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ON SPATIO-TEMPORAL DYNAMICS OF COVID-19 EPIDEMIC SE1E2I1I2RS MODEL
INCORPORATING VIRUS MUTATIONS AND VACCINATIONS EFFECTS

A. A. ELSADANY1,2, SARAH ALJUAIDI 1 AMR ELSONBATY1,3, A. ALDURAYHIM1

ABSTRACT. This work is devoted to present temporal-only and spatio-temporal COVID-19 epidemic models
when virus mutations and vaccination influences are considered. Firstly, the proposed non-diffusive COVID-
19 model is introduced. The nonlinear incidence rate is employed to better model the strict measures forced
by governmental authorities to control pandemic spread. The immunity acquired by vaccinations are assumed
to be incomplete for realistic considerations. The existence, uniqueness and continuous dependence on initial
conditions are studied for the solution. The study of stability along with bifurcation analysis are carried out
to investigate the influences of variations in model’s parameters. Moreover, the basic reproduction number is
obtained for the proposed model. The stability regions for equilibrium points are depicted in space of parameters
to explore their effects. Secondly, the diffusive version of the model is considered where possible occurrence of
Turing instability is investigated. Finally, numerical simulations are employed to verify theoretical results of the
work.

1. INTRODUCTION

Mathematical models are used to describe, better interpret and understand the various behaviors observed
in nonlinear systems which arise in different disciplines of sciences such as engineering, biology, physics,
astronomy, chemistry, economy, ...etc. The mathematical formulation of natural and man-made systems usu-
ally leads to a dynamical system whose independent variable is time. The goal of dynamical systems theories
is to provide adequate tools to analyze and understand the nonlinear behaviors and the associated qualitative
changes with parameters variations in mathematical models of the several deterministic processes found in
life [1-9].
In general, dynamical systems can be classified into two main categories , namely, the iterated maps and
the differential equations [1-4]. The proper mathematical formulation of dynamical model depends on the
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nature of explored phenomena and systems. Bifurcation analysis is employed to examine critical values of
parameters at which the dynamical behavior of the nonlinear system undergoes qualitative changes. The bi-
furcation analysis of a dynamical system enables researchers to explore and predict possible stable/unstable
dynamics and relate them to different regions in space of parameters. Therefore, the theories and methods of
bifurcations along with numerical simulation techniques are inevitable tools for mathematicians, engineers,
theoretical ecologists, etc. The applications in the field of dynamical systems involve physical sciences ,
engineering, neuroscience, mathematical biology, epidemiology,financial systems, biomedical engineering
,wave propagation , chemical kinetics, astronomy and even the more recent machine learning schemes [1-12]

The study of infectious diseases is one of the old and interesting areas in mathematical biology [13, 14].
Epidemic models simulate infectious diseases spread based on specific assumptions on parameters and state
variables [15], and study how to eliminate and/or control disease spread.
Epidemic models usually classify human population into specific compartments according to their state and
response to the infectious disease. In most conventional epidemic models, there are Susceptible (S), Infected
(I), and Removed (R) individuals where the model in this case is denoted as SIR model [16, 17]. In other
cases, the recovered individuals can loss their immunity and return back to S compartment. The epidemic
model of this case is known as SIRS model. Mathematical models for epidemic forecasting can account for
diversity in the early growth dynamics of epidemics and gain a sufficient understanding of the mechanisms
at epidemics for rapid appreciation of potentially imperious situations then control them [18].

The Covid-19 pandemic, is a global pandemic induced by the Coronavirus (SARS-CoV-2) disease [19].
The first cases observed for this disease have been reported in December 2019 in Wuhan, Hubei, China
[20]. Subsequently, it results in a worldwide spread and thus it has been announced as a pandemic on 11
March 2020 by world health organization. The first COVID-19 positive cases in Saudi Arabia came from
Iran through Bahrain. They have been right away isolated and reported by the Ministry of Health as the first
confirmed cases in the Kingdom of Saudi Arabia [21]. It is confirmed that the disease may be asymptomatic
or may range from mild to very severe symptoms. According to the data gained in recent studies, the sever-
ity of the disease varies epidemiologically according to age, race and gender [22] and highly affects elderly
people and those with comorbidities. Several outbreaks have occurred in health care settings [23]. The most
observed symptoms for COVID-19 disease are cough, fever [24], vertigo, continued fatigue, and throb [24].
The highest peril of transmission may be caused by those having mild symptoms and not seeking medical
counsel or those who are infectious through the incubation period [25] which lasts from 1 to 14 days [26].
In order to slow down the infections and control their spread, most governments have conducted many mea-
sures. These measures include schools and universities closure, adopting online-learning, social distancing,
infected individuals isolation or quarantine, restricted travel, mall closure, curfew, mask wearing, exhort to
avoid touching the nose, mouth and eyes,... etc [27, 28, 29].

The most recent statistics reveal that around 827, 004 confirmed cases of COVID-19 have been reported
in Saudi Arabia with 9518 deaths cases. Several types of vaccines have been developed and used in the world
in the last two years such as Pfizer, Moderna and AstraZeneca. For example, the number of vaccine doses
administered in Saudi Arabia is 69, 198, 422 for 26, 983, 197 persons.

On other-hand, genetic changes or mutations of viruses are common phenomenon in epidemics. When
a virus replicates, the copying of composing genes may subject to copying errors. These genetic mutations
can accumulate within time and result in alterations in the proteins of virus surface or antigens. For example,
the Alpha coronavirus causes severe lower respiratory tract infections in elderly and the children , the Beta
coronavirus cause common cold [30] , and the Gamma has similar mutations to the Alpha and Beta strains
[31]. The Delta coronavirus mutation has an advanced rate of spread and infection compared with other the
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mutations [24]. Omicron is a highly infectious mutant strain of COVID-19 virus [32] where the reports from
the African Medical Association displayed that omicron is seven times more infectious than the delta [24].
The World Health Organization designated omicron as of major concern [33].

Efficient mathematical models have been introduced to study other infectious diseases. In [34], a time-
fractional order epidemic model of childhood diseases is solved by combining the classical homotopy pertur-
bation method and Elzaki transform. A vaccination strategy, which offers temporary immunity, is studied in
SIS epidemic model [35]. The reproduction number was found and its role of stability for equilibrium points
were analyzed. Moreover, the relation between the efficiency of the vaccination and the reproduction number
was investigated. The propagation of infection with a saturated incidence rate is considered in a discrete-time
SIS model [36]. In [37], the bifurcation theory and direct numerical continuation are applied on a discrete
Hindmarsh-Rose model, that describes neuronal behavior, to locate two-parameter bifurcation points. The
fractional mathematical model of spread of vector-bone diseases was analysed in [38]. The authors of [39]
studied discrete SIS model by assuming that the disease will not cause death where the vaccination program
is considered.

The motivations of this study are summarized as follows:
(1) The reports of WHO and other health organizations indicate that around one third of COVID-19 con-
firmed cases do not develop any noticeable symptoms although they can infect others. Thus, it is essential to
consider this point in the proposed COVID-19 model.
(2) Although there is a number of vaccines which have been approved and distributed in many countries, the
ongoing COVID-19 virus mutations and genetic variants of concern may reduce the effectiveness of vaccines
against them. Thus, it is essential to consider this issue in any realistic COVID-19 model.
(3) It is also observed that the COVID-19 pandemic waves can overwhelm emergency and medical services
in areas of infections and can even sweep the most advanced countries in short time. Thus, the aggressive and
strict control measures are inevitable to reduce the contact rate among infected and susceptible individuals.
This implies that any reliable model should involve nonlinear incidence rate terms which accurately realize
the influences of governmental actions on infection rates.
(4) The unrestricted movements of people between infected and non-infected regions can lead to a massive
increase in number of infections. In China, for example, the reduction of quarantine procedures for trav-
elers and closure policies for residents render the number of daily confirmed cases of COVID-19 around
29000 cases on December 23, 2022, compared with 121 confirmed cases on December 23, 2021. Hence, the
individuals’ movements and spatial influences should be considered to conduct more realistic modeling of
COVID-19 pandemic.
The present work presents a more realistic model for COVID-19 pandemic. The proposed model simultane-
ously considers the following real-world scenarios:
(1) The model comprises the influences of infected individuals who do not develop any noticeable symptoms
but can infect others.These state variables are separated from infectious state variables for individuals having
noticeable symptoms.
(2) The influences of virus mutations and genetic variants of COVID-19 virus are also covered in the present
model. The cases where efficacy of a vaccine is reduced by mutant strains of COVID-19 are also encom-
passed in the suggested model.
(3) The nonlinear incidence rate is adopted instead of the simple linear incidence rate. This accurately sim-
ulates the influences of governments control measures on infection rates of COVID-19 virus.
(4) The spatio-temporal influences are included in the proposed reaction-diffusion version of the model.
Therefore, the aim of the work is to present a more realistic COVID-19 model incorporating the influences of
vaccinations programs, which have been undertaken worldwide and the recent mutations of coronavirus. The
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nonlinear incidence rate of infection is adopted to involve the inhibition (psychological) effects. Moreover, the
random motion of individuals of different compartments are included by considering reaction-diffusion ver-
sion of the model. This paper is organized as follows: The SE1E2I1I2RS mathematical model is presented
in Section 2 followed by study of existence, uniqueness, and continuous dependence on initial conditions.
Analysis of stability and bifurcations is carried out in Section 3 and the basic reproduction number is attained
In Section 4. In Section 5, the diffusive COVID-19 model is introduced where Turing instability analysis is
conducted. Numerical simulations are employed in Section 6 to verify theoretical results. Final discussion
and conclusion are presented in Section 7.

2. THE PROPOSED NON-DIFFUSIVE MODEL

In this section, the proposed SE1E2I1I2RS COVID-19 epidemic model, which takes into account the
mutant COVID-19 virus and vaccination programs, see Fig.1, is introduced in the following form

Ṡ(t) = � − �0SE1 − �1SE2 −
�0SI1
1 + �I21

−
�1SI2
1 + �I22

+ �R − (v + d)S,

Ė1(t) = �0SE1 − (�1 + Ω1 + c1 + d)E1,
Ė2(t) = �1SE2 − (�2 + Ω2 + c2 + d)E2,

İ1(t) =
�0SI1
1 + �I21

+ �1E1 − (
1 + c1 + d)I1,

İ2(t) =
�1SI2
1 + �I22

+ �2E2 − (
2 + c2 + d)I2,

Ṙ(t) = Ω1E1 + Ω2E2 + 
1I1 + 
2I2 + vS − (� + d)R,

(1)

where the state variables [S(t), E1(t), E2(t), I1(t), I2(t), R(t)] and parameters of the model are describe in
Table 1. For the primal COVID-19 virus, the infection rate is �0, 
1 denotes the rate of conversion from the
infected state to the recover state, Ω1 refers to the rate of progression from the exposed state to the recovered
state. Also, �1 is the rate of conversion from the exposed state to the Infected state and the disease-related
death rate is denoted by c1. The associated rates for the mutant virus are �1, 
2,Ω2, �2 and c2. The parameter
� represents the birth rate whereas the disease-unrelated death rate is implemented by d. The parameter v
represents the vaccination rate of individuals whose state is transformed from susceptible to recovered state.
However, for more realistic consideration, it is assumed that the immunity of vaccinated people can be lost
by a rate of � in the way that they return back to susceptible state. When the number of COVID-19 infections
critically increases to high levels, the nonlinear incidence rates �i

1+�I21
, i = 0, 1 better reflect the strict mea-

sures forced by governmental authorities to control pandemic spread. The parameter � quantifies the strength
of governmental actions and represents the inhibition effects on epidemic spread.

2.1. Existence and uniqueness. The proposed model in (1) is written in the form

Ẋ(t) = �(X(t)),

t ∈ (0, T ],
where X(t) = [ S E1 E2 I1 I2 R ]T and the initial condition is X(0) = X0.
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FIGURE 1. Flow diagram for the proposed SE1E2I1I2RS COVID-19 epidemic model.

The solution of the above initial value problem can be expressed as

X(t) = X0 + ∫

t

0
�(X(�))d�. (2)

The existence of this solution is investigated in the region � × J where

� = {X(t) ∶ max [|�|] < �},

J = (0, T ],

where � denotes state variables of the model. From the equivalence between integral equation (2) and the
model system (1), and by referring to the right hand side of (2) as Ψ(X), we get

Ψ(X1) − Ψ(X2) = ∫

t

0
(�(X1(�)) −�(X2(�)))d�.

The modulus is taken for both sides to obtain

|

|

Ψ(X1) − Ψ(X2)|| ≤ ∫

t

0
|

|

(�(X1(�)) −�(X2(�)))|| d�,

which can be expressed as
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TABLE 1. Definition of variables/parameters of the model.

Variable /Parameter Definition
S(t) Number of susceptible population
E1(t) Number of exposed to non-mutant virus population
E2(t) Number of exposed to mutant virus population
I1(t) Number of infected to non-mutant virus population
I2(t) Number of infected to mutant virus population
R(t) Number of recovered / removed population
� The rate of birth
d disease unrelated death rate
�0 Non-mutant COVID-19 virus infection rate
�1 Mutant COVID-19 virus infection rate
c1 Non-mutant disease-related death rate
c2 Mutant virus disease-related death rate
�1 Transformation rate from the exposed to non-mutant virus state to the infected state
�2 Transformation rate from the exposed to mutant virus state to the infected state
Ω1 Transformation rate from the exposed to non-mutant virus state to the recover state
Ω2 Transformation rate from the exposed to mutant virus state to the recover state

1 Transformation rate from the infected by non-mutant virus state to the recover state

2 Transformation rate from the infected by mutant virus state to the recover state
v The rate of people that have been vaccinated
� The loss of acquired immunity rate
� Governmental action strength (inhibition effect)

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

|

|

S1(t) − S2(t)|| ≤ ∫ t0 ||(�1(X1(�)) −�1(X2(�)))|| d�
|

|

E11(t) − E12(t)|| ≤ ∫ t0 ||(�2(X1(�)) −�2(X2(�)))|| d�
|

|

E21(t) − E22(t)|| ≤ ∫ t0 ||(�3(X1(�)) −�3(X2(�)))|| d�
|

|

I11(t) − I12(t)|| ≤ ∫ t0 ||(�4(X1(�)) −�4(X2(�)))|| d�
|

|

I21(t) − I22(t)|| ≤ ∫ t0 ||(�5(X1(�)) −�5(X2(�)))|| d�
|

|

R1(t) − R2(t)|| ≤ ∫ t0 ||(�6(X1(�)) −�6(X2(�)))|| d�
where X1(�) = [S1, E11, E21, I11, I21, R1]T and X2(�) = [S2, E12, E22, I12, I22, R2]T .

Employing the two facts that
|

|

�0S1E11 − �0S2E12|| = |

|

�0S1E11 − �0S1E12 + �0S1E12 − �0S2E12||

≤ �0� |

|

E11 − E12|| + �0� |

|

S1 − S2|| , 0 < 1
1 + �I2i

≤ 1, i = 1, 2

then the following inequality is attained
‖

‖

Ψ(X1) − Ψ(X2)‖‖ ≤ � ‖
‖

X1 −X2‖‖ ,

� =Tmax{2v + d + 4(�0 + �1)�, 2�1 + 2Ω1 + c1 + d + 2�0�, 2�2 + 2Ω2 + c2 + d + 2�1�,
2
1 + c1 + d + 2�0�, 2
2 + c2 + d + 2�1�, 2� + d}

Note the supremum norm is utilized for the class ofC1differentiable continuous functions on J .
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Now we can formulate the next theorem about the sufficient condition for existence and uniqueness of the
model (1).
Theorem 1 Assume that � = Tmax{2v + d + 4(�0 + �1)�, 2�1 + 2Ω1 + c1 + d + 2�0�, 2�2 + 2Ω2 + c2 +
d + 2�1�, 2
1 + c1 + d + 2�0�, 2
2 + c2 + d + 2�1�, 2� + d} < 1, then the solution of system (1) exists and
it is unique on � × J .
Proof. For � < 1, the mapping X = Ψ(X) is a contraction mapping and consequently the theorem follows
directly from the fixed point theorem. ■

2.2. Continuous dependence of initial conditions. Theorem 3 Suppose that the condition in Theorem 1 is
satisfied, then the solution of system (1) exhibit continuous dependence on intial conditions that is for every
� > 0 there exists � > 0 such that for two initial conditionsX01, X02 satsfying ||X01 −X02|| < �, the solution
trajectories achieve |

|

X1(t) −X2(t)|| < �.
Proof. The two solutions of the system (1) which start from the two close initial conditionsX01andX02with

0 < |

|

X01 −X02|| < �,

can be expressed as

X1(t) = X01 + ∫

t

0
�(X1(�))d�,

X2(t) = X02 + ∫

t

0
�(X1(�))d�.

Therefore, we get
‖

‖

X1 −X2‖‖ ≤ ‖

‖

X01 −X02‖‖ + � ‖‖X1 −X2‖‖ ,

(1 − �) ‖
‖

X1 −X2‖‖ ≤ ‖

‖

X01 −X02‖‖ ,

where 0 < � < 1 as indicated above.
Put � = �

1−� ,then it is follows that

0 < ‖

‖

X1 −X2‖‖ < �,

whenever

0 < |

|

X01 −X02|| < �.

■

3. STABILITY AND BIFURCATION ANALYSIS

3.1. Stability analysis. The proposed model (1) has the following disease-free equilibrium point which cor-
responding to the disappearing of E1, E2, I1and I2

Λ = (
(d + �)�

d(d + v + �)
, 0, 0, 0, 0,

v�
d(d + v + �)

)
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Define the functions f1, f2, f3, f4, f5 and f6 as follows:

f1 = � − �0SE1 − �1SE2 −
�0SI1
1 + �I21

−
�1SI2
1 + �I22

+ �R − (v + d)S,

f2 = �0SE1 − (�1 + Ω1 + c1 + d)E1,
f3 = �1SE2 − (�2 + Ω2 + c2 + d)E2,

f4 =
�0SI1
1 + �I21

+ �1E1 − (
1 + c1 + d)I1,

f5 =
�1SI2
1 + �I22

+ �2E2 − (
2 + c2 + d)I2,

f6 = Ω1E1 + Ω2E2 + 
1I1 + 
2I2 + vS − (� + d)R.

(3)

Then define the following Jacobian matrix J in the form:

J =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

f1S f1E1 f1E2 f1I1 f1I2 f1R
f2S f2E1 f2E2 f2I1 f2I2 f2R
f3S f3E1 f3E2 f3I1 f3I2 f3R
f4S f4E1 f4E2 f4I1 f4I2 f4R
f5S f5E1 f5E2 f5I1 f5I2 f5R
f6S f6E1 f6E2 f6I1 f6I2 f6R

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where

f1S = −d − v − E1�0 − E2�1 −
I1�0
1 + I41�

−
I2�1
1 + I42�

, f1E1 = −S�0, f1E2 = −S�1,

f1I1 =
2I21S��0
(1 + I21�)

2
, f1I2 =

2I22S��1
(1 + I22�)

2
, f1R = �,

f2S = E1�0, f2E1 = −c1 − d + S�0 − �1 − Ω1, f2E2 = 0, f2I1 = 0, f2I2 = 0, f2R = 0,
f3S = E1�1, f3E1 = 0, f3E2 = −c2 − d + S�1 − �2 − Ω2, f3I1 = 0, f3I2 = 0, f3R = 0

f4S =
I1�0
1 + I21�

, f4E1 = �1, f4E2 = 0, f4I1 = −c1 − d −
2I21S��0
(1 + I21�)

2
+

S�0
1 + I21�

− 
1, f4I2 = 0, f4R = 0

f5S =
I2�1
1 + I22�

, f5E1 = 0, f5E2 = �2, f5I1 = 0, f5I2 = −c2 − d −
2I22S��1
(1 + I22�)

2
+

S�1
1 + I22�

− 
2, f5R = 0

f6S = v, f6E1 = Ω1, f6E2 = Ω2, f6I1 = 
1, f6I2 = 
2, f6R = −d − �

The Jacobian matrix for the model (1) evaluated at disease free state is given by:

J (Λ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−d − v −�0Υ −�1Υ −�0Υ −�1Υ �
0 −c1d + �0Υ − �1 − Ω1 0 0 0 0
0 0 −c2d + �1Υ − �2 − Ω2 0 0 0
0 �1 0 −c1d + �0Υ − 
1 0 0
0 0 �2 0 −c2d + �1Υ − 
2 0
v Ω1 Ω2 
1 
2 −d − �

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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where Υ = (d+�)�
d(d+v+�) .

The eigenvalues � of the matrix J (Λ) are computed by solving the associated characteristic polynomial

(d + �)(d + v + � + �)(d(d + v + �)(c1 + d + 
1 + � − �0(d + �)�)(d(d + v + �)(c2 + d + 
2 + �) − �1(d + �)�)

(d3 + c1d(d + v + �) − d�0� − �0�� + d(v + �)(� + �1 + Ω1) + d2(v + � + � + �1 + Ω1))

(d3 + c2d(d + v + �) − d�1� − �1�� + d(v + �� + �2 + Ω2 + d2(v + � + � + �2 + Ω2)) = 0.
(4)

The following eigenvalues can be then attained:

�1 = −d, �2 = −d − v − �, �3 = −
d3 + c1d(d + v + �) + d2(v + 
1 + �) − �0�� + d(v
1 + 
1� − �0�)

d(d + v + �)
,

�4 = −
d3 + c2d(d + v + �) + d2(v + 
2 + �) − �1�� + d(v
2 + 
2� − �1�)

d(d + v + �)
,

�5 = −
d3 + c1d(d + v + �) − d�0� − d�0�� + d(v + �)(�1Ω1) + d2(v + � + �1 + Ω1)

d(d + v + �)
,

�6 = −
d3 + c2d(d + v + �) − d�1� − d�1�� + d(v + �)(�2Ω2) + d2(v + � + �2 + Ω2)

d(d + v + �)
If �1, �2, �3, �4, �5 and�6 are negative or have negative real parts then the disease free equilibrium point is
locally asymptotic stable.
The endemic equilibrium point has very complicated form which render numerical investigation necessary
to examine it. We use numerical simulation to find stability regions in space of parameters of the model in
numerical simulations section.

3.2. Bifurcation analysis. Sotomayor’s theorem is employed to explore the type of bifurcation which can
be found in the proposed model.

Theorem 3.1. Define

Υ = Df |(x=x0,�=�0)
and suppose thatΥ has a single zero eigenvalue with V ,D being the left and right eigenvectors, respectively,
i.e ΥV = 0 and W Υ = 0

Define also the following coefficients for the model

A = 1
V .W

W .
)f
)�

|(x=x0,�=�0),

B = 1
V .W

n
∑

i,j,k=1
WiVjVk(.

)2fi
)xj)xk

)|(x=x0,�=�0),

C = 2
V .W

n
∑

i,j=1
WiVj(.

)2fi
)xj)�

)|(x=x0,�=�0).

(5)

Then, if A = 0 and B ≠ 0 ≠ C , the model undergoes transcritical bifurcation at the critical parameter
� = �0
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Consider the disease-free equilibrium point of the system (1). There is a critical value for parameter �0 at

�0 =
d(c1 + d + 
1)(d + v + �)

(d + �)�
. Hence, we can find

V =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
−c1d − d2 − d
1 − c1� − d�

c1v + dv + d
1
0
0

− d2 + dv + d�
c1v + dv + d
1

0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, W =
[

0
�1

−
1 + �1 + Ω1
0 1 0 0

]

,

and then V .W = − d2 + dv + d�
c1v + dv − d
1

.

The critical coefficients are obtained as follows
A = 0 , B =

2d(c1 + d + 
1)(d + v + �)(c1(d + �)) + d(d + 
1 + �)
(c1v + d(v − 
1)(d + �)�

and C =
2(d + �)�
d(d + v + �)

and thus the type of bifurcation is transcritical bifurcation.

Now, consider the critical parameter value of �1 which occurs at �1 =
d(c2 + d + 
2)(d + v + �)

(d + �)�
. The

associated eigenvectors are determined as

V =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
−c2d − d2 − d
2 − c2� − d�

c2v + dv + d
2
0
0

− d2 + dv + d�
c2v + dv + d
2

0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, W =
[

0
�2

−
2 + �2 + Ω2
0 1 0 0

]

,

with
V .W = − d2 + dv + d�

c2v + dv − d
2
.

The corresponding critical coefficients are computed as

A = 0 , B =
2d(c2 + d + 
2)(d + v + �)(c2(d + �)) + d(d + 
2 + �)

(c2v + d(v − 
2)(d + �)�
and C =

2(d + �)�
d(d + v + �)

and the bifurcation is a transcritical too.

Finally, the possible bifurcation at the critical value of 
1 that is given by


1 = −
d3 + d2(v + �) + c1d(d + v + �) − d�0� − �0��

d(d + v + �)
is also examined. It is found that
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V =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−
c1d� − d2� − c1v� − dv� − c1�2 − d�2 − d�0� − �0��

c1d2 + d3 + 2c1dv + 2d2v + c1v2 + dv2 + c1d� + c1v� + dv� − d�0� − �0��
0
0

− d3 + 2d2v + dv2 + 2d2� + 2dv� + d�2

c1d2 + d3 + c1dv + 2d2v + c1v2 + dv2 + c1d� + d2� + c1v� + dv� − d�0� − �0��
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

W =
[

0
d(d + v + �)�1

d3 + c1d(d + v + �) − d�0� − �0�� + d(v + �)(�1 + Ω1) + d2(v + � + �1 + Ω1)
0 1 0 0

]

,

V .W = −
d(d + v + �)2

d3 + c1(d + v)(d + v + �) + d2(2v + �) − �0�� + d(v2 + v� − �0�)
Also, we get,

B =
2�0(d2� + c1�(d + v + �) + �0�� + d(v� + �2 + �0�))

d3 + c1(d + v)(d + v + �) + d2(2v + �) − �0�� + d(v2 + v� − �0�)
and C = −2. Then, the bifurcation is a transcritical bifurcation.

Numerical experiments are employed to verify above results in numerical simulations section.

4. BASIC REPRODUCTION NUMBER

In model (1), the state variables S1(t), S2(t) and R(t) represent the disease free compartments. On other
side, the state variables E1(t),E2(t),I1(t),and I2(t) represent the infected compartments. The basic repro-
duction number R0 is defined as the expected number of infection cases which can be caused by a single
infected individual when all individuals in the population are susceptible to infection. It is a crucil parameter
in epidemic model and can be used to indicate the possible long-term behaviour of the epidemic system. For
R0 > 1, the presence infected individual can start spreading the infection in the population. The spread of
the infection can be suppressed if R0 < 1. From practical point of view, the large value of R0 implies that it
is harder to control the pandemic.

Several techniques are used to estimate the value of R0, and in particular, the well-known next generation
matrix scheme has been widely employed in epidemics, see [40, 41, 42] and references therein. The system
(1) can be expressed as

dX
dt

= �1(X) − �2(X),

where

�1(X) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
�0SE1
�1SE2
�0SI1
1+�I21
�1SI2
1+�I22
0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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�2(X) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−� + �0SE1 + �1SE2 +
�0SI1
1+�I21

+ �1SI2
1+�I22

− �R + (v + d)S

(�1 + Ω1 + c1 + d)E1
(�2 + Ω2 + c2 + d)E2
−�1E1 + (
1 + c1 + d)I1
−�2E2 + (
2 + c2 + d)I2

−Ω1E1 − Ω2E2 − 
1I1 − 
2I2 − vS + (� + d)R

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Now, considering the disease free equilibrium point, the transmissions matrix �1 and transitions matrix
Π2 are obtained as follows

�1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�0(d+�)�
d(d+v+�) 0 0 0
0 �1(d+�)�

d(d+v+�) 0 0
0 0 �0(d+�)�

d(d+v+�) 0
0 0 0 �1(d+�)�

d(d+v+�)

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

�2 =

⎛

⎜

⎜

⎜

⎝

c1 + d + �1 + Ω1 0 0 0
0 c1 + d + �2 + Ω2 0 0
−�1 0 c2 + d + 
1 0
0 −�2 0 c2 + d + 
2

⎞

⎟

⎟

⎟

⎠

.

The inverse of�2is found as follows

�−1
2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
c1+d+�1+Ω1

0 0 0

0 1
c1+d+�2+Ω2

0 0
�1

(c2+d+
1)(c1+d+�1+Ω1)
0 1

c2+d+
1
0

0 �2
(c2+d+
2)(c1+d+�2+Ω2)

0 1
c2+d+
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

,

and consequently we can get�1�−1
2 The estimated basic reproduction number is given by

R0 =Max{
�0(d + �)�

d(d + v + �)(c1 + d + �1 + Ω1)
,

�0(d + �)�
d(c2 + d + 
1)(d + v + �)

,

�1(d + �)�
d(d + v + �)(c1 + d + �2 + Ω2)

,
�1(d + �)�

d(c2 + d + 
2)(d + v + �)
}.

5. THE DIFFUSIVE COVID-19 MODEL

As the model (1) considers an evolution between humans, it is of interest to analyse the spatial spread of
those populations. This can be done by adding diffusion terms that gives a reaction diffusion version of the
model 1.

The diffusion of the populations will be studied in two spatial dimensions. That is we will add ∇2 =
)2

)x2 +
)2

)y2 . Moreover, the movements of individuals are assumed random within their environments. This
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consideration is realized by using self-diffusion. So, the diffusive COVID-19 version of the proposed model
can be written as:

)S
)t

= � − �0SE1 − �1SE2 −
�0SI1
1 + �I21

−
�1SI2
1 + �I22

+ �R − (v + d)S +D1∇2S,

)E1
)t

= �0SE1 − (�1 + Ω1 + c1 + d)E1 +D2∇2E1,

)E2
)t

= �1SE2 − (�2 + Ω2 + c2 + d)E2 +D3∇2E2,

)I1
)t

=
�0SI1
1 + �I21

+ �1E1 − (
1 + c1 + d)I1 +D4∇2I1,

)I2
)t

=
�1SI2
1 + �I22

+ �2E2 − (
2 + c2 + d)I2 +D5∇2I2,

)R
)t

= Ω1E1 + Ω2E2 + 
1I1 + 
2I2 + vS − (� + d)R +D6∇2R,

(6)

where diffusion coefficientsD1−D6 take positive values. We confine our study on the stability of equilibrium
points to examine if the diffusion terms destabilize the equilibrium state. In this case, the system (6) presents
what is so called Turing patterns.

5.1. Turing instability analysis. Suppose that the equilibrium point:

(S∗, E∗1 , E
∗
2 , I

∗
1 , I

∗
2 , R

∗) =
(

�(d + �)
d(d + � + v)

, 0, 0, 0, 0,
�v

d(d + � + v)

)

(7)

is stable for the temporal-only version of the model.
The linearisation of the model (6) can be obtained by small perturbation, namely, S,E1,E2, I1, I2 and R

such that S = S∗ + S, E1 = E∗1 + E1, E2 = E∗2 + E2, I1 = I∗1 + I1, I2 = I∗2 + I2 and R = R∗ + R. Thus,
the linear form of the system (6) is given as

)S
)t

= f1SS + f1E1E1 + f1E2E2 + f1I1I1 + f1I2I2 + f1RR +D1∇
2S,

)E1
)t

= f2SS + f2E1E1 + f2E2E2 + f2I1I1 + f2I2I2 + f2RR +D2∇
2E1,

)E2
)t

= f3SS + f3E1E1 + f3E2E2 + f3I1I1 + f3I2I2 + f3RR +D3∇
2E2,

)I1
)t

= f4SS + f4E1E1 + f4E2E2 + f4I1I1 + f4I2I2 + f4RR +D4∇
2I1,

)I2
)t

= f5SS + f5E1E1 + f5E2E2 + f5I1I1 + f5I2I2 + f5RR +D5∇
2I2,

)R
)t

= f6SS + f6E1E1 + f6E2E2 + f6I1I1 + f6I2I2 + f6RR +D6∇
2R,

(8)
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Suppose that the linear system (8) has a solution in the following form

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

S
E1
E2
I1
I2
R

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=  exp(�t) exp(ikr), (9)

where  =
[

A1 A2 A3 A4 A5 A6
]

is a vector with no zero component, � is time growth rate, k
is a wave vector and r ≡ (x, y) denotes space vector.

Substituting (9) into (8) gives the following system for the equilibrium point (7):

A1d
3 +

(

(A1 − A6)� + A1
(

D1k
2 + � + 2v

))

d2+
(

−A6�2 +
((

D1k
2 + � + v

)

A1 − vA6
)

� + v
(

D1k
2 + � + v

)

A1 + �
((

A2 + A4
)

b0 + b1
(

A3 + A5
)))

d

+ �
((

A2 + A4
)

b0 + b1
(

A3 + A5
))

� = 0,
(10)

(D2d2k2 +D2d�k2 +D2dk2v + Ω1d2 + Ω1d� + Ω1dv − b0�d − b0�� + cd2 + cd� + cdv + d3 + d2�

+ �d2 + d2�1 + d2v + ��d + d��1 + d�v + d�1v)A2 = 0,
(11)

(D3d2k2 +D3d�k2 +D3dk2v + Ω2d2 + Ω2d� + Ω2dv − b1�d − b1�� + cd2 + cd� + cdv + d3 + d2�

+ �d2 + d2�2 + d2v + ��d + d��2 + d�v + d�2v)A3 = 0
(12)

A4d
3 + ((D4k2 + c + � + 
 + � + v)A4 − �1A2)d2 + (((D4k2 + c + 
1 + �)� + (D4k2 + c + 
1 + �)v − b0�)A4

− �1A2(� + v))d − A4b0�� = 0
(13)

d3A5 + ((D5k2 + c + � + 
2 + � + v)A5 − �2A3)d2 + (((D5k2 + c + 
2 + �)� + (D5k2 + c + 
2 + �)v − b1�)A5
− �2A3(� + v))d − b1��A5 = 0

(14)
(D6k2 + d + � + �)A6 − 
2A5 − Ω1A2 − Ω2A3 − 
1A4 − A1v = 0 (15)

As we seek nonzero Ais, one could arrange the equations (10)-(15) in a matrix form such following:

 = 0, (16)

where  is a 6 × 6 matrix has the following form

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

▪ ▪ ▪ ▪ ▪ ▪
0 ▪ 0 0 0 0
0 0 ▪ 0 0 0
0 ▪ 0 ▪ 0 0
0 0 ▪ 0 ▪ 0
▪ ▪ ▪ ▪ ▪ ▪

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The linear system (16) has a nontrivial solution (i.e. A1 × A2 ×⋯ × A6 ≠ 0) if || = 0. The form of
the factors of the determinant of  is expressed as follows:

|| =  1(�)  2(�) ⋯  5(�), (17)
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where
 1(�) =(d2 + d� + dv)� +D2d2k2 +D2d�k2 +D2dk2v + Ω1d2 + Ω1d� + Ω1dv − b0d�

− b0�� + cd2 + cd� + cdv + d3 + d2� + d2�1 + d2v + d��1 + d�1v,
(18)

 2(�) =(d2 + d� + dv)� +D3d2k2 +D3d�k2 +D3dk2v + Ω2d2 + Ω2d� + Ω2dv − b1d� − b1��

+ cd2 + cd� + cdv + d3 + d2� + d2�2 + d2v + d��2 + d�2v,
(19)

 3(�) =(d2 + d� + dv)� +D4d2k2 +D4d�k2 +D4dk2v − b0d� − b0�� + cd2 + cd� + cdv + d3

+ d2� + d2
1 + d2v + d�
1 + d
1v,
(20)

 4(�) =(d2 + d� + dv)� +D5d2k2 +D5d�k2 +D5dk2v − b1d� − b1�� + cd2 + cd� + cdv + d3

+ d2� + d2
2 + d2v + d�
2 + d
2v,
(21)

and
 5(�) =(d2 + d� + dv)�2 + (D1d2k2 +D1d�k2 +D1dk2v +D6d2k2 +D6d�k2 +D6dk2v + 2d3

+ 3d2� + 3d2v + d�2 + 2d�v + dv2)� +D1D6d2k4 +D1D6d�k4 +D1D6dk4v +D1d3k2

+ 2D1d2�k2 +D1d2k2v +D1d�2k2 +D1d�k2v +D6d3k2 +D6d2�k2 + 2D6d2k2v

+D6d�k2v +D6dk2v2 + d4 + 2d3� + 2d3v + d2�2 + 2d2�v + d2v2.

(22)

Simplifying the equations (18)-(22) and after some calculations, we conclude that there is no positive real
parts which can be attained for �. This implies that the stable equilibrium points do not lose its stability as
a result of adding the diffusion terms.

6. NUMERICAL SIMULATIONS

Numerical simulations are carried out to verify theoretical results that have been obtained in previous
sections. Firstly, we set the parameters of model (1) to the specific values which achieve stability of disease
free equilibrium point. In Figure 2, the three dimensional phase portraits of the state variables in system (1)
exhibit the local stability of disease free state for the following values of parameters: � = 0.3, d = 0.05, � =
0.7, 
1 = 0.4, 
2 = 0.5, c1 = 0.008, c2 = 0.012, �1 = 0.7, �2 = 0.75,Ω1 = 0.8,Ω2 = 0.85, v = 0.75, � =
1, �0 = 0.15, �1 = 0.1. The basic reproduction number for this case is found to be less than one, which
indicates that the infectious disease can be controlled.

Secondly, we further proceed to examine the influences of the parameters on stability of disease-free steady
state to help control the epidemic spread via tuning the key parameters to appropriate values. The stability
regions is blue-colored in different spaces of parameters in Figure (3) for different scenarios. In first scenario,
we take � = 0.3, d = 0.05, �1 = 0.15, � = 0.7, 
1 = 0.4, c1 = 0.008, c2 = 0.012, 
2 = 0.5, �1 = 0.7, �2 =
0.75,Ω1 = 0.8,Ω2 = 0.85, v = 0.75 whereas the values of parameters �0 and � are varied in order to explore
their effects on the stability of disease free , see Figure (3a). It is obvious that the disease-free equilibrium
point (DFE) is locally asymptotically stable for relatively small values of �0.
In second scenario, we take � = 0.3, d = 0.05, �0 = 0.1, � = 0.7, 
1 = 0.4; c1 = 0.008, c2 = 0.012, 
2 =
0.5, �1 = 0.7, �2 = 0.75,Ω1 = 0.8,Ω2 = 0.85, v = 0.75whereas the values of parameters �1 and � are varied
in order to investigate their influences on the stability of DFE, see Figure ( 3b). It is also observed that the
DFE is locally asymptotically stable for relatively small values of �1.
In third scenario, we take d = 0.05, �0 = 0.1, �1 = 0.15, � = 0.7, 
1 = 0.4, c1 = 0.008, c2 = 0.012, 
2 =
0.5, �1 = 0.7, �2 = 0.75,Ω1 = 0.8,Ω2 = 0.85, � = 1whereas the values of parameters � and v are varied, see
Figure (3c). It is found that as the vaccination rate increases, the size of stability regions of DFE is enlarged.
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(A) (B)

FIGURE 2. Three dimensional phase portraits of the state variables in system (1)
illustrates the local stability of disease free state at � = 0.3, d = 0.05, � = 0.7, 
1 =
0.4, 
2 = 0.5, c1 = 0.008, c2 = 0.012, �1 = 0.7, �2 = 0.75,Ω1 = 0.8,Ω2 = 0.85, v =
0.75, � = 1, �0 = 0.15, �1 = 0.1.

Also, it is shown that as natural birth rate increases, the DFE tends to loss its stability due to the increase in
the pool of susceptible individuals.
In fourth scenario, we take � = 0.3, d = 0.05, �0 = 0.1, �1 = 0.18, � = 0.7, c1 = 0.008, c2 = 0.012, 
1 =
0.4, 
2 = 0.5, �1 = 0.7, �2 = 0.75,Ω1 = 0.8,Ω2 = 0.85, while the values of parameters v and � are varied,
see Figure(2d). In this case, it is observed that the DFE is stable at relatively large values of vaccination rate.
In fifth scenario, the last values of parameters are used while �1 and Ω1 are changed, see Figure (3e). It is
found that the DFE maintains its stability for large values of �1 and Ω1 while DFE losses its stability when
one (or both) of these parameters is sufficiently decreased.
Finally, we employ the aforementioned values of parameters with varying v and 
1 as shown in Figure (3f).
It is observed that the vaccination ratio should be kept above some specific value to render DFE stable and
the same is true for recovering rate.

Now, numerical experiments are utilized to examine transcritical bifurcation of the model (1) where the
DFE losses its stability and a stable endemic equilibrium point appears in phase space of the system.
First, consider the bifurcation value of �0 = 0.15 with the other parameters given by � = 0.3, d = 0.05, � =
0.7, 
1 = 0.4, 
2 = 0.5, c1 = 0.008, c2 = 0.012, �1 = 0.7, �2 = 0.75,Ω1 = 0.8,Ω2 = 0.85, � = 1, v = 0.75
and �1 = 0.1
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(A) (B)

(C) (D)

(E) (F)

FIGURE 3. Stability region of steady state disease free in different 2D parameters space
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(A) (B)

(C) (D)

(E) (F)

FIGURE 4. Numerical simulations results for �0 = 0.14 before transcritical bifurcation point.

The V andW eigenvectors can be expressed as

V =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2.70213
0
0

−3.19149
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
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(A) (B)

(C) (D)

(E) (F)

FIGURE 5. Numerical simulations results for �0 = 0.16 after transcritical bifurcation point.

W =
[

0 0.636364 0 1 0 0
]

,

V .W = −3.19149
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.
Then, we get A = 0 , B = 0.82505 and C = 6, i.e. the bifurcation is transcritical.
Figure 4 and Figure 5 show the results of numerical simulations of the model (1) before and after occur-
rence of the bifurcation, respectively. It is obvious that DFE is stable before the bifurcation point. It losses
its stability when �0 passes the bifurcation value and the endemic equilibrium point become stable. More
interestingly, it is found that the infected individuals in this case are due to non-mutant virus. The reason is
that the value of associated infection rate �0 is greater than the infection rate �1 of mutant virus.

In second case, we consider the critical value �1 = 0.18 where the other parameters are taken as � =
0.3, d = 0.05, � = 0.7, 
1 = 0.4, 
2 = 0.5, c1 = 0.008, c2 = 0.012, �1 = 0.7, �2 = 0.75,Ω1 = 0.8,Ω2 =
0.85, � = 1, v = 0.75 and �0 = 0.1
Similar to previous example, it is obtained that

V =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

3.32558
0
0

−3.48837
0
1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

W =
[

0 0.681818 0 1 0 0
]

,

V .W = −3.48837.
Thus, it is determined that A = 0, B = 1.24598 and C = 6 in the way that the bifurcation is transcritical.

Figure 6 and Figure 7 illustrate the solutions of the model before and after passing the bifurcation value of
�1. It is clear that the DFE is stable before the bifurcation point. Thus, it losses its stability when �1 passes
the bifurcation value and the endemic equilibrium point become stable. More interestingly, it is found that
the infected individuals in this case are due to mutant virus only. In other words, the infections of mutant-
virus become dominant. The reason is that the value of associated infection rate �1 is greater than �0 of the
non-mutant virus. This result agrees with available data of health organizations.

Compared with existing results in related works, it is observed that the nonlinear dynamics and control
strategies of COVID-19 has been studied in [43] when nonlinear incidence rate is adopted. However, the
model in [43] does not involve the influences of vaccination programs and virus mutations, whereas theses
effects are considered in our model. A COVID-19 mathematical model incorporating high-risk exposures
of Omicron mutant strain has been introduced in [44]. However, the model in [44] employs the simple
non-realistic linear incidence rates. In addition, the spatial influences due to movements of individuals from
different compartments in their environments are not considered in [44]. A nonlinear controlled SEIR model
for COVID-19 pandemic has been presented in [45]. The non-pharmaceutical interventions and vaccination
strategies are examined in mathematical model of COVID-19 with comorbidity [46]. The models in [45, 46]
use the simple non-realistic linear incidence rates. Moreover, the spatial influences, the exposed individu-
als who are infectious through the incubation period, and mutant strains of the virus are not considered in
[45,46].
A new reaction-diffusion COVID-19 SEIR model with nonlinear incidence rates has been introduced in [47].
The spatio-temporal influences on state variables of the model are included in [47]. Nevertheless, neither the
high peril of virus transmission caused by individuals having mild symptoms nor the effects of mutant strains
of the virus have been considered in the models [45-47]. The optimal intervention strategies for COVID-19
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(A) (B)

(C) (D)

(E) (F)

FIGURE 6. Numerical simulations results for �1 = 0.17 before occurrence of trans-
critical bifurcation

outbreak have been discussed in SAIQJR model [48]. The qualitative behaviors and stability of equilib-
rium points have been investigated in this model along with basic reproduction number. The aforementioned
shortcomings, such as using linear incidence rate and ignoring vaccinations, mutant strains of COVID-19,
and combined spatio-temporal dynamics, are still observed in the SAIQJR model.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 7. Numerical simulations results for �1 = 0.19 after occurrence of transcrit-
ical bifurcation

The present model in this study addresses all of aforementioned ignored points in recent literature. It is im-
portant to note that that eigenvalues of Jacobian matrix can take real values only. This implies that the Hopf
bifurcation, Generalized Hopf bifurcation, and Double Hopf bifurcation can not exhibited by the present
model as they require pure imaginary eigenvalues at critical bifurcation values.
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TABLE 2. Effects of key parameters in the proposed model.

Parameter Type of variation Biological meaning
�0 To increase above �1 Mutant strain has weak transmission rate
�1 To increase above �0 Mutant strain has large transmission rate

2 To increase above 
1 Treatment methods effectively cure mutant virus infections
� Varied from 0 to 1 Incomplete efficiency of vaccines
v Varied from 0 to 1 Vaccination programs are supported
� Varied from 0 to 1 Boost interventions and governmental control measures.

TABLE 3. Effects of key parameters in the proposed model (Cont).

Effect Figure
Most infected individuals are due to non-mutant virus Fig.8
Most infected individuals are due to mutant virus Fig.9
Effective suppression of infection cases Fig.10
Rapid increase of mutant strain infections Fig.11
Number of mutant virus infections are reduced Fig.12
Number of mutant virus infections are reduced Fig.13

Investigating the other possible types of local bifurcations, it is found that the conditions for saddle node and
pitchfork bifurcations are not satisfied by our system. The system can undergo transcritical bifurcations as
illustrated in bifurcation analysis section.
The observed changes in the dynamics of the proposed model are summarized in the following Table 2 and
Table 3 when the key parameters of the model are changed. The bifurcation evolution diagram with varying
a bifurcation parameters are presented in Figures 8-13.

7. CONCLUSION

This paper establishes a framework to study the emerging COVID-19 pandemic when virus mutations, vaccination
strategies and spatial-temporal variations of populations are considered. The nonlinear incidence rate is employed to
include the governmental control actions taken by the governments when the number of infections reaches high levels.
The immunity acquired by vaccinations are assumed to be incomplete for realistic considerations. In addition, the pro-
posed model takes in account the realistic scenario that transmission of COVID-19 virus can be caused during incubation
period.
Existence, uniqueness and continuous dependence on initial conditions are examined for the solution. Stability analy-
sis and bifurcation analysis are carried out for equilibrium points in the model. It is observed that the vaccination rate
should be kept above some specific value to render DFE stable and the same is true for the recovering rate which can
be increased by improving health care. More interestingly, in agreement with available data of health organizations, it is
found that the infected individuals due to the mutant virus can dominate the infection cases of COVID-19. Theoretical
and numerical investigations demonstrate that this can be observed when the infection rate of mutant virus is greater than
that of non-mutant virus.
It is known that young individuals are more immune to severe symptoms of COVID-19 compared with elders and those
with chronic diseases. However, the present model does not consider this fact in its formulation. So, this crucial point
can be considered in future work. It should also be noticed that self-diffusion terms are adopted to simulate the people
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FIGURE 8. The bifurcation diagrams of model state variables vs. �0. The values of
other parameters are � = 0.3, d = 0.05, � = 0.7, 
1 = 0.4, 
2 = 0.5, c1 = 0.008, c2 =
0.012, �1 = 0.7, �2 = 0.75,Ω1 = 0.8,Ω2 = 0.85, v = 0.75, � = 1, �1 = 0.1.

movements in our model. In future work, it would be better to encompass also cross-diffusion dynamics in the model in
order to precisely implement the possible types of individuals movements.
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