. 9, 2017. Revised Nov. 8, 2017 .

203



204 M. M. A. AL-FADEL EJMAA-2018/6(2)

integral equations

x(t) = p1(t) + λ1

∫ 1

0

f1(t, s, x(s), y(s)) dsg1(t, s), t ∈ I

(2)

y(t) = p2(t) + λ2

∫ 1

0

f2(t, s, x(s), y(s)) dsg2(t, s), t ∈ I

in the Banach space C(I).

2. Existence of solutions

In this section we study the existence of continuous solutions x, y ∈ C(I) for
the coupled system of nonlinear integral equations of Urysohn-Stieltjes type (2).
Now we formulate assumptions under which coupled system (2) and will be consid-
ered. Namely, we shall assume that:

(i) pi ∈ C(I), λi ∈ R, i = 1, 2.
(ii) fi : I × I × R2 → R, (i = 1, 2) is continuous on I, ∀x, y ∈ R2, t ∈ I

such that there exist continuous functions ki : I × I → I and two positive
constants bi such that:

| fi(t, s, x, y) |≤ ki(t, s) + bi(max{| x |, | y |})
for t, s ∈ I and x, y ∈ R.

(iii) gi : I×I → R, i = 1, 2 and for all t1, t2 ∈ I with t1 < t2, the functions s →
gi(t2, s)− gi(t1, s) is nondecreasing on I.

(iv) gi(0, s) = 0 for any s ∈ I, i = 1, 2.
(v) The functions t → gi(t, t) and t → gi(t, 0) are continuous on I, i = 1, 2.

Put µ = sup | gi(t, 1) | + sup | gi(t, 0) | on I.

Now, let X be the Banach space of all ordered pairs (x, y), x, y ∈ C(I) with the
norm

∥(x, y)∥X = max{∥x∥C(I), ∥y∥C(I)}
where

∥x∥ = sup
t∈I

| x(t) |, ∥ y ∥= sup
t∈I

| y(t) | .

It is clear that (X, ∥(x, y)∥X) is a Banach space.

Theorem 1. Let the assumptions (i)-(v) be satisfied, then the coupled system
(2) has at least one classical solution in X.

Proof: Define the operator T by

T (x, y)(t) = (T1x(t), T2y(t))

where

T1x(t) = p1(t) + λ1

∫ 1

0

f1(t, s, u(s)) dsg1(t, s)

T2y(t) = p2(t) + λ2

∫ 1

0

f2(t, s, u(s)) dsg2(t, s)

and u = (x, y).
For every u ∈ X, t ∈ I, fi(t, ., u(.)) (i = 1, 2) is continuous on I. Observe that
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Assumptions (iii) and (iv) imply that the function s → g(t, s) is nondecreasing on
the interval I, for any fixed t ∈ I. Indeed, putting t2 = t, t1 = 0 in (iii) and keeping
in mind (iv), we obtain the desired conclusion. From this observation, it follows
immediately that, for every t ∈ I, the function s → g(t, s) is of bounded variation
on I. It follows, fi(t, s, x(s), y(s)) are Riemann-Stieltjes integrable on I with re-
spect to s → gi(t, s). Thus Ti make sense.

We will prove a few results concerning the continuity and compactness of these
operators in the space of continuous functions.
We denoted K := max{ki(t, s) : t, s ∈ I, i = 1, 2}, and we define the set U by

U := {u = (x, y) | (x, y) ∈ R2 : ∥(x, y)∥X ≤ r, r =
∥pi∥+ λKµ

1− λbiµ
}

Also, let us denote

θ(ϵ) = sup{| f1(t2, s, u)− f1(t1, s, u) | , | f2(t2, s, u)− f2(t1, s, u) |: t1, t2 ∈ I

, | t2 − t1 |≤ ϵ, u ∈ R2}.

The remainder of the proof will be given in four steps.

Step 1: The operator T transforms from X into X.
For u = (x, y) ∈ U, for all ϵ > 0, δ > 0 and for each t1, t2 ∈ I, t1 < t2 such that
| t2 − t1 |< δ, then

| T1x(t2) − T1x(t1) | ≤ | p1(t2)− p1(t1) |

+ | λ1

∫ 1

0

f1(t2, s, x(s), y(s)) dsg1(t2, s)

− λ1

∫ 1

0

f1(t1, s, x(s), y(s)) dsg1(t1, s) |≤| p1(t2)− p1(t1) |

+ | λ1

∫ 1

0

f1(t2, s, x(s), y(s)) dsg1(t2, s)− λ1

∫ 1

0

f1(t1, s, x(s), y(s)) dsg1(t2, s) |

+ | λ1

∫ 1

0

f1(t1, s, x(s), y(s)) dsg1(t2, s)− λ1

∫ 1

0

f1(t1, s, x(s), y(s)) dsg1(t1, s) |

≤ | p1(t2)− p1(t1) |

+ | λ1

∫ 1

0

[f1(t2, s, x(s), y(s))− f1(t1, s, x(s), y(s))] dsg1(t2, s) |

+ | λ1

∫ 1

0

f1(t1, s, x(s), y(s)) ds(g1(t2, s)− g1(t1, s)) |

≤ | p1(t2)− p1(t1) |

+ |λ1|
∫ 1

0

| f1(t2, s, x(s), y(s))− f1(t1, s, x(s), y(s)) | ds(
s∨

z=0

g1(t2, z))

+ |λ1|
∫ 1

0

| f1(t1, s, x(s), y(s)) | ds(
s∨

z=0

[g1(t2, z)− g1(t1, z)])
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≤ | p1(t2)− p1(t1) | +λ

∫ 1

0

θ(ϵ) ds(
s∨

z=0

g1(t2, z))

+ λ

∫ 1

0

(k1(t1, s) + b1(max{| x(s) |, | y(s) |})) ds(
s∨

z=0

[g1(t2, z)− g1(t1, z)])

≤ | p1(t2)− p1(t1) | +λθ(ϵ)

∫ 1

0

ds(g1(t2, s))

+ λ(K + rb1)

∫ 1

0

dsg1(t2, s)− g1(t1, s)

≤ | p1(t2)− p1(t1) | +λθ(ϵ)[g(t2, 1)− g(t2, 0)]

+ λ(K + rb1){[g1(t2, 1)− g1(t1, 1)]− [g1(t2, 0)− g1(t1, 0)]}
≤ | p1(t2)− p1(t1) | +λθ(ϵ)[g(t2, 1)− g(t2, 0)]

+ λ(K + rb1){[g1(t2, 1)− g1(t1, 1)]− [g1(t2, 0)− g1(t1, 0)]}
≤ | p1(t2)− p1(t1) | +λθ(ϵ)[g1(t2, 1)− g1(t2, 0)]

+ λ(K + rb1)[| g1(t2, 1)− g1(t1, 1) | + | g1(t2, 0)− g1(t1, 0) |]

Hence

| T1x(t2)− T1x(t1) | ≤ | p1(t2)− p1(t1) | +λθ(ϵ)[g1(t2, 1)− g1(t2, 0)]

+ λ(K + rb1)[| g1(t2, 1)− g1(t1, 1) | + | g1(t2, 0)− g1(t1, 0) |]

Hence, from the continuity of the functions g1 assumption (v), we deduce that T1

maps C(I) into C(I).

As done above we can obtain

| T2y(t2)− T2y(t1) | ≤ | p2(t2)− p2(t1) | +λθ(ϵ)[g2(t2, 1)− g2(t2, 0)]

+ λ(K + rb2)[| g2(t2, 1)− g2(t1, 1) | + | g2(t2, 0)− g2(t1, 0) |]

Also, by our assumption (v), we see that T2 maps C(I) into C(I).

Now, from the definition of the operator T we get

Tu(t2)− Tu(t1) = T (x, y)(t2)− T (x, y)(t1)

= (T1x(t2), T2y(t2))− (T1x(t1), T2y(t1))

= (T1x(t2)− T1x(t1), T2y(t2)− T2y(t1))

Therefore, T maps X into X.
Note that the set of values of Tu(t) for all u ∈ X is an equi-continuous subset of X.

Step 2: The operator T map U into U.
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for (x, y) ∈ U , we have

| T1x(t) | ≤ | p1(t) | + | λ1

∫ 1

0

f1(t, s, x(s), y(s)) dsg1(t, s) |

≤ | p1(t) | +|λ1|
∫ 1

0

| f1(t, s, x(s), y(s)) | ds(
s∨

z=0

g1(t, z))

≤ ∥p1∥+ λ

∫ 1

0

(k1(t, s) + b1(max{| x(s) |, | y(s) |})) ds(
s∨

z=0

g1(t, z))

≤ ∥p1∥+ λ

∫ 1

0

(k1(t, s) + rb1) dsg1(t, s))

≤ ∥p1∥+ λ(K + rb1)

∫ 1

0

dsg1(t, s)

≤ ∥p1∥+ λ(K + rb1)(g1(t, 1)− g1(t, 0))

≤ ∥p1∥+ λ(K + rb1)[sup
t

|g1(t, 1)|+ sup
t

|g1(t, 0)|]

≤ ∥p1∥+ λ(K + rb1)µ

Hence

∥T1x∥ ≤ ∥p1∥+ λ(K + rb1)µ.

By a similar way can deduce that

∥T2y∥ ≤ ∥p2∥+ λ(K + rb2)µ.

Therefore,

∥Tu∥ = ∥T (x, y)∥ = ∥T1x, T2y∥ = max{∥T1x∥, ∥T2y∥} ≤ r.

Thus for every u = (x, y) ∈ U, we have Tu ∈ U and hence TU ⊂ U, ( i.e T : U → U).
This means that the functions of TU are uniformly bounded on I.

Step 3: The operator T is compact.
It is clear that the set U is nonempty, bounded, closed and convex, then accord-
ing to Tychonoff’s theorem in topological products and Arzela-Ascolli theorem the
compactness criteria T is compact.

Step 4: The operator T is continuous.
Firstly, we prove that T1 is continuous. Let ϵ∗ > 0, the continuity of fi yields
∃ δ = δ(ϵ∗) such that |fi(t, s, x, y) − fi(t, s, u, y)| < ϵ∗ whenever ∥x − u∥ ≤ δ, thus
if ∥x− u∥ ≤ δ, we arrive at:

| T1x(t)− T1u(t) | ≤ | λ1

∫ 1

0

f1(t, s, x(s), y(s)) dsg1(t, s)

− λ1

∫ 1

0

f1(t, s, u(s), y(s)) dsg1(t, s) |
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≤ |λ1|
∫ 1

0

| f1(t, s, x(s), y(s))− f1(t, s, u(s), y(s)) | ds(
s∨

z=0

g1(t, z))

≤ ϵ∗λ

∫ 1

0

ds(
s∨

z=0

g1(t, z))

≤ ϵ∗λ

∫ 1

0

dsg1(t, s)

≤ ϵ∗λ [g1(t, 1)− g1(t, 0)]

≤ ϵ∗λ [| g1(t, 1) | + | g1(t, 0) |]
≤ ϵ∗λ [sup

t∈I
| g1(t, 1) | +sup

t∈I
| g1(t, 0) |] ≤ ϵ

where ϵ := ϵ∗λµ.
Therefore,

| T1x(t)− T1u(t) |≤ ϵ.

This means that the operator T1 is continuous.
By a similar way as done above we can prove that for any y, v ∈ C[0, T ] and
∥ y − v ∥< δ, we have

| T2y(t)− T2v(t) |≤ ϵ.

Hence T2 is continuous operator.
The operators Ti (i = 1, 2) is continuous operator it imply that T is continuous
operator.
Since all conditions of Schauder fixed point theorem are satisfied, then T has at
least one fixed point u = (x, y) ∈ U , which completes the proof.

In what follows, we provide some examples illustrating the above obtained results.

Example : Consider the functions gi : I × I → R defined by the formula

g1(t, s) =

{
t ln t+s

t , for t ∈ (0, 1], s ∈ I,
0, for t = 0, s ∈ I.

g2(t, s) = t(t+ s− 1), t ∈ I.

It can be easily seen that the functions g1(t, s) and g2(t, s) satisfies assumptions
(iii)-(v) given in Theorem 1, and g1(t, s) is function of bounded variation but it is
not continuous on I. In this case, the coupled system of Urysohn-Stieltjes integral
equations (2) has the form

x(t) = p1(t) + λ1

∫ 1

0

t

t+ s
f1(t, s, x(s), y(s)) ds, t ∈ I

(3)

y(t) = p2(t) + λ2

∫ t

0

tf1(t, s, x(s), y(s)) ds, t ∈ I.

Also, consider the functions fi : I × I ×R2 → R defined by the formula

f1(t, s, x, y) = t+ s+ x+ y,

f2(t, s, x, y) = t+ s+ x2 − y2.



EJMAA-2018/6(2) URYSOHN-STIELTJES INTEGRAL EQUATIONS 209

Now, it can be easily seen that the functions f1 and f2 satisfies assumptions (ii)
given in Theorem 1:

| f1(t, s, x, y) | ≤ | t+ s+ x+ y |
≤ | t+ s | + | x | + | y |
≤ 2T + 2max{| x |, | y |}

And

| f2(t, s, x, y) | ≤ | t+ s+ x2 − y2 |
≤ | t+ s | + | x2 − y2 |
≤ 2T+ | (x− y)(x+ y) |
≤ 2T + 2max{| x |, | y |}

Hence, ki(t, s) = 2T , and bi = 2
Therefore, the functions fi satisfies the assumption

| fi(t, s, x, y) |≤ ki(t, s) + bi(max{| x |, | y |}).

Therefore, the coupled system (3) has at least one solution x, y ∈ C[0, 1].
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