TRANSLATION-FACTORABLE SURFACES IN THE 3-DIMENSIONAL EUCLIDEAN AND LORENTZIAN SPACES SATISFYING $\Delta r_{i}=\lambda_{i} r_{i}$

SID AHMED DIFI, HAKEM ALI AND HANIFI ZOUBIR

Abstract

This paper deals with the Translation-Factorable (TF) surfaces in the 3-dimensional Euclidean space and Lorentzian-Minkowski space with the condition $\Delta r_{i}=\lambda_{i} r_{i}$ where Δ denotes the Laplace operator. Our result will be obtained for the complete classification theorems and give an explicit forms of these surfaces.

1. Introduction

In 1983 B-Y Chen introduced the notion of Euclidian immersions of finite type. Basically there are submanifolds whose into \mathbb{R}^{m} is constructed by making use of finite number of \mathbb{R}^{m}-valued eigenfunctions of their Lapalacian. Many works were done to characterize the classification of submanifolds in terms of finite type. Important results about 2-type spherical closed submanifolds (where spherical means into a sphere) have been obtained see [9].
A well known are the only surfaces in \mathbb{R}^{3} satisfying the condition

$$
\Delta r=\lambda r \quad \lambda \in \mathbb{R}
$$

where Δ is the Laplace operator associated with the induced metric.
On the other hand Garay [13] determined the complete surfaces of revolution in \mathbb{R}^{3} whose component functions are eigenfunctions of their Laplace operator i.e.

$$
\Delta r^{i}=\lambda^{i} r^{i} \quad \lambda^{i} \in \mathbb{R}
$$

Later Lopez [16] studied the hypersurfaces in \mathbb{R}^{n+1} verifing

$$
\Delta r=\lambda r \quad A \in \mathbb{R}^{n+1 * n+1}
$$

Kaimakamis and Papantounion [7] studied surfaces of revolution in the 3-dimensional Lorentz-Minkowski space satisfying the condition

$$
\Delta^{I I} r=A r
$$

where $\Delta^{I I}$ is the Laplace operator with respect to the second fundamental form and A is a real 3×3 array.

[^0]Zoubir and Bekkar [8] classified the surfaces of revolution with non zero Gaussian curvature K_{G} in the 3-dimensional Euclidean space \mathbf{E}^{3} and Lorentzian-Minkowski spaces under the condition

$$
\Delta r^{i}=\lambda^{i} r^{i} . \quad \lambda^{i} \in \mathbb{R}
$$

Baba Hamed, Bekkar and Zoubir [4] determined the translation surfaces in the 3-dimensional Lorentz-Minkowski space \mathbf{E}_{1}^{3}, whose component functions are eigenfunctions of their Laplace operator. Baba Hamed, Bekkar [3] studies the helicoidal surfaces without parabolic points in \mathbf{E}_{1}^{3}, which satisfy the condition

$$
\Delta^{I I} r_{i}=\lambda_{i} r
$$

Bekkar and Senoussi [6] studied the factorable surfaces in the 3-dimensional Minkowski space under the condition

$$
\Delta r_{i}=\lambda_{i} r
$$

where $\lambda_{i} \in \mathbb{R}$ and $\mathrm{d} r_{i}$ are the coordinate of the surface. There has been classification of factorable surface in the 3-dimensional Lorentz-Minkowski Euclidian and pseudoGalilean space. Lopezand and Moruz [17] studied translation and homothetical surfaces with constant minimal homothetical non degenerate surfaces in Euclidian in \mathbf{E}_{1}^{3}

In this paper we classify the factorable surfaces in the 3-dimensional Euclidian space \mathbf{E}^{3} and lorentzian \mathbf{E}_{1}^{3} under the condition

$$
\begin{equation*}
\Delta r_{i}=\lambda_{i} r_{i} \tag{1}
\end{equation*}
$$

where $\lambda_{i} \in \mathbb{R}$

2. Preliminaries

Let \mathbf{E}^{3} be the 3-dimensional Euclidian space, equipped with the inner product

$$
g(X, Y)=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

for $X=\left(x_{1}, x_{2} x_{3}\right), Y=\left(y_{1}, y_{2}, y_{3}\right) \in \mathbf{E}^{3}$
Let \mathbf{E}_{1}^{3} be the 3-dimensional Minkowski space, with the scalar product given by

$$
g_{L}=-d x^{2}+d y^{2}+d z^{2}
$$

where (x, y, z) is a standard rectangular coordinate system of \mathbf{E}_{1}^{3}
Let $r: \mathbf{M}^{2} \rightarrow \mathbf{E}_{1}^{3}$ be an isometric immersion of a surface in the 3-dimensional Lorentzian-Minkowski space.
A surface \mathbf{M}^{2} is said to be of finite type if every component of its position vector field r can be written as a finite sum of eigenfunction of the Laplace Δ of \mathbf{M}^{2}, if

$$
r=r_{0}+\sum_{i=1}^{k} r_{i}
$$

Definition 2.1 (4-15). A surface M is a translation surface if it can be parametrized by

$$
\begin{equation*}
x(u, v)=(u, v, f(u)+g(v)) \tag{2}
\end{equation*}
$$

Definition 2.2 (6-18). A surface M is a factorable surface if it can be parameterized by

$$
\begin{equation*}
x(u, v)=(u, v, f(u) g(v)) \tag{3}
\end{equation*}
$$

Next, we define an extended surface in \mathbf{E}^{3} using definitions we call it TF-type surface as follows:
Definition 2.3. A surface M is a TF-type surface if it can be parameterized by

$$
\begin{equation*}
x(u, v)=(u, v, A(f(u)+g(v))+B f(u) g(v)) \tag{4}
\end{equation*}
$$

where A and B are non-zero real numbers.
Remark 2.4. In [4], we have if $A \neq 0$ and $B=0$ in, then surface is a translation surface. In [14], we have if $A=0$ and $B \neq 0$, then surface is a factorable surface.

For vector $X=\left(x_{1}, x_{2}, x_{3}\right)$ and $Y=\left(y_{1}, y_{2}, y_{3}\right)$ in \mathbf{E}_{1}^{3}, the Lorentz scalar product and the cross product are defined by :

$$
g_{L}=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

The Gauss curvature and the mean curvature are:

$$
K_{G}=g_{L}(\mathbf{N}, \mathbf{N})\left(\frac{L N-M^{2}}{E G-F}\right), \quad H=\frac{E N+G L-2 F M}{2\left|E G-F^{2}\right|}
$$

Let x^{i}, x^{j} be a local coordinate system of \mathbf{M}^{2}. For the array $\left(g_{i, j}\right)(i, j=1,2)$ consisting of components of the induced metric on \mathbf{M}^{2}, we denote by $\left(g^{i, j}\right)$ the inverse matrix of the array $\left(g_{i, j}\right)$. Then the Laplacian operator Δ on \mathbf{M}^{2} is given by:

$$
\begin{equation*}
\Delta=\frac{-1}{\sqrt{|D|}} \sum_{i, j} \frac{\partial}{\partial x^{i}}\left(\sqrt{|D|} g^{i, j} \frac{\partial}{\partial x^{j}}\right) \tag{5}
\end{equation*}
$$

A vector V of \mathbf{E}_{1}^{3} is said to be timelike if $g_{L}(V, V)<0$, spacelike if $g_{L}(V, V)>0$ or $V=0$ and lightlike or null if $g_{L}(V, V)=0$ and $V \neq 0$. A surface in \mathbf{E}_{1}^{3} is spacelike, timelike or lightlike if the tangent plane at any point is spacelike, timelike or lightlike respectively [19].

3. Translation-factorable surfaces in \mathbf{E}^{3}

In this section, we consider surface in \mathbf{E}^{3}. Assume that \mathbf{M}^{2} is equivalent to

$$
\begin{equation*}
r(u, v)=(u, v, f(u) g(v)+f(u)+g(v)) \tag{6}
\end{equation*}
$$

the coefficients of the first fundamental form are:

$$
\begin{gather*}
E=\left(f^{\prime} g+f^{\prime}\right)^{2}+1, \quad F=\left(f^{\prime} g+f^{\prime}\right)\left(f g^{\prime}+g^{\prime}\right), \quad G=\left(f g^{\prime}+g^{\prime}\right)^{2}+1 \\
\mathbf{N}=\frac{1}{W}\left(-f^{\prime} g-f^{\prime},-f g^{\prime}-g^{\prime}, 1\right) \tag{7}
\end{gather*}
$$

the coefficients of the second fundamental form are:

$$
L=\frac{f^{\prime \prime} g+f^{\prime \prime}}{W}, \quad M=\frac{\left(f^{\prime} g+f^{\prime}\right)\left(f g^{\prime}+g^{\prime}\right)}{W}, \quad N=\frac{f g^{\prime \prime}+g^{\prime \prime}}{W}
$$

where $W=\sqrt{\left(f^{\prime} g+f^{\prime}\right)^{2}+\left(f g^{\prime}+g^{\prime}\right)^{2}+1}$
The Laplacian Δ of \mathbf{M}^{2} is given by:

$$
\begin{equation*}
\Delta=\frac{1}{W^{2}}\left(E \frac{\partial^{2}}{\partial v^{2}}+G \frac{\partial^{2}}{\partial u^{2}}-2 F \frac{\partial^{2}}{\partial u \partial v}\right)+\frac{2 H}{W}\left(\left(f^{\prime} g+f^{\prime}\right) \frac{\partial}{\partial u}+\left(f g^{\prime}+g^{\prime}\right) \frac{\partial}{\partial v}\right) \tag{8}
\end{equation*}
$$

$\Delta u=\lambda_{1} u ; \Delta v=\lambda_{2} v ; \Delta(f(u) g(v)+f(u)+g(v))=\lambda_{3}(f(u) g(v)+f(u)+g(v))$
By using (1), (7) we get:

$$
\begin{equation*}
2\left(f^{\prime} g+f^{\prime}\right) H=W \lambda_{1} u \tag{9}
\end{equation*}
$$

$$
\begin{gather*}
2\left(f g^{\prime}+g^{\prime}\right) H=W \lambda_{2} v \tag{11}\\
2 H=-W \lambda_{3}(f g+f+g) \tag{12}
\end{gather*}
$$

Next, we explore the classification of the Translation-Factorable surfaces \mathbf{M}^{2} satisfying (1)
Case 1: Let $\lambda_{3} \neq 0$.
(i) If $f g+f+g=0$, then $H=0$
(ii) If $f g+f+g \neq 0$ we have:
$\left(k_{1}\right)$ If $\lambda_{1}=0$ and $\lambda_{2} \neq 0$, equations (10) and (11) imply that:

$$
f(u)=a \in \mathbb{R}-\{-1\}, \quad g^{\prime} \neq 0 \quad \text { and } \quad H=\frac{(a+1) g^{\prime \prime}}{2 W^{3}}
$$

The system of equations (10), (11) and (12) becomes

$$
\begin{gather*}
(1+a)^{2} g^{\prime} g^{\prime \prime}=\lambda_{2} v\left((a+1)^{2} g^{\prime 2}+1\right)^{2} \tag{13}\\
(1+a) g^{\prime \prime}=-\lambda_{3}(a g+a+g)\left((a+1)^{2} g^{\prime 2}+1\right)^{2} \tag{14}
\end{gather*}
$$

Equation (14) is equivalent to

$$
g(v)=\frac{1}{(a+1)}\left(-a \pm \sqrt{\frac{-\lambda_{2} v^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad\left(-1<-\lambda_{2} v^{2}+a^{2} \lambda_{3}<0\right)
$$

Hence, the surface \mathbf{M}^{2} can be expressed by

$$
r\left(u, v, \pm \sqrt{\frac{-\lambda_{2} v^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad\left(-1<-\lambda_{2} v^{2}+a^{2} \lambda_{3}<0\right)
$$

$\left(k_{2}\right)$ If $\lambda_{2}=0$ and $\lambda_{1} \neq 0$. Equations (10) and (11) imply that:

$$
f(u)=c \in \mathbb{R}-\{-1\}, \quad g^{\prime} \neq 0 \quad \text { and } \quad H=\frac{(c+1) f^{\prime \prime}}{2 W^{3}}
$$

The system of equations (10), (11) and (12), in this case takes the form

$$
\begin{gather*}
(1+c)^{2} f^{\prime} f^{\prime \prime}=\lambda_{2} u\left((c+1)^{2} f^{\prime 2}+1\right)^{2} \tag{15}\\
(1+c) f^{\prime \prime}=-\lambda_{3}(c f+c+f)\left((c+1)^{2} f^{\prime 2}+1\right)^{2} \tag{16}
\end{gather*}
$$

Equation (16) is equivalent to

$$
f(u)=\frac{1}{(a+1)}\left(-a \pm \sqrt{\frac{-\lambda_{2} u^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad\left(-1<-\lambda_{2} u^{2}+a^{2} \lambda_{3}<0\right)
$$

Hence, the surface \mathbf{M}^{2} can be expressed by:

$$
r\left(u, v, \pm \sqrt{\frac{-\lambda_{2} u^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad\left(-1<-\lambda_{2} u^{2}+a^{2} \lambda_{3}<0\right)
$$

(k_{3}) If $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$. Equations (10) and (11) imply that:

$$
f^{\prime} \neq 0 \quad \text { and } \quad g^{\prime} \neq 0
$$

We multiply Equation (10) by $f g^{\prime}+g^{\prime}$ and Equation (10) by $f^{\prime} g+f^{\prime}$, we obtain:

$$
\begin{equation*}
\frac{(f+1)}{f^{\prime}} \lambda_{1} u=\frac{(g+1)}{g^{\prime}} \lambda_{2} v=e, \quad e \in \mathbb{R}^{*} \tag{17}
\end{equation*}
$$

Equations (10) and (12) imply that:

$$
\begin{equation*}
\lambda_{1} u=-\lambda_{3}(f g+f+g)\left(f^{\prime} g+f\right) \tag{18}
\end{equation*}
$$

equations (17) and (18) imply that:

$$
\begin{equation*}
-\lambda_{3}(f g+f+g)^{2}=e \tag{19}
\end{equation*}
$$

The functions f and g are constants, hence there are no Translation-Factorable surfaces in this cases satisfying (1)
$\left(k_{4}\right)$ If $\lambda_{1}=0$ and $\lambda_{2}=0$ equations (10) and (11) imply that:

$$
f^{\prime}=0 \quad \text { and } \quad g^{\prime}=0
$$

Hence $\lambda_{3}=0$. Therefore, there are no Translation-Factorable surfaces in this cases satisfying (1)
Case 2: Let $\lambda_{3}=0$. Then, the equation (12) gives rise to $H=0$ which means that the surfaces are minimal. We get also by the equations (10) and (11): $\lambda_{1}=\lambda_{2}=0$ Finally:

Theorem 3.1. Let \mathbf{M}^{2} be a Translation-Factorable (TF) given by (6) in \mathbf{E}^{3}. Then \mathbf{M}^{2} satisfies $\Delta r_{i}=\lambda_{i} r_{i}$, (i=1;2;3) if and only if the following statements hold
(1) \mathbf{M}^{2} has zero mean curvature
(2) \mathbf{M}^{2} is parameterized as

$$
\left(u, v, \pm \sqrt{\frac{-\lambda_{2} v^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad\left(-1<-\lambda_{2} v^{2}+a^{2} \lambda_{3}<0\right)
$$

(3) \mathbf{M}^{2} is parameterized as

$$
\left(u, v, \pm \sqrt{\frac{-\lambda_{2} u^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad\left(-1<-\lambda_{2} u^{2}+a^{2} \lambda_{3}<0\right)
$$

Translation-Factorable surfaces in \mathbf{E}_{1}^{3}. In this section, we consider surfaces in \mathbf{E}_{1}^{3} and we investigate the classification of the Translation-Factorable satisfying (1). We distinguish $E G-F^{2}>0$ or $E G-F^{2}<0$.
Suppose that \mathbf{M}^{2} is given by (6), the coefficients of the first and second fundamental forms are:

$$
\begin{equation*}
E=\left(f^{\prime} g+f^{\prime}\right)^{2}-1 ; \quad F=\left(f^{\prime} g+f^{\prime}\right)\left(f g^{\prime}+g^{\prime}\right) ; \quad G=1+\left(f g^{\prime}+g\right)^{2} \tag{20}
\end{equation*}
$$

and

$$
L=\frac{f^{\prime \prime} g+f^{\prime \prime}}{W} ; \quad M=\frac{\left(f^{\prime} g+f\right)\left(f g^{\prime}+g^{\prime}\right)}{W} ; \quad N=\frac{f g^{\prime \prime}+g^{\prime \prime}}{W}
$$

The mean curvature H is

$$
H=1 / 2 W^{-3} H_{1}
$$

Where $\left.H_{1}=\left(1+\left(f g^{\prime}+g^{\prime}\right)^{2}\right)\left(f^{\prime \prime} g+f^{\prime \prime}\right)+\left(f^{\prime} g+f^{\prime}\right)^{2}-1\right)\left(f g^{\prime \prime}+g^{\prime \prime}\right)-2(f+1)(g+$ 1) $f^{\prime 2} g^{\prime 2}$

Spacelike Translation-Factorable surfaces in \mathbf{E}_{1}^{3}. We investigate the spacelike translation and factorable surfaces in \mathbf{E}_{1}^{3}.
If we use (5), the Laplacian Δ of \mathbf{M}^{2} is given by:

$$
\begin{equation*}
\Delta=\frac{1}{W^{2}}\left(E \frac{\partial^{2}}{\partial v^{2}}+G \frac{\partial^{2}}{\partial u^{2}}-2 F \frac{\partial^{2}}{\partial u \partial v}\right)-\frac{2 H}{W}\left(\left(f g^{\prime}+g^{\prime}\right) \frac{\partial}{\partial v}-\left(f^{\prime} g+f^{\prime}\right) \frac{\partial}{\partial u}\right) \tag{21}
\end{equation*}
$$

where $W=\sqrt{E G-F^{2}}$.
Assume that $E G-F^{2}=\left(f^{\prime} g+f^{\prime}\right)^{2}-\left(f g^{\prime}+g^{\prime}\right)^{2}-1>0$, the metric of \mathbf{M}^{2} is spacelike.
Then using (1), (20) and (21) we have:

$$
\begin{gather*}
W^{-4}\left(f^{\prime} g+f^{\prime}\right) H_{1}=\lambda_{1} u \tag{22}\\
W^{-4}\left(f g^{\prime}+g^{\prime}\right) H_{1}=-\lambda_{2} v \tag{23}\\
W^{-4} H_{1}=\lambda_{3}(f g+f+g) \tag{24}
\end{gather*}
$$

First, we examine the classification of the spacelike Translation-Factorable surfaces \mathbf{M}^{2} satisfying (1).
Case 1: Let $\lambda_{3}=0$, then, the equation (24) gives rise to $H_{1}=0$ meaning that the surface are minimal. We get also by the equations (22) and (23) $\lambda_{1}=\lambda_{2}=0$.
Case 2: Let $\lambda_{3} \neq 0$, then $H_{1} \neq 0$ and hence we have necessarily by equation (22) $\lambda_{1} \neq 0$.
i) If $\lambda_{2}=0$ we get (23), so $g(v)=a, a \in \mathbb{R}-\{-1\}$

In this case, the system of equations (22),(23) and (24) takes the form:

$$
\begin{gather*}
(a+1)^{2} f^{\prime} f^{\prime \prime}=\lambda_{1} u\left((a+1)^{2} f^{\prime 2}-1\right)^{2} \tag{25}\\
(a+1) f^{\prime \prime}=\lambda_{3}(a f+f+a)\left((a+1)^{2} f^{\prime 2}-1\right)^{2} \tag{26}
\end{gather*}
$$

Using equation (26)

$$
f(u)=\frac{1}{(a+1)}\left(-a \pm \sqrt{\frac{\lambda_{2} u^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad \text { which such that } \lambda_{2} u^{2}+a^{2} \lambda_{3}<1
$$

So the parametrization of the surfaces can be written in the form:

$$
r(u, v)=\left(u, v, \pm \sqrt{\frac{\lambda_{2} u^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right)
$$

ii) If $\lambda_{2} \neq 0$ we can rewrite the system as follow:

$$
\left\{\begin{array}{l}
\lambda_{2} v(f g+g+f)=-a\left(f g^{\prime}+g^{\prime}\right) \tag{27}\\
\lambda_{1} u(f g+g+f)=a\left(f^{\prime} g+f^{\prime}\right)
\end{array}\right.
$$

Equation (21) and (22) ($a \neq-1$) imply that:

$$
\begin{equation*}
\lambda_{1} u=\lambda_{3}(f g+f+g)\left(f^{\prime} g+f^{\prime}\right) \tag{28}
\end{equation*}
$$

From (27) and (28) we obtain:

$$
a=\lambda_{3}(f g+f+g)^{2}
$$

Therefore the functions f and g are constants assuming that there are no TranslationFactorable surfaces in this case satisfying (1). Thus, we can give the following result:

Theorem 3.2. Let \mathbf{M}^{2} be a spacelike Translation-Factorable (TF) given by (6) in \mathbf{E}_{1}^{3}. Then \mathbf{M}^{2} satisfies $\Delta r_{i}=\lambda_{i} r_{i},(i=1 ; 2 ; 3)$ if and only if the following statements hold
(1) \mathbf{M}^{2} has zero mean curvature
(2) \mathbf{M}^{2} is parameterized as

$$
r(u, v)=\left(u, v, \pm \sqrt{\frac{\lambda_{2} u^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad\left(0<\lambda_{2} u^{2}+a^{2} \lambda_{3}<1\right)
$$

Timelike Translation-Factorable surfaces in \mathbf{E}_{1}^{3}. In this section, we deal with the spacelike translation-factorable surfaces in \mathbf{E}_{1}^{3}.
If we use (5), the Laplacian Δ of \mathbf{M}^{2} is given by:

$$
\begin{equation*}
\Delta=\frac{1}{W^{2}}\left(E \frac{\partial^{2}}{\partial v^{2}}+G \frac{\partial^{2}}{\partial u^{2}}-2 F \frac{\partial^{2}}{\partial u \partial v}\right)-\frac{2 H}{W}\left(\left(f g^{\prime}+g^{\prime}\right) \frac{\partial}{\partial v}-\left(f^{\prime} g+f^{\prime}\right) \frac{\partial}{\partial u}\right) \tag{29}
\end{equation*}
$$

where $W=\sqrt{F^{2}-E G}$.
Assuming that $E G-F^{2}=\left(f^{\prime} g+f^{\prime}\right)^{2}-\left(f g^{\prime}+g^{\prime}\right)^{2}-1<0$, the metric of \mathbf{M}^{2} is timelike.
Then using (29) and (20) we get

$$
\left\{\begin{array}{l}
\Delta(u)=-W^{-4}\left(f^{\prime} g+f^{\prime}\right) H_{1} \tag{30}\\
\Delta(v)=W^{-4}\left(f g^{\prime}+g^{\prime}\right) H_{1} \\
\Delta(f g+f+g)=-W^{-4} H_{1}
\end{array}\right.
$$

hence

$$
\begin{equation*}
\Delta r=W^{-4} H_{1}\left(-f^{\prime} g+f^{\prime}, f g^{\prime}+g^{\prime},-1\right) \tag{31}
\end{equation*}
$$

By (1) and (30) we obtain the following system of differential equations

$$
\begin{gather*}
W^{-4}\left(f^{\prime} g+f^{\prime}\right) H_{1}=-\lambda_{1} u \tag{32}\\
W^{-4}\left(f g^{\prime}+g^{\prime}\right) H_{1}=\lambda_{2} v \tag{33}\\
W^{-4} H_{1}=\lambda_{3}(f g+f+g) \tag{34}
\end{gather*}
$$

We explore the classification of the timelike Translation-Factorable surfaces \mathbf{M}^{2} satisfying (1.1) .
Case 1: Let $\lambda_{3}=0$, then, the equation (35) gives rise to $H_{1}=0$, which means that the surfaces are minimal. We have also by the equations (33) and (34) $\lambda_{1}=\lambda_{2}=0$. Cases 2: Let $\lambda_{3} \neq 0$.
i) If $f g+f+g=0$, then $H_{1}=0$
ii) If $f g+f+g \neq 0$, in this case we have:
a) If $\lambda_{1}=0$ and $\lambda_{2} \neq 0$ equations (33) and (34) imply that:

$$
f^{\prime}=0, \quad g^{\prime} \neq 0, \quad \text { and } g^{\prime \prime} \neq 0
$$

It follows that $f(u)=a, a \in \mathbb{R}-\{-1\}$ and $g^{\prime}(v)$ is a non constant function.
The system (33), (34) and (35) is reduced to be equivalent to

$$
\begin{gather*}
-(a+1)^{2} g^{\prime} g^{\prime \prime}=\lambda_{2} v\left((a+1)^{2} g^{\prime 2}+1\right)^{2} \tag{35}\\
(a+1) g^{\prime \prime}=\lambda_{3}(a g+g+a)\left((a+1)^{2} f^{\prime 2}+1\right)^{2} \tag{36}
\end{gather*}
$$

Equation (36) implies
$g(v)=\frac{1}{(a+1)}\left(-a \pm \sqrt{\frac{-\lambda_{2} v^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad$ which such that $0<-\lambda_{2} v^{2}+a^{2} \lambda_{3}<1$
So the parametrization of the surfaces can be written in the form:

$$
r(u, v)=\left(u, v, \pm \sqrt{\frac{-\lambda_{2} v^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad \text { which such that } 0<-\lambda_{2} v^{2}+a^{2} \lambda_{3}<1
$$

ii) If $\lambda_{2}=0$ and $-\lambda_{2} v^{2}+a^{2} \lambda_{3} \neq 0$ then

$$
g^{\prime}=0, \quad f^{\prime} \neq 0, \quad f^{\prime \prime} \neq 0
$$

The system (33), (34) and (35) is reduce equivalently to

$$
\begin{gather*}
-(a+1)^{2} g^{\prime} g^{\prime \prime}=\lambda_{1} u\left((a+1)^{2} g^{\prime 2}+1\right)^{2} \tag{37}\\
-(a+1) f^{\prime \prime}=\lambda_{3}(a f+f+a)\left(1-(a+1)^{2} f^{\prime 2}\right)^{2} \tag{38}
\end{gather*}
$$

Hence

$$
f(u)=\frac{1}{(a+1)}\left(-a \pm \sqrt{\frac{\lambda_{2} u^{2}+a^{2} \lambda_{3}}{2 \lambda_{3}}}\right) \quad \text { which such that } 0<\lambda_{2} u^{2}+a^{2} \lambda_{3}<1
$$

So the parametrization of the surfaces can be written in the form

$$
r(u, v)=\left(u, v, \pm \sqrt{\frac{\lambda_{2} u^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad \text { which such that } \lambda_{2} u^{2}+a^{2} \lambda_{3}<1
$$

c) If $\lambda_{1}=\lambda_{2}=0$ we have:
i) If $f^{\prime}=g^{\prime}=0$ imply $H_{1}=0$. From (35) we obtain $\lambda_{3}=0$ which is a contradiction.
ii) If $f^{\prime}=0$ and $g^{\prime} \neq 0$, then (34) gives $g=0$, which is a contradiction.
iii) If $f^{\prime} \neq 0$ and $g^{\prime}=0$, then (33) gives $g=0$, which is a contradiction.
3) If $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$, then

$$
f^{\prime} \neq 0 \quad g^{\prime} \neq 0
$$

We multiply Equation (33) by $g^{\prime} f+g^{\prime}$ and (34) by $f^{\prime} g+f^{\prime}$, and we obtain:

$$
\left\{\begin{array}{l}
\lambda_{2} v(f g+g+f)=a\left(f g^{\prime}+g^{\prime}\right) \tag{39}\\
\lambda_{1} u(f g+g+f)=-a\left(f^{\prime} g+f^{\prime}\right)
\end{array}\right.
$$

Equation (33) and (33) ($a \neq-1$) imply

$$
\begin{equation*}
\lambda_{1} u=\lambda_{3}(f g+f+g)\left(f^{\prime} g+f^{\prime}\right) \tag{40}
\end{equation*}
$$

From (39) and (40) we obtain:

$$
-a=\lambda_{3}(f g+f+g)^{2}
$$

The functions f and g are constants and hence there are no Translation-Factorable surfaces in this case satisfying (1). Thus we can give the following result:

Theorem 3.3. Let \mathbf{M}^{2} be a timelike Translation-Factorable (TF) given by (6) in \mathbf{E}_{1}^{3}. Then \mathbf{M}^{2} satisfies $\Delta r_{i}=\lambda_{i} r_{i},(i=1 ; 2 ; 3)$ if and only if the following statements hold
(1) \mathbf{M}^{2} has zero mean curvature
(2) \mathbf{M}^{2} is parameterized as

$$
r(u, v)=\left(u, v, \pm \sqrt{\frac{-\lambda_{2} v^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad\left(0<-\lambda_{2} v^{2}+a^{2} \lambda_{3}<1\right)
$$

(3) \mathbf{M}^{2} is parameterized as

$$
r(u, v)=\left(u, v, \pm \sqrt{\frac{\lambda_{2} u^{2}+a^{2} \lambda_{3}}{\lambda_{3}}}\right) \quad\left(0<\lambda_{2} u^{2}+a^{2} \lambda_{3}<1\right)
$$

References

[1] L. J. Alias, A. Ferrandez and P. Lucas, Surfaces in the 3-dimensional Lorentz-Minkowski space satisfying $\Delta x=A x+B$, Pacific J. Math. 156 (1992), 201?208.
[2] M.E.Aydin, A.O.Ogrenmis and M.Ergut, Classification of factorable surfaces in the pseudoGalilean 3-space, Glasnik Matematicki, 50(70) (2015), 441 ? 451.
[3] C. Baba-Hamed, M. Bekkar, Helicoidal surfaces of revolution in the 3-Dimensional LorentzMinkowski space satisfying $\Delta^{I I} r_{i}=\lambda_{i} r_{i}$, Int. J. Geom. 100, 1-10 (2011).
[4] C. Baba-Hamed, M. Bekkar, H. Zoubir, Translation surfaces of revolution in the 3Dimensional Lorentz-Minkowski space satisfying $\Delta r_{i}=\lambda_{i} r_{i}$, Int. Journal of Math. Analysis, Vol. 4, 2010, no. 17, 797-808.
[5] C.Baikoussis and L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Math. Messina Ser. II, 2(16) (1993), 31?42.
[6] Bekkar, M., Senoussi, B., Translation surfaces in the 3-dimensional space satisfying $\Delta^{I I I} r_{i}=$ $\mu_{i} r_{i}$ J. Geom., 103(2012), 367-374.
[7] M. Bekkar, B. Senoussi, Factorable surfaces in the 3-Dimensional Lorentz-Minkowski space satisfying $\Delta^{I I} r_{i}=\lambda_{i} r_{i}$, Int. J. Geom. 103 (2012), 17-29.
[8] M. Bekkar, H. Zoubir, Surfaces of revolution in the 3-Dimensional Lorentz-Minkowski space satisfying $\Delta r^{i}=\lambda^{i} r^{i}$, Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 24, 1173-1185.
[9] B. Chen, Total mean curvature and submanifolds of finite type, World Scientific, Singapore, 1983.
[10] B. Y. Chen, A report on submanifold of finite type, Soochow J. Math. 22 (1996), $117 ? 337$.
[11] M. Choi, On the Gauss map of surfaces of revolution in a 3-dimensional Minkowski space, Tsukuba J. Math. 19 (1995), 351?367.
[12] F. Dillen, J. Pas and L. Vertraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J. 13 (1990), 10 ?21.
[13] O. J. Garay, An extension of Takahashi?s theorem, Geom. Dedicata 34 (1990),105?112. [14] R.Lopez and M.Moruz, Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc. 52(3) (2015), 523?535.
[14] H. Liu, . Translation surfaces with dependent Gaussian and mean curvature in 3-dimensional spaces. (Chinese) J. Northeast Univ. Tech. 14 (1) (1993), 88-93.
[15] H. Liu. Translation surfaces with constant mean curvature in 3-dimensional spaces. J. Geom. 64 (1-2) (1999), 141-149.
[16] R. Lopez, Minimal translation surfaces in hyperbolic space. Beitr. Algebra Geom. 52 (1) (2011), 105-112.
[17] R.Lopez and M.Moruz, Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc. 52(3) (2015), 523?535.
[18] H. Meng and H. Liu, Factorable Surfaces in Minkowski 3-Space, Bull. Korean Math. Soc. 46(1) (2009), 155?169.
[19] H. Sachs, Isotrope Geometrie des Raumes, Vieweg Verlag, Braunschweig, 1990. [17] B.Senoussi and M. Bekkar, Helicoidal surfaces with $\Delta^{J} r=A r$ in 3-dimensional Euclidean space, Stud. Univ. Babes-Bolyai Math. 60(3) (2015), 437-448.
[20] I. Van de Woestyne, new characterization of the helicoids, Geometry and topology of submanifolds, V (Leuven/Brussels, 1992), 267?273, World Sci. Publ., River Edge, NJ, 1993.
[21] Y. Yu and H. Liu The factorable minimal surfaces, Proceedings of the Eleventh International Workshop on Differential Geometry, 33-39, Kyungpook Nat. Univ., Taegu,2007.

Sid Ahmed Difi
Djillali Liabes University, Faculty of Technology, Department of Basic Teaching in Science and Technology, 22000 Sidi Bel Abbes, Algeria

E-mail address: sidahmedmt@yahoo.fr
Hakem Ali
Djillali Liabes University, Faculty of Technology, Department of Basic Teaching in Science and Technology, 22000 Sidi Bel Abbes, Algeria

E-mail address: hakemali@yahoo.com
Hanifi Zoubir
Polytechnical School of Oran, Faculty of Technology, Department of Basic Teaching in Science and Technology, 31000 Oran, Algeria

E-mail address: zoubirhanifi@yahoo.fr

[^0]: 2010 Mathematics Subject Classification. 53A35, 53B30.
 Key words and phrases. Lorentz-Minkowski,Translation-Factorable (TF) surfaces, Curvature, Laplace operator, Spacelike, Timelike.

 Submitted March 28, 2017. Revised Jan. 13, 2018.

