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SOLVABILITY OF A COUPLED SYSTEM OF
URYSOHN-STIELTJES INTEGRAL EQUATIONS

M. M. A. AL-FADEL

ABSTRACT. In this paper, we study the existence of continuous solutions x,y €
C(I) of the coupled system of Urysohn-Stieltjes integral equations

1
2(t) = p1(H) + M /0 ity 5,2(5),9(9)) dogi(t,5), t T

1
y(t) = pa(t) + >\2/0 Falt, 5,2(s), y(s)) dsga(t,s), t € I.

1. INTRODUCTION AND PRELIMINARIES

The Volterra-Stieltjes integral equations and Urysohn-Stieltjes integral equations
have been studied by J. Bana$ and some other authors (see [1]-[9] and [14]- [16]).
Consider the Urysohn-Stieltjes integral equation

1
£(t) = p(t) + / F(t,5,2(5)) dug(t,s), t € T=[0,1]. (1)

J. Banas (see [3]) proved the existence of at least one solution z € C(I) to the
equation (1), where g : I x I — R is nondecreasing in the second argument on
I and the symbol d, indicates the integration with respect to s.

For the definition, background and properties of the Stieltjes integral we refer to
Bana$ [1]. However, the coupled system of integral equations have been studied,
recently, by some authors (see [11]-[12],[13]).

In this paper, we generalize this result for the coupled system of Urysohn-Stieltjes
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integral equations

2(t) = pr(t) + A / fi(t,s,2(),y(s5)) dugi(t,5), te T

1
y(t) = palt) + A / folt,5,2(5), y(5)) dugalt,s), t€ T

in the Banach space C(I).

2. EXISTENCE OF SOLUTIONS

In this section we study the existence of continuous solutions z, y € C(I) for
the coupled system of nonlinear integral equations of Urysohn-Stieltjes type (2).
Now we formulate assumptions under which coupled system (2) and will be consid-
ered. Namely, we shall assume that:

(i) peC), Mi€R, i=1,2.

(i) fi :IxIxR?®— R, (i =1,2) is continuous on I, Vz,y € R?, t € I
such that there exist continuous functions k; : I x I — I and two positive
constants b; such that:

| fi(t757x7y) |§ ki(t75) + bi(max{l €T |’ | Y |})
fort,s € I and =,y € R.

(iii) ¢;: IxI — R, i=1,2and forall t;, ty € I with t; < ¢, the functions s —
gi(t2,8) — gi(t1, s) is nondecreasing on I.

(iv) ¢:(0,s) =0forany s €1, i=1,2.

(v) The functions t — g¢;(t,t) and t — g¢;(¢,0) are continuous on I, i = 1,2.
Put p =sup | gi(t,1) | + sup | ¢:(¢,0) | on I.

Now, let X be the Banach space of all ordered pairs (z,y), z,y € C(I) with the
norm

[z, ¥)llx = max{[|zl[cu), [lyllomn}
where
[zl =sup [z(?) |, [y [[=sup | y(t) |-
tel tel

It is clear that (X, ||(z,y)||x) is a Banach space.

Theorem 1. Let the assumptions (i)-(v) be satisfied, then the coupled system
(2) has at least one classical solution in X.

Proof: Define the operator T by
T(z,y)(t) = (Thz(t), Tay(t))

where

1
Tya(t) = py(t) + A / fi(t,5,u(s)) dagi (8, )

Toy(t) = pat) + Mg / falt, 5,u(s)) dagalt, )

and u = (z,y).
For every u € X, t € I, fi(t,.,u(.)) (¢ = 1,2) is continuous on I. Observe that
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Assumptions (iii) and (iv) imply that the function s — ¢(¢, s) is nondecreasing on
the interval I, for any fixed t € I. Indeed, putting to = ¢, ¢t; = 0 in (iii) and keeping
in mind (iv), we obtain the desired conclusion. From this observation, it follows
immediately that, for every t € I, the function s — g(¢, s) is of bounded variation
on I. Tt follows, f;(t,s,x(s),y(s)) are Riemann-Stieltjes integrable on I with re-
spect to s — ¢;(t,s). Thus T; make sense.

We will prove a few results concerning the continuity and compactness of these
operators in the space of continuous functions.

We denoted K := max{k;(t,s) : t,s € I, i = 1,2}, and we define the set U by

lpill + MK

U= {u=(z.0) | (z.) € B () < v, r = S
Also, let us denote
9(6):sup{| fl(t2757u)_f1(t178au) | ) |f2(t2a3au)_f2(t1757u) |:t17t261

. | ta—t1|<e ue R
The remainder of the proof will be given in four steps.
Step 1: The operator T transforms from X into X.

For uw = (z,y) € U, for all ¢ > 0, § > 0 and for each t;,t5 € I, t; < t3 such that
| ta —t1 |< 0, then

| Tvx(ts) — Tiz(ty) | < |pi(te) —pa(ty) |
+ ‘)\1/ J1(t2,s,2(s),y(s)) dsgi(tz2,s)
- >\1/ Ji(tr,s,2(8),9(s)) dsgi(ts, s) |<| pi(t2) — p1(ty) |
0
+ M{AfNM&dﬁ»(D%mt% M/1ﬁhﬁm u(s)) duga(t2,5) |
1
+u%hmwm<w@@ M/hmm y(s)) duga(tr,5) |
< | pi(ta) —p1(t1) |
+\m%@maaaamm—ﬁm£w@w@n@m@ﬁﬂ
+\M/fmmw@mm@@@@—mmw|
< | pi(te) = pi(tr) |
+\M/Ihmsx)(Wﬁﬁww@MWIMVm%M)
z2=0
+ M¢A|ﬁmﬁﬁ@w@nd4vam@—mmwm

z=0
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IN

i) = pa(t) |47 [ 006) oV 1(82.2)
z=0

S

1
+ A/O (ki (t1, 5) + b (max{| z(s) .| y(s) [}) ds(\/ [91(t2, 2) = 91(t1, 2)))

z=0

< Inalte) = p(t) |06 [ delonas)
0
+ )\(K‘FTbl)/O dsgi(t2, s) — g1(t1, s)
< |pi(t2) = pa(ts) [ +A0(e)[g(t2, 1) — g(t2,0)]
+ MK +rb1){[g1(t2, 1) — g1(t1,1)] = [91(t2,0) — g1(t1,0)]}
< [ pilt2) —pi(t) | +20(6)[g(t2, 1) — g(t2,0)]
+ AK +7r01){[g1(t2,1) — g1(t1, 1)] — [91(22,0) — g1(t1,0)]}
< | pi(t2) = pi(t1) | +A0(€)[g1(t2,1) — g1(t2,0)]
+ A(K+rb1)[| g1(t2, 1) —g1(t1,1) | + ] 91(t2,0) — g1(¢1,0) []
Hence

| Tha(tz) — Tha(ty) | | p1(t2) — pi(t1) | +A0(€)[g1(t2, 1) — g1(t2,0)]

<
+ MK +701)[| g1(t2, 1) — g1 (t1,1) | + ] g1(t2,0) — g1(t1,0) |]

Hence, from the continuity of the functions g; assumption (v), we deduce that T;

maps C(I) into C(I).

As done above we can obtain

| Toy(t2) —Toy(t) | < | p2(tz2) —p2(ts) | +20(e)[ga(t2, 1) — g2(t2,0)]
+ MK +7102)[] g2(t2, 1) — ga(t1, 1) | + | g2(t2,0) — g2(¢1,0) []

Also, by our assumption (v), we see that T5 maps C(I) into C'(I).

Now, from the definition of the operator T" we get

Tu(te) — Tu(ty) = T(x,y)(t2) — T(x,y)(t1)
= (Tha(tz), Tay(tz)) — (Thx(tr), Toy(t1))
= (Tia(ty) — Tix(ty), Toy(te) — Toy(ty))

Therefore, T maps X into X.
Note that the set of values of Tu(t) for all u € X is an equi-continuous subset of X.

Step 2: The operator 7" map U into U.
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for (z,y) € U, we have

| Thz(t) | < \pl(t)|+|A1/0 St s,2(s),y(5)) dsgr(t, s) |

< Ipt) |+ / | Fits,2(5),5() | do(\/ 1t 2)
0 2=0
< lml+A / (ku(t, ) + by (max{| () |, | 9(s) 1)) do(\/ 91(5,2))
0 z2=0
<l + A / (ku(t.5) + b1) duga (£, 5))
0
< lpill + AGK +7by) / dugi (£, 5)
< lpoll 4+ A + b)) (g (6, 1) — g (,0))
< lpall + MK + rbl)[sgp lg1(t, 1) + sup lg1(t,0)]]
< lpall + ME 4 7b1)p

Hence
[Tvz]| < [lpall + A(K + rby)p.
By a similar way can deduce that
[Toyll < [p2ll + A(K + rb2)p.
Therefore,
[Tull = T(x, y)| = | Thz, Toy| = max{||Tyz]], | T2yl[} <.

Thus for every u = (z,y) € U, we have Tu € U and hence TU C U, (i.eT : U — U).
This means that the functions of TU are uniformly bounded on I.

Step 3: The operator T is compact.

It is clear that the set U is nonempty, bounded, closed and convex, then accord-
ing to Tychonoff’s theorem in topological products and Arzela-Ascolli theorem the
compactness criteria 71" is compact.

Step 4: The operator T is continuous.
Firstly, we prove that T3 is continuous. Let €* > 0, the continuity of f; yields

3 = §(e*) such that |fi(t, s, z,y) — fi(t,s,u,y)| < € whenever ||z — u|| < 4, thus
if ||z — u|| <, we arrive at:

| Thia(t) = Thu(t) | < I/\1/0 fi(t,s,2(s),y(s5)) dsgn(t, s)

Y / f1(t,5,u(s), y(5)) dug (t,5) |
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1
¢ /Ods(\/gl(t,z))

z2=0
1
e / dug (t,5)
0

IN
>

<

< Aot 1) — i (t,0)]

< Xt 1) |+ 19:1(40) ]

< €Xfsup it 1) | +sup | g1(£,0) [] <€
tel tel

where € := €*A\p.
Therefore,
| Ty (t) — Thu(t) |[< e
This means that the operator T; is continuous.
By a similar way as done above we can prove that for any y, v € C[0,T] and
|y —v < d, we have

| Tgy(t) - Tgv(f) ‘S €.
Hence T5 is continuous operator.
The operators T; (i = 1,2) is continuous operator it imply that 7' is continuous
operator.
Since all conditions of Schauder fixed point theorem are satisfied, then T has at
least one fixed point u = (x,y) € U, which completes the proof. B

In what follows, we provide some examples illustrating the above obtained results.

Example : Consider the functions g; : I x I — R defined by the formula

tlnEs forte (0,1, sel
_ t sy 4]y )
gi(t,s) = {O, fort=0, sel.
g2(t,s) = tlt+s—1), tel.

It can be easily seen that the functions g1(¢,s) and g2(¢, s) satisfies assumptions
(iii)-(v) given in Theorem 1, and g; (¢, s) is function of bounded variation but it is
not continuous on I. In this case, the coupled system of Urysohn-Stieltjes integral
equations (2) has the form

bt
p1(t) + )\1/0 H—Sfl(t,s,x(s)w(s)) ds, tel

8
—

~
=

t
WO = pa) e [t sa(s)y(s) ds, e
0
Also, consider the functions f; : I x I x R? — R defined by the formula
filt,s,zy) =t+s+a+y,
fQ(tvsvxay) = t+$+(£2 7y2'
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Now, it can be easily seen that the functions f; and fo satisfies assumptions (ii)
given in Theorem 1:

|f1(t,s,a:7y)| < ‘t+8+.’17+y|

< t+s|+|z|+ ]yl
< 2T+ 2max{|z|,|y |}
And
| folt,s,zy) | < [t+s+a® -y
< ftds| 42—y
< 2T+ [(z—y)z+y) |
< 2T +2max{|z |,|y |}

Hence, k;(t,s) = 2T, and b; = 2
Therefore, the functions f; satisfies the assumption

| fit,s,2,y) |< kit s) + bi(max{| z |, | y [}).
Therefore, the coupled system (3) has at least one solution z,y € C]0, 1].
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