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NUMERICAL SOLUTION OF OPTIMAL CONTROL PROBLEMS

USING BLOCK METHOD

S. ADAMU

Abstract. Forward-backward sweep approach is used to solve optimal control
problems utilizing a collocation hybrid second derivative block method using

polynomial approximate solution via pontryagin’s principle. The block method
is formulated from the discrete linear multistep methods. Also, the forward
algorithms, backward algorithm written. The stability properties of the block
method are analyzed and proved to be stable, convergent and of order 6. The
algorithm is implemented with a written MATLAB code, and three optimal
control problems are solved to test the accuracy of the approach, which the
numerical examples show that, forward-backward sweep methods together with

block method via Pontryagin’s principle are more accurate than when solving
optimal control problems with the traditional classical Runge-Kutta method.
This research work therefore established that block method can be combined

with forward backward sweep method using Pontryagin’s principle to solve
optimal control problems and produce more accurate result than using the
traditional classical Runge-Kutta method.

1. Introduction

Most mathematical models used in natural sciences and engineering are based on
Ordinary Dierential Equations (ODEs). Traditionally, solutions to these dier-
ential equations can be obtained using analytical methods, however, solutions to
certain dierential equations are very dicult except the approximate solution by
the application of numerical methods [1].

Optimal control problems can be used to model many classes of phenomena, such
as population dynamics, continuum mechanics of materials with memory, economic
problems, the spread of epidemics, non-local problems of diusion and heat con-
duction problem [2, 3].
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In this paper, we consider Optimal Control (OC) problem that optimizes the per-
formance index

min
u(·)

J [x(·), u(·)] =
∫ tf

t0

f(x, x(t), u(t))dt, (1.1)

subject to dynamic system

·
x = g(t, x(t), u(t)), x ∈ [t0, tf ], (1.2)

x(t0) = x0, x(tf ) is free and unrestricted.

J is the value of the functional to be optimized, x(t) and u(t) are real valued
functions, f(t, x, u) and g(t, x, u) are continuously dierentiable functions.

OC are applied in elds of ordinary dierential equations, partial dierential equa-
tions, discrete equations, stochastic dierential equations, integro dierence equa-
tions, combination of discrete and continuous systems, to solve problems of physical
systems, aerospace, economics and management, biology and medicine [4]. Thus,
OC with ODEs have wider applications in sciences and engineering, hence the meth-
ods for the solution of optimal control problems are important. Numerical methods
for solving equations (1.1) − (1.2) have enable the simulation of highly complex
real world scenarios [4, 5].

Forward Backward Sweep (FBS) is an iterative method named based on how the
algorithm solves the problems state and adjoint ODEs. Given an approximation
of the control function, FBS rst solves the state forward in time, then solves the
adjoint backward. Once it has found the state and adjoint functions, the control is
updated based on the Hamiltonian (H) and then the state, control, and adjoint are
tested for convergence against a user provided tolerance and depending on that,
the algorithm either starts the process over using the updated control or the algo-
rithm terminates with the nal approximations for the state, adjoint, and control
functions considered as the solution to the optimal control problem [6].

Forward-Backward Sweep methods are been used to take advantage of certain char-
acteristics of the optimality system. First, given an initial condition for the state
x but a nal time condition for the adjoint λ. Second, g is a function of t, x, and
u only. Values for λ are not needed to solve the dierential equation for x using a
standard ODE solver. Taking this into account, the method presented here is very
intuitive, it is generally referred to as the Forward-Backward Sweep methods [3].

Pontryagins maximum (or minimum) principle (PMP) is used in optimal control
theory to nd the best possible control for taking a dynamical system from one
state to another, especially in the presence of constraints for the state or input
controls [7].

This paper adopt forward-backword sweep methods. The process begins with an
initial guess on the control variable. Then, simultaneously, the state equations are
solved forward in time and the adjoint equations are solved backward in time. The
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control is updated by inserting the new values of states and adjoints into its char-
acterization, and the process is repeated until convergence occurs [4].

Considering related works, [3], [4] and [6] applied forward-backward sweep methods
using classical Runge–Kutta to solve optimal control problems with initial value
problems via Pontryagins principle. [8] developed higher derivative methods for
the solution of sti initial value problem of ODEs, second and higher derivative
methods are reported to be more eective and economical to implement.
In this research, we improve on the method of [6] by developing Hybrid Second
Derivative Block Method (HSDBM) for the solution of optimal control problems in
combination with forward backword sweep methods.

1.1. Necessary condition for the solution of optimal control problem. [6]

To solve basic optimal control problem, a set of necessary conditions must be sat-
ised. These conditions are derived from Hamiltonian, H, given as

H(t, x, u,λ) = f(t, x, u) + λg(t, x, u), (1.3)

where λ denotes the adjoint and is dependent on t, x and u.These conditions are;

∂H

∂u
= 0 at u∗ =⇒ fu + λgu = 0, optimality condition (1.4)

λ′ =
∂H

∂x
=⇒ λ′ = h(t, x,λ, u)− (fx + λgx), adjoint equation (1.5)

λ(t1) = 0. Transversality condition (1.6){
x′ = g(t1, x, u),
x(t0) = x0.

Dynamics of the state equation (1.7)

With these conditions, there is now a process on how to solve the standard problems.

2. Methodology

2.1. Development of Hybrid Second Derivative Block Method (HSDBM).

We considered a polynomial approximate solution of the form

y (x) =

k∑

n=0

anx
n, (2.1)

with rst and second derivative given as

y′(x) =
k∑

n=1

nanx
n−1, (2.2)

y′′(x) =
k∑

n=2

n(n− 1)anx
n−2, (2.3)

Evaluate equation (2.1) at point xn, equation (2.2) at
[
xn, xn+ 1

3
, xn+ 2

3
, xn+1

]
and

equation (2.3) at points [xn+ 2
3
, xn+1] to give
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


1 xn x2
n x3

n x4
n x5

n x6
n

0 1 2xn 3x2
n 4x3

n 5x4
n 6x5

n

0 1 2xn+ 1
3

3x2
n+ 1

3

4x3
n+ 1

3

5x4
n+ 1

3

6x5
n+ 1

3

0 1 2xn+ 2
3

3x2
n+ 2

3

4x3
n+ 2

3

5x4
n+ 2

3

6x5
n+ 2

3

0 1 2xn+1 3x2
n+1 4x3

n+1 5x4
n+1 6x5

n+1

0 0 2 6xn+ 2
3

12x2
n+ 2

3

20x3
n+ 2

3

30x4
n+ 2

3

0 0 2 6xn+1 12x2
n+1 20x3

n+1 30x4
n+1







a0
a1
a2
a3
a4
a5
a6




=




yn
fn

fn+ 1
3

fn+ 2
3

fn+1

gn+ 2
3

gn+1




.

2.1.1. Continuous scheme.

yn+t = α0(t)yn+β0(t)fn+β 1
3
(t)fn+ 1

3
+β 2

3
(t)fn+ 2

3
+β1(t)fn+1+γ 2

3
(t)gn+ 2

3
+γ1(t)gn+1,

(2.4)
where,

α0 = 1,

β0 (t) = − 1

240
t

960t− 1940t2 + 2115t3 − 1188t4 + 270t5 − 240


,

β 1
3
(t) =

9

16
t2

−80t+ 111t2 − 72t3 + 18t4 + 24


,

β 2
3
(t) =

27

80
t3

75t− 84t2 + 30t3 − 20


,

β1 (t) = − 1

240
t2

−10 480t+ 18 945t2 − 15 336t3 + 4590t4 + 2280


,

γ 2
3
(t) =

3

40
t2

−260t+ 435t2 − 324t3 + 90t4 + 60


,

γ1 (t) =
1

120
t2

−560t+ 1035t2 − 864t3 + 270t4 + 120


.

2.1.2. Discrete schemes.

When t = 1
3 ,

yn+ 1
3
= yn+

637

6480
hfn+

65

144
hfn+ 1

3
− 29

720
hfn+ 2

3
−1141

6480
hfn+1+

97

1080
h2gn+ 2

3
+

59

3240
h2gn+1.

(2.5)
When t = 2

3 ,

yn+ 2
3
= yn+

13

135
hfn+

5

9
hfn+ 1

3
+

7

45
hfn+ 2

3
− 19

135
hfn+1+

8

135
h2gn+ 2

3
+

2

135
h2gn+1.

(2.6)
When t = 1,

yn+1 = yn+
23

240
hfn+

9

16
hfn+ 1

3
+

27

80
hfn+ 2

3
+

1

240
hfn+1+

3

40
h2gn+ 2

3
+

1

120
h2gn+1.

(2.7)
Writing (2.5),(2.6) and (2.7) in block, we have

A(1)Ym+1 = A(0)Ym + hB(0)Fm + hB(1)Fm+1 + h2γ(1)Gm+1, (2.8)
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where,

Ym+1 =
[
yn+ 1

3
yn+ 2

3
yn+1

]T
, Ym = [yn−1 yn−2 yn]

T
, Fm = [fn−1 fn−2 fn]

T
,

Fm+1 =
[
fn+ 1

3
fn+ 2

3
fn+1

]T
, Gm+1 =

[
gn−1 gn+ 2

3
gn+1

]T
,

A(1) =




1 0 0
0 1 0
0 0 1


 , A(0) =




0 0 1
0 0 1
0 0 1


 , B(0) =




0 0
637

6480

0 0
13

135

0 0
23

240




,

B(1) =




65

144
− 29

720
−1141

6480

5

9

7

45
− 19

135

9

16

27

80

1

240




and γ(1) =




0
97

1080

59

3240

0
8

135

2

135

0
3

40

1

120




.

Representing(2.8) in table to give




0 0 0 0 0 0 0 0 0

1

3

637

6480

65

144
− 29

720
−1141

6480
0 0

97

1080

59

3240

2

3

13

135

5

9

7

45
− 19

135
0 0

8

135

2

135

1
23

240

9

16

27

80

1

240
0 0

3

40

1

120

23

240

9

16

27

80

1

240




.

2.2. Algorithm for FBS implementation of HSDM.

2.2.1. Forward algorithm.

for i = 1 : N
fn = f (ti, xi, ui)

fn+ 1
3
= f

(
ti +

1

3
h, xi +

1

3
h, ui +

ui+1 − ui

3

)

fn+ 2
3
= f

(
ti +

2

3
h, xi +

2

3
h, ui +

2

3
(ui+1 − ui)

)

fn+1 = f (ti + h, xi + h, ui+1)
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gn+ 2
3
= g

(
ti +

2

3
h, xi +

2

3
h, ui +

2

3
(ui+1 − ui)

)

gn+1 = g (ti + h, xi + h, ui+1)

X 1
3
= Xi+h

(
637

6480
fn +

65

144
fn+ 1

3
− 29

720
fn+ 2

3
− 1141

6480
fn+1

)
+h2

(
97

1080
gn+ 2

3
+

59

3240
gn+1

)

X 2
3
= Xi+h

(
13

135
fn +

5

9
fn+ 1

3
+

7

45
fn+ 2

3
− 19

135
fn+1

)
+h2

(
8

135
gn+ 2

3
+

2

135
gn+1

)

X1 = Xi+h

(
23

240
fn +

9

16
fn+ 1

3
+

27

80
fn+ 2

3
+

1

240
fn+1

)
+h2

(
3

40
gn+ 2

3
+

1

120
gn+1

)

K1 = f (ti, xi, ui) , K2 = f

(
ti +

1

3
h,X 1

3
, ui +

1

3
(ui+1 − ui)

)

K3 = f

(
ti +

2

3
h,X 2

3
, ui +

2

3
(ui+1 − ui)

)

K4 = f (ti + h,X1, ui+1)

X(i+ 1) = X(i) + h

(
23

240
K1 +

9

16
K2 +

27

80
K3 +

1

240
K4

)

2.2.2. Backward algorithm.

for i = 1 : N
i = N + 2− j

fn = f (ti, xi,λi, ui)

fn+ 1
3
= f

(
ti −

1

3
h, xi +

1

3
(xi+1 − xi) ,λi −

1

3
h, ui +

1

3
(ui+1 − ui)

)

fn+ 2
3
= f

(
ti −

2

3
h, xi +

2

3
(xi+1 − xi) ,λi −

2

3
h, ui +

2

3
(ui+1 − ui)

)

fn+1 = f (ti − h, xi−1,λi − h, ui − h)

gn+ 2
3
= g

(
ti −

2

3
h, xi +

2

3
(xi+1 − xi) ,λi −

2

3
h, ui +

2

3
(ui+1 − ui)

)

gn+1 = g (ti − h, xi−1,λi − h, ui − h)

λ 1
3
= λi−h

(
637

6480
fn +

65

144
fn+ 1

3
− 29

720
fn+ 2

3
− 1141

6480
fn+1

)
−h2

(
97

1080
gn+ 2

3
+

59

3240
gn+1

)

λ 2
3
= λi−h

(
13

135
fn +

5

9
fn+ 1

3
+

7

45
fn+ 2

3
− 19

135
fn+1

)
−h2

(
8

135
gn+ 2

3
+

2

135
gn+1

)

λ1 = λi −h

(
23

240
fn +

9

16
fn+ 1

3
+

27

80
fn+ 2

3
+

1

240
fn+1

)
−h2

(
3

40
gn+ 2

3
+

1

120
gn+1

)

K1 = f (ti, xi,λi, ui)

K2 = f

(
ti −

1

3
h, xi +

1

3
(xi+1 − xi) ,λ 1

3
, ui +

1

3
(xi+1 − xi)

)

K3 = f

(
ti −

2

3
h, xi +

2

3
(xi+1 − xi) ,λ 2

3
, ui +

2

3
(xi+1 − xi)

)

K4 = f (ti − h, xi−1,λ1, ui−1)

λ(i− 1) = λ(i)− h

(
23

240
K1 +

9

16
K2 +

27

80
K3 +

1

240
K4

)
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3. Stability Properties of the Method

3.1. Order of the block method. Evaluating equations (2.5) , (2.6) and (2.7) in
a Taylor series about xn gives

L [y (x) ;h] = yn+t−α0(t)yn−β0(t)fn−β 1
3
(t)fn+ 1

3
−β 2

3
(t)fn+ 2

3
−β1(t)n+1−γ 2

3
(t)gn+ 2

3
−γ1(t)gn+1 = 0,

where,

hp+1 ̸= 0 and p+ 1 = 7.

Therefore, the order of the HSDBM is p = [6, 6, 6]T with error constant

Error Constant =


− 1067

661 348 800
h7,− 59

41 334 300
h7,− 11

8164 800
h7

T
.

3.2. Zero-stability. Since the roots zs, s = 1, 2, 3, ...n of the rst characteristics
polynomial ρ (z) of HSDBM, dened by

ρ (λ) = det
[
A(1)λ−A(0)

]
= 0,

are λ = [0, 0, 1]
T
respectively. Hence the HSDBM is zero stable.

3.3. Consistency of the block method. Since the block method (2.8) has order
p = 6 > 1, therefore, the block method is consistent.

3.4. Convergence of the block method. The block method (2.8) is convergent
since it consistent and zero-stable.

3.5. Region of absolute stability of the block method. The region of absolute
stability of the block method is shown in Figure (1) below.

Figure 1. Region of Absolute Stability of HSDBM
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4. Numerical Experiment

We considered the following problems to test the eciency of the developed meth-
ods. It is assumed that T = 1.

NOTATIONS

The following notations are used in table (1) to (3)

x Point of Evaluation
HSDBM Hybrid Second Derivative Block Method
CRKM Classical Runge Kutta Method in [6] and [3]
Err Absolute Error

Example 4.1. [3]

min
u

∫ 1

0

u(t)2dt,

subject to

{
x′(t) = x(t) + u(t),

x(0) = 1, x(1) free,

with the optimal solution

x∗(t) ≡ et,

u∗(t) ≡ 0.

(a) Graph of FBS for HSDBM Example 1 (b) Graph of FBS for CRKM Example 1

Figure 2
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Solution 1.

Table 1: Result of State for Example 1
x Exact Sol. CRKM HSDBM Err in CRKM Err in HSDBM Err in [9]
0 1.0000e+00 1.0000e+00 1.0000e+00 0.0000 0.0000 0.0000
1 1.1052e+00 1.1052e+00 1.1052e+00 8.4742e-08 1.5743e-13 3.9618e-11
2 1.2214e+00 1.2214e+00 1.2214e+00 1.8731e-07 3.4817e-13 8.7570e-11
3 1.3499e+00 1.3499e+00 1.3499e+00 3.1051e-07 5.7709e-13 1.4517e-10
4 1.4918e+00 1.4918e+00 1.4918e+00 4.5756e-07 8.5043e-13 2.1392e-10
5 1.6487e+00 1.6487e+00 1.6487e+00 6.3210e-07 1.1748e-12 2.9552e-10
6 1.8221e+00 1.8221e+00 1.8221e+00 8.3830e-07 1.5583e-12 3.9191e-10
7 2.0138e+00 2.0138e+00 2.0138e+00 1.0809e-06 2.0091e-12 5.0532e-10
8 2.2255e+00 2.2255e+00 2.2255e+00 1.3652e-06 2.5375e-12 6.3825e-10
9 2.4596e+00 2.4596e+00 2.4596e+00 1.6974e-06 3.1553e-12 7.9354e-10
10 2.7183e+00 2.7183e+00 2.7183e+00 2.0843e-06 3.8747e-12 9.7445e-10

It can be observed from Table 1 that, the new method competes eectively with
the existing classical Runge-Kutta method and [9] in example 1, after 8 iterations.
From the absolute error, it shows that HSDBM give better approximation than the
existing CRKM and [9]. The results of absolute error of control for example 1 in the
existing classical Runge-Kutta method and the new method were all zero in example
1 since the exact solution of the control in example 1 is 0.

Example 4.2. [6]

min
u

1

2

∫ 1

0

x(t)2 + u(t)2dt,

subject to

{
x′(t) = −x(t) + u(t),

x(0) = 1,

with the optimal solution

x∗(t) =

√
2 cosh

√
2(t− 1)


− sinh

√
2(t− 1)


√
2 cosh

√
2

+ sinh

√
2
 ,

u∗(t) = − sinh
√

2(t− 1)


√
2 cosh

√
2

+ sinh

√
2
 .
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(a) Graph of FBS for HSDBM Example 2 (b) Graph of FBS for CRKM Example 2

Figure 3

Solution 2.

Table 2: Result of State for Example 2
x Exact Sol. CRKM HSDBM Err in CRKM Err in HSDBM Err in [9]
0 1.0000e+00 1.0000e+00 1.0000e+00 0.0000 0.0000 0.0000
1 8.7097e-01 8.6964e-01 8.7100e-01 1.3285e-03 3.0592e-05 1.2648e-04
2 7.5939e-01 7.5730e-01 7.5941e-01 2.0903e-03 1.4040e-05 1.9834e-04
3 6.6303e-01 6.6067e-01 6.6299e-01 2.3579e-03 3.7085e-05 2.2094e-04
4 5.7994e-01 5.7776e-01 5.7983e-01 2.1850e-03 1.1344e-04 1.9942e-04
5 5.0848e-01 5.0687e-01 5.0827e-01 1.6074e-03 2.0817e-04 1.3859e-04
6 4.4720e-01 4.4656e-01 4.4688e-01 6.4495e-04 3.1633e-04 4.2818e-05
7 3.9488e-01 3.9558e-01 3.9445e-01 6.9805e-04 4.3438e-04 8.3998e-05
8 3.5047e-01 3.5291e-01 3.4991e-01 2.4326e-03 5.5987e-04 2.3841e-04
9 3.1308e-01 3.1767e-01 3.1239e-01 4.5849e-03 6.9111e-04 4.1741e-04
10 2.8197e-01 2.8744e-01 2.8114e-01 5.4701e-03 8.2697e-04 6.1829e-04

Table 3: Result of Control for Example 2
x Exact Sol. CRKM HSDBM Err in CRKM Err in HSDBM Err in [9]
0 3.8582e-01 4.0195e-01 3.8020e-01 7.8777e-01 7.6602e-01 7.7892e-01
1 3.2806e-01 3.3938e-01 3.2347e-01 6.6744e-01 6.5153e-01 6.6222e-01
2 2.7687e-01 2.8368e-01 2.7316e-01 5.6055e-01 5.5003e-01 5.5880e-01
3 2.3123e-01 2.3368e-01 2.2826e-01 4.6492e-01 4.5949e-01 4.6659e-01
4 1.9023e-01 1.8834e-01 1.8789e-01 3.7856e-01 3.7812e-01 3.8375e-01
5 1.5303e-01 1.4669e-01 1.5124e-01 2.9972e-01 3.0428e-01 3.0862e-01
6 1.1890e-01 1.0785e-01 1.1759e-01 2.2675e-01 2.3649e-01 2.3971e-01
7 8.7152e-02 7.0989e-02 8.6248e-02 1.5814e-01 1.7340e-01 1.7564e-01
8 5.7149e-02 3.5300e-02 5.6597e-02 9.2449e-02 1.1375e-02 1.1513e-01
9 2.8291e-02 0.0000 2.8039e-02 2.8291e-02 5.6330e-02 5.6968-02
10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Again, it can be observed from Table 2 that, the new method competes eectively with
the existing classical Runge-Kutta method and [9] in example 2 after 3 iterations.
Table 3 show the results of absolute error of control for example 2 in the existing
classical Runge-Kutta method, [9] and the new method, it was also observed that
HSDBM perform better.
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Example 4.3. [6]

min
u

∫ 1

0

x(t) + u(t)dt,

subject to

{
x′(t) = 1− u(t),

x(0) = 1,

(a) Graph of FBS for HSDBM Example 3 (b) Graph of FBS for CRKM Example 3

Figure 4

Solution 3.

Table 4: Result of State for Example 3
x CRKM HSDBM [9]
0 1.0000e+00 1.0000e+00 1.0000e+00
1 1.1000e+00 1.1008e+00 1.0990e+00
2 1.2000e+00 1.2017e+00 1.1980e+00
3 1.3000e+00 1.3025e+00 1.2970e+00
4 1.4000e+00 1.4033e+00 1.3960e+00
5 1.5000e+00 1.5042e+00 1.4950e+00
6 1.6000e+00 1.6050e+00 1.5940e+00
7 1.7000e+00 1.7058e+00 1.6930e+00
8 1.8000e+00 1.8067e+00 1.7920e+00
9 1.9000e+00 1.9075e+00 1.8910e+00
10 2.0000e+00 2.0083e+00 1.9900e+00

Problem 3 has no exact solution, so only the results are presented. It can also be
observed from Table 4 that, the new method competes eectively with the existing
CRKM in example 3 and [9] after 3 iterations. The results of absolute error of
control for example 3 in the existing classical Runge-Kutta method, [9] and the new
method were all zero in example 3. This example 3 fail to perform in CRKM using
the code developed by [6], so our code for example 3 and the methods perform well
when compared to [6].
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5. Conclusion

The approximate optimal solution of both control and state functions are obtained
by applying forward backward sweep method and solving the necessary conditions
derived from Pontryagins minimum principles. HSDBM for the solution of optimal
control system with ODEs is developed using polynomial approximate solution and
implemented with the aid of a written MATLAB code. This approach gave a more
ecient method of higher order and with larger region of absolute stability as can
be seen in Figure 1. The basic properties of the block method is investigated and
found to be zero stable, consistent and convergent.

Finally, the eectiveness of the method is tested on some numerical examples and
compare the results with the results of Runge Kutta method and [9] as shown in
Table 1 to Table 4, and found to be more accurate. One of the advantage of optimal
control technique is that, it optimized the given performance index and if there is
change in the state, only the code needed to be adjusted in forward backward sweep.
Also, the use of Runge Kutta method as in [6] and [3] increases function evaluation,
hence block method give fewer function evaluation and also, higher order methods
can be developed easily. Therefore, the method developed in this research is faster,
more computationally stable, possess better rate of convergence and economical to
implement.
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