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TRANSLATION-FACTORABLE SURFACES IN THE
3-DIMENSIONAL EUCLIDEAN AND LORENTZIAN SPACES
SATISFYING Ar; = \ir;

SID AHMED DIFI, HAKEM ALI AND HANIFI ZOUBIR

ABSTRACT. This paper deals with the Translation-Factorable (TF) surfaces in
the 3-dimensional Euclidean space and Lorentzian-Minkowski space with the
condition Ar; = A\;7; where A denotes the Laplace operator. Our result will
be obtained for the complete classification theorems and give an explicit forms
of these surfaces.

1. INTRODUCTION

In 1983 B-Y Chen introduced the notion of Euclidian immersions of finite type.
Basically there are submanifolds whose into R™ is constructed by making use of
finite number of R™-valued eigenfunctions of their Lapalacian. Many works were
done to characterize the classification of submanifolds in terms of finite type. Im-
portant results about 2-type spherical closed submanifolds (where spherical means
into a sphere) have been obtained see [9].

A well known are the only surfaces in R? satisfying the condition

Ar=Xr AeR

where A is the Laplace operator associated with the induced metric.
On the other hand Garay [13] determined the complete surfaces of revolution in R?
whose component functions are eigenfunctions of their Laplace operator i.e.

Art=Xr' XN eR
Later Lopez [16] studied the hypersurfaces in R"*! verifing
Ar=\r AgRvHxntL

Kaimakamis and Papantounion [7] studied surfaces of revolution in the 3-dimensional
Lorentz-Minkowski space satisfying the condition

Aty = Ar

where Al is the Laplace operator with respect to the second fundamental form
and A is a real 3 x 3 array.
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Zoubir and Bekkar [8] classified the surfaces of revolution with non zero Gaussian
curvature K¢ in the 3-dimensional Euclidean space E? and Lorentzian-Minkowski
spaces under the condition

Art = N7’ A eR

Baba Hamed, Bekkar and Zoubir [4] determined the translation surfaces in the
3-dimensional Lorentz-Minkowski space E3, whose component functions are eigen-
functions of their Laplace operator. Baba Hamed, Bekkar [3] studies the helicoidal
surfaces without parabolic points in E$, which satisfy the condition

AIITZ' = )\i’f’

Bekkar and Senoussi [6] studied the factorable surfaces in the 3-dimensional Minkowski
space under the condition
AT’Z' = )\ﬂ’

where \; € R and dr; are the coordinate of the surface. There has been classification
of factorable surface in the 3-dimensional Lorentz-Minkowski Euclidian and pseudo-
Galilean space. Lopezand and Moruz [17] studied translation and homothetical
surfaces with constant minimal homothetical non degenerate surfaces in Euclidian
in E$

In this paper we classify the factorable surfaces in the 3-dimensional Euclidian
space E? and lorentzian E under the condition

A’/‘i = )\iri (1)
where \; € R

2. PRELIMINARIES
Let E2 be the 3-dimensional Euclidian space, equipped with the inner product
9(X,Y) = z1y1 + T2y + T3Y3

for X = (331,3321’3), Y= (y17y2ay3) € E3
Let E$ be the 3-dimensional Minkowski space, with the scalar product given by
gL, = —dz® + dy? + dz?

where (x,7, ) is a standard rectangular coordinate system of E3

Let r : M? — E3$ be an isometric immersion of a surface in the 3-dimensional
Lorentzian-Minkowski space.

A surface M? is said to be of finite type if every component of its position vector
field r can be written as a finite sum of eigenfunction of the Laplace A of M2, if

k
7“:7“0—&—5 T
i=1

Definition 2.1 (4-15). A surface M is a translation surface if it can be parametrized

by

z(u,v) = (u,v, f(u) + g(v)) (2)
Definition 2.2 (6-18). A surface M is a factorable surface if it can be parameterized
by

(u,v) = (u,v, f(u)g(v)) 3)



EJMAA-2018/6(2) TRANSLATION-FACTORABLE SURFACES IN THE 3-DIMENSIONAL 229

Next, we define an extended surface in E? using definitions we call it TF-type
surface as follows:

Definition 2.3. A surface M is a TF-type surface if it can be parameterized by
z(u,v) = (u,v, A(f(u) + g(v)) + Bf (u)g(v)), (4)

where A and B are non-zero real numbers.

Remark 2.4. In [4], we have if A # 0 and B = 0 in, then surface is a translation
surface. In [14], we have if A =0 and B # 0, then surface is a factorable surface.

For vector X = (w1, 72, 23) and Y = (y1,¥2,y3) in E}, the Lorentz scalar product
and the cross product are defined by :

gL = —T1Y1 + Tay2 + T3Y3
The Gauss curvature and the mean curvature are:
LN — M? EN +GL—-2FM
Kg = N.N) [ ———— =
¢ =9, )<EG—F> 9|EG — F?|
Let x%, 27 be a local coordinate system of M2. For the array (g;;) (i,7 = 1,2)

consisting of components of the induced metric on M?, we denote by (g*7) the
inverse matrix of the array (g; ;). Then the Laplacian operator A on M? is given

by:
\/lﬁZ (\ﬁgua ;) (5)

A vector V of E3 is said to be timelike if g, (V, V) < 0, spacelike if g7, (V,V) > 0 or
V = 0 and lightlike or null if g7 (V,V) = 0 and V # 0. A surface in E§ is spacelike,
timelike or lightlike if the tangent plane at any point is spacelike, timelike or lightlike
respectively [19].

3. TRANSLATION-FACTORABLE SURFACES IN E3
In this section, we consider surface in E3. Assume that M? is equivalent to

r(u,v) = (u,v, f(u)g(v) + f(u) + g(v)) (6)

the coefficients of the first fundamental form are:
=(flg+f)P+1 F=('g+/fgd+d) G=(fgd+g)+1
1
Ne —(—flg—f —fd —d.1
wf9— L —fg =4\ 1) (7)

the coefficients of the second fundamental form are:

o+ "y L9+ g +9d) v _ f9"+9"
w7 W ’ w

where W = \/(f'g+ f)2+ (fg' +¢)* +1

L =

The Laplacian A of M? is given by'
1 0? 0 0
ae g (r 2ol v (o gn g+ ) ®

ov? ou? W
Au = Au; Av = v A(f(u)g ( ) f u)+9(v)) = As(f(u)g(v)+ f(u)+g(v)) (9)

By using (1), (7) we get:

2f'g+ f)H = W (10)
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2(fg' +9g)H = WAav (11)
20 = -Ws(fg+f+9) (12)
Next, we explore the classification of the Translation-Factorable surfaces M? satis-

fying (1)

Case 1: Let A3 # 0.

I fg+f+9g=0,then H=0

(ii) If fg+ f + g # 0 we have:

(k1) If Ay = 0 and Ay # 0, equations (10) and (11) imply that:

_|_ 1)g//
— R—-—{-1 / H = (CL
f)=acR- (-1}, ¢#0 and H=""T1T
The system of equations (10), (11) and (12) becomes
(1+a)’g'g" = Xov((a+1)%¢? + 1) (13)

(1+a)g” = —As(ag +a+g)((a+1)°¢” +1)* (14)

Equation (14) is equivalent to
1 —Agv? EDY
g(v) = m —a* % (—1 < —/\2’02 + ag)\3 < 0)

Hence, the surface M? can be expressed by

“on2 L a2\
r|u,v,+ % (=1 < =Xv% +a%X3 < 0)
3

(k2) If A2 =0 and A\ # 0. Equations (10) and (11) imply that:

1 1
fluy=ceR—-{-1}, ¢ #0 and Hz%
The system of equations (10), (11) and (12), in this case takes the form
L+ f " = Xou((c+1)° f? + 1)? (15)
(L+o)f" = =Aslef + e+ (e +1)°f? +1)° (16)
Equation (16) is equivalent to
1 —Xou? + a?ls 2 2
f(u) = m —a * T (—1 < —AQ'U/ +a )\3 < 0)

Hence, the surface M? can be expressed by:

—Xou2 2 )\
r|u,v, £ w (=1 < =Xau? +a®\3 < 0)
3

(ks) If A1 # 0 and Ay # 0. Equations (10) and (11) imply that:

740 and ¢ #0
We multiply Equation (10) by fg¢’ + ¢’ and Equation (10) by f’g + f’, we obtain:
1
(f; Iu=YtD 5 e cerr (17)

g/
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Equations (10) and (12) imply that:

Mu=-X(fg+f+9)(f'g+f) (18)
equations (17) and (18) imply that:
—Xa(fg+f+g)°=e (19)

The functions f and g are constants, hence there are no Translation-Factorable
surfaces in this cases satisfying (1)
(k4) If Ay =0 and Ay = 0 equations (10) and (11) imply that:

ff=0 and ¢ =0

Hence A3 = 0. Therefore, there are no Translation-Factorable surfaces in this cases
satisfying (1)

Case 2: Let A3 = 0. Then, the equation (12) gives rise to H = 0 which means that
the surfaces are minimal. We get also by the equations (10) and (11): Ay = Ay =0
Finally:

Theorem 3.1. Let M? be a Translation-Factorable (TF) given by (6) in E3. Then
M? satisfies Ar; = Niri, (i=1;2;3) if and only if the following statements hold

(1) M? has zero mean curvature

(2) M? is parameterized as

o2 4 a2\
u,v, £ w (=1 < —Xv? +a?X3 < 0)
3

(3) M? is parameterized as

u,v, £ M (=1 < —Xu? +a*X3 < 0)
3

Translation-Factorable surfaces in E$. In this section, we consider surfaces in

E$ and we investigate the classification of the Translation-Factorable satisfying (1).

We distinguish EG — F2 > 0 or EG — F? < 0.

Suppose that M? is given by (6), the coefficients of the first and second fundamental

forms are:

E=(flg+f)-1L F=(g+f)fd+d); G=1+(fg+9)° (20

and

g+ 1" (f'g+Nfg +9) fg" +g"
L= . M = . N =
w w ’ w
The mean curvature H is
H=1/2W3H,

ngh%reQHl =1A+d+)Sg+ )+ g+ ) =D(f9"+9")—2(f+1)(g+
1)f"”?g
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Spacelike Translation-Factorable surfaces in E}. We investigate the spacelike
translation and factorable surfaces in E$.

If we use (5), the Laplacian A of M? is given by:

1 ( 0? 0? 0? ) 2H

_ 7 I = / /2_ !/ !
A_W2 E8v2+G8u2 2F3uav W<(fg +g)8v (Fg+71)

where W = VEG — F2.

Assume that EG — F? = (f'g + f')? — (f¢' + ¢’)? — 1 > 0, the metric of M? is
spacelike.

Then using (1), (20) and (21) we have:

0
u
(21)

W=(f'g+ f)Hy = Mu (22)
W(fg' + ¢ )H1 = = (23)
W= H, = X3(fg+ f +9) (24)

First, we examine the classification of the spacelike Translation-Factorable surfaces
M? satisfying (1).

Case 1: Let A3 = 0, then, the equation (24) gives rise to H; = 0 meaning that the
surface are minimal. We get also by the equations (22) and (23) A\; = Ay = 0.
Case 2: Let A3 # 0, then H; # 0 and hence we have necessarily by equation (22)
A # 0.

i) If Ao =0 we get (23) ,s0 g(v) =a, a € R—{-1}

In this case, the system of equations (22),(23) and (24) takes the form:

(a+1)*f'f" = Mu((a +1)°f? ~ 1) (25)
(a+1)f" = Xs(af + f+a)((a+1)*f? — 1) (26)
Using equation (26)
1 Aau? + a2l
flu) = ) — which such that Agu® + a*)\z3 < 1

=— | —a
(Cl + 1) )\3
So the parametrization of the surfaces can be written in the form:

Aou? + a?)g

r(u,v) = | u,v, ™

ii) If A2 # 0 we can rewrite the system as follow:

{ Ao(fg+g+f)=—alfg +7) (27)
Mu(fg+g+f)=a(f'g+f)

Equation (21) and (22) (a # —1) imply that:
Au=As(fg+ f+9)(f'g+f) (28)
From (27) and (28) we obtain:
a=X(fg+f+9)°

Therefore the functions f and g are constants assuming that there are no Translation-
Factorable surfaces in this case satisfying (1). Thus, we can give the following result:
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Theorem 3.2. Let M? be a spacelike Translation-Factorable (TF) given by (6) in
E$. Then M? satisfies Ar; = \iry, (i=1;2;3) if and only if the following statements
hold

(1) M? has zero mean curvature

(2) M? is parameterized as

/\2“2 + a2)\3

N (O < /\2u2 + a2)\3 < 1)

’r(u7 U) = u7/U7

Timelike Translation-Factorable surfaces in E3. In this section, we deal with
the spacelike translation-factorable surfaces in ES.
If we use (5) , the Laplacian A of M? is given by:

1 52 5?2 5?2 °OH (., , 8 . .0
W2<E81)2+G8u2_2F8u81))_W<(fg+g)81)_(fg+f)8u)

(29)
where W =+ F? — EG.
Assuming that EG — F? = (f'g+ f')* — (f¢’ + ¢')* — 1 < 0, the metric of M? is
timelike.
Then using (29) and (20) we get

Alu) = =W=4(f'g + f')H

Av) =W=(fg' +g¢')H (30)
Alfg+f+g)=-W*H,

A:

hence
Ar =W Hy(~f'g+ f', fg + ', -1) (31)
By (1) and (30) we obtain the following system of differential equations
W=(f'g + f')Hi = —\iu (32)
WA (fg' +g')Hi = Aov (33)
W Hy = Xs(fg+ f +9) (34)

We explore the classification of the timelike Translation-Factorable surfaces M?
satisfying (1.1) .

Case 1: Let A3 = 0, then, the equation (35) gives rise to H; = 0, which means that
the surfaces are minimal. We have also by the equations (33) and (34) A\; = A2 = 0.
Cases 2: Let A3 # 0.

D)If fg4+ f+9g=0, then H; =0

i) If fg+ f+4 g #0, in this case we have:

a) If A; =0 and Ay # 0 equations (33) and (34) imply that:

F'=0. g #0, andg"#0

It follows that f(u) =a, a € R — {1} and ¢'(v) is a non constant function.
The system (33), (34) and (35) is reduced to be equivalent to

—(a+1)%g'g" = Xav((a+1)%g* +1)° (35)

(a+1)g" = As(ag + g +a)((a+1)*f? +1)? (36)
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Equation (36) implies

1 —Agv2 2\
g(q}) [ —a + M

@+ " which such that 0 < —Xv? +a%\g < 1

So the parametrization of the surfaces can be written in the form:

7)\21}2 —+ a2>\3

y which such that 0 < —Xov? 4+ a%X\5 < 1
3

r(u,v) = | u,v,+
ii) If Ao = 0 and —A\v? + a?A3 # 0 then

§=0.  f A0 f#0
The system (33), (34) and (35) is reduce equivalently to

—(a+1)%¢'g" = Mu((a+1)%¢" + 1) (37)
—(a+1)f" = Xs(af + f +a)(1 — (a+1)*f?)? (38)
Hence
1 2 2
flu) = m —a + /\QUT_;:LAB which such that 0 < Au? + a’X3 < 1

So the parametrization of the surfaces can be written in the form

Aou? + a2)3

\ which such that Xou® + a*\g < 1
3

r(u,v) = | u,v,

c) If Ay = Ay =0 we have:

i) If f/ = ¢’ = 0imply Hy = 0. From (35) we obtain A3 = 0 which is a contradiction.
i) If f/=0and ¢’ # 0, then (34) gives g = 0, which is a contradiction.

iii) If f/ # 0 and ¢’ = 0, then (33) gives g = 0, which is a contradiction.

3) If Ay # 0 and A2 # 0, then

f'#0 g #0
We multiply Equation (33) by ¢'f + ¢’ and (34) by f'g + f’, and we obtain:

{ Av(fg+g+f)=alfg +9) (39)
Mu(fg+g+f)=—alf'g+f)

Equation (33) and (33) (a # —1) imply
Mu=X(fg+f+g)(fg+ 1) (40)
From (39) and (40) we obtain:
—a=Xs(fg+ f+9)?

The functions f and g are constants and hence there are no Translation-Factorable
surfaces in this case satisfying (1). Thus we can give the following result:
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Theorem 3.3. Let M? be a timelike Translation-Factorable (TF) given by (6) in
E$. Then M? satisfies Ar; = \iry, (i=1;2;3) if and only if the following statements
hold

(1) M? has zero mean curvature

(2) M? is parameterized as

w2 4 a2\
r(u,v) = | u,v,+ % (0 < —Xv? +a?X3 < 1)

3

(3) M? is parameterized as
Aou? + a?)
r(u,v) = | u,v, % (0 < Xou? +a?X3 < 1)
3
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