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Abstract— Medical image segmentation has greatly increased healthcare sustainability. It is currently a major 

research area in the field of computer vision. The many artefacts inherent in medical images make it a difficult process 

to segment them. Deep neural models have recently demonstrated their use in a variety of image segmentation 

applications. With the rapid advancement of deep convolutional neural networks, medical image processing has 

become a study hotspot development of deep learning. The primary focus of this study is the deep learning-based 

segmentation of medical images.. This study gives an overview of the literature in the area of deep convolutional neural 

network-based medical image segmentation. The article looks at several popular medical image datasets, several 

segmentation task evaluation measures, and the effectiveness of various CNN-based networks. The current study also 

examines several issues in the area of segmenting medical images and various state-of-the-art solutions accessible in 

the literature, in contrast to the existing survey and review articles. The paper has several contributions which are as 

follows: Firstly, the present study provides an overview of the current state of the deep neural network structures 

utilized for medical image segmentation. Secondly, the paper describes the publicly available techniques of Network 

Training. Thirdly, it presents the various performance metrics employed for evaluating the deep learning segmentation 

models and the medical image segmentation  datasets. Finally, the paper also gives an insight into the major challenges 

faced in the field of image segmentation and their state-of-the-art solutions 
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1. Introduction 

One of the most difficult problems in medical image analysis is medical image segmentation, which involves 

separating organ or lesion-related pixels from background medical images like MRI or CT scans in order to provide 

crucial information on the shapes and sizes of these organs. The process of segmenting a image entails dividing it into 

sections that are strongly correlated along with the original image's area of interest (RoI). The goal of medical image 

segmentation is to provide an input image in a meaningful format for anatomical study, identifying the region of interest 

(RoI), measuring the volume of tissue to determine the size of the tumor, and assisting with calculating the radiation 

dose, planning the course of treatment before applying radiation therapy [1].  Numerous researchers have suggested 

various automated segmentation systems using currently available technologies. Early systems were built using 

standard methods, such as edge recognition filters and mathematical methods. Then, for a considerable amount of time, 

machine learning techniques for extracting manually created characteristics were the norm. The primary focus of 

creating such a system has always been designing and extracting these properties, and the complexity of these 

approaches has been seen as a substantial barrier to their use. Deep learning approaches entered the scene in the 2000s 

as a result of hardware advancement and began to show off their impressive powers in image processing 

applications.Deep learning techniques have emerged as the top choice for image segmentation, especially for medical 

image segmentation, due to their promising capabilities. Deep learning-based image segmentation has attracted a lot 
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of attention, especially over the past several years, which emphasises the need for a thorough analysis of it. To the best 

of our knowledge, there hasn't been a a comprehensive analysis of medical image segmentation based on deep learning. 

[2, 3] 

At first, segmentation was carried out using mathematical models (such as Fuzzy C-mean clustering and K-means 

clustering) and basic image processing (such as edge detection techniques and watershed) [4]. In order to create a 

model for segmentation, At the turn of the century, methods for pattern detection and machine learning (ML) were 

employed. These supervised techniques continue to be widely used, and many commercial programmes for medical 

image analysis are built on them.In these methods, the extracted characteristics are created or chosen by researchers 

and are referred to as handcrafted features. They are typically understood by humans, however they might not be the 

best attributes for segmentation. Recently, computers have been able to extract representative features from images 

thanks to the advancement of deep learning and neural networks (DL).The foundation of many deep neural networks 

used for image processing is the idea that by learning high-level properties, networks with many layers can transform 

input pictures into output labels. The convolutional neural network is the most common type of image processing 

model to date (CNN). The CNN, a significant model, has addressed numerous important commercial applications and 

demonstrated its aptitude in numerous competitions. At numerous workshops, competitions, and conferences, CNN 

and other DL methods in medical image analysis began to demonstrate their effectiveness [5]. 

Several review articles are attempting to condense these apps since the number of studies grows quickly. The 

journals [6, 7] have written comprehensive reviews on DL in medical image analysis. Review papers on DL-based 

medical image segmentation have just been presented by [8–11]. Some review articles have more specialised objectives. 
For instance, the work in [12, 13] summarised cardiac image segmentation networks; [14] covered medical imaging's 

use of generative adversarial networks (GANs); [15] examined the biomedical image analysis limited sample issue; 

[16] looked into the issue of noisy labels in medical image analysis; [17] looked into DL solutions for medical image 

segmentation with imperfect datasets.; and [18] surveyed not-sosupervised networks using semi-supervised, multi-

instance, and Medical image segmentation high-level prior-based loss functions are categorised according to the prior's 

properties. in [19] as shape, size, topology, and inter-region constraints. Shape-constrained DL for medical image 

segmentation was reviewed in [20]. Some review articles concentrate on certain segmentation tasks in particular 

modalities. Artificial intelligence in stroke imaging was discussed in [21]. While [23] concentrated on Segmenting 

tumors of liver in computed tomography (CT) images, [22] reviewed DL techniques for isointense baby brain 

segmentation in MRI. [24] investigated how organs at risk were segmented for head and neck radiation planning. [25] 

provided a summary of the segmentation techniques used on the cartilage of the knee. Brain tumour segmentation is a 

hot topic, hence [26-30] published a number of review papers on the subject. Small rodent brain segmentation 

techniques were reviewed in [31], and brain segmentation techniques from multi-atlas to DL were reviewed in [32]. 

[33] summarised the methods for segmenting the thyroid lobe and thyroid nodules for ultrasound imaging. [34, 35] 

have recently published two reviews on the segmentation of retinal blood vessels. We can see These review papers 

show that there are many potential directions for this type of research and that various review focuses have different 

implications. 

Algorithms for image segmentation based on deep learning have seen success in the field of image segmentation 

due to the rapid growth of artificial intelligence, particularly DL (DL) [36-38]. Deep learning provides some advantages 

over conventional machine learning and computer vision techniques in terms of segmentation accuracy and speed. The 

application doctors effectively by verifying the extent of a diseased tumors by using deep learning to segment medical 

images., comparing the impact before and after treatment quantitatively and reducing their workload considerably. 

 

2. Structures of Deep Neural Network 

a majority crucial method for artificial intelligence is deep learning. A deep learning technique builds an artificial 

neural network using a number of layers. There are three layers in input, buried layer(s), and output of an artificial 

neural network (ANN). The information is gotten by the input layer of the network, the output layer decides how to 

use the input, and hidden layers between the input and output layers carry out computations (shown in Figure 1). 

Between the input and output layers, a deep neural network has numerous hidden layers. 

A review of various deep learning neural networks used for image segmentation is provided in this section. As 

illustrated in Figure 2, the various deep neural network topologies typically used for image segmentation can be 

categorised. 
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 Figure 2: Different types of deep neural network architectures for image segmentation 

  

2. 1. Convolutional Neural Network 

Convolutional layer, pooling layer, and fully connected layer are the three basic neural layers that make up 

Convolutional neural network, or CNN (see Figure 3). Each layer plays a distinct role. The convolution layer 

recognises unique aspects in an image, such as edges or other visual components. With kernels, the convolution layer 

multiplies a pixel's immediate neighbours to produce an image. For the purpose of creating its feature maps, CNN 

convolves the given image using several kernels. The input data's spatial measurements (width, height) are decreased 

by the pooling layer for the next layers of the neural network.The depth of the data remains unchanged. Subsampling 

is the name of this procedure. The computing demands on subsequent layers are reduced by this size reduction. In NN, 

high-level reasoning is done by the fully linked layers. The final results are provided by these layers, which combine 

the numerous feature responses from the provided input image.Numerous CNN models, including as AlexNet [39], 

GoogleNet [40], VGG [41], Inception [42], SequeezeNet [43], and DenseNet [44], have been published in the literature. 

Each network in this situation employs a distinct count of pooling and convolutional layers, with significant process 

blocks positioned in between. The majority of the time, CNN models are used for classification tasks. SqueezeNet and 

GoogleNet have been used to divide three kinds of brain MRI images in [45]. The following factors limit the 

performance of the CNN segmentation models: 

i. CNN's completely connected layers are unable to handle varying input sizes. 

ii. An object segmentation convolutional neural network with a fully connected layer cannot be used because 

the number of items of interest in the image segmentation job is not constant. As a consequence, the output 

layer's length cannot be constant. 

Figure 1:Artificial neural network (ANN) model. 
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2.1.1. Fully Convolutional Network 

Only convolutional layers exist in a fully convolutional network (FCN). The last layer of fully connected of a 

CNN can be changed into a fully convolutional layer to transform the various existing CNN architectures into FCN. 

Instead of making patch-wise forecasts, the model created by [46] can produce a full-size input picture and dense pixel-

wise predictions from a spatial segmentation map. The model makes use of skip connections, which upsample feature 

maps from the top layer and fuse them with feature maps from lower layers. Thus, the model generates a thorough 

segmentation in a single pass. However, the typical FCN paradigm includes the following drawbacks[47]: 

It accepts global context data poorly and is too slow for real-time inference. The output feature maps' resolution 

is reduced as a result of propagation across various convolution and pooling levels in FCN. FCN forecasts consequently 

have a poor resolution and fuzzier object boundaries. 

ParseNet [48] is a reported example of a sophisticated FCN that uses global average pooling to achieve global 

context. It has also been reported on methods for integrating models like DL design incorporates Markov random fields 

and conditional random fields. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Architecture of Convolutional neural network. 

 

 

2.2. Encoder-Decoder Models 

In order data elements must be mapped from the input domain to the output domain., encoder-decoder based 

models use a two-stage paradigm. The encoder step transforms the input, x, into a representation of latent space., which 

the decoder then uses to forecast the output. The following sections address the various Typical encoder-decoder-based 

segmentation algorithms for medical images include the following: 
 

2.2.1. U-Net.  

There are downsampling and upsampling components in the U-Net model [49]. The FCN-like architecture used 

in the downsampling portion using 3 3 convolutions for extracting features to capture context. To reduce the amount 

of computed feature maps, deconvolution is performed during the upsampling phase. To prevent any information loss, 

the maps of feature produced by the downsampling are provided as input for the part of upsampling. Precise localisation 

is provided by the symmetric upsampling component. The map of segmentation is created by the  model that assigns 

every pixel of the image a category. 

The following benefits are provided by the U-Net model: 

i. U-Net model can segment images well with a small number of tagged training images. 

ii. To forecast a fair segmentation map, Location data from the downsampling route and contextual data 

from the upsampling channel are combined using the U-Net architecture.. 

 

A few restrictions that apply to U-Net models are following: 

i. The maximum size for the input image is 572 x 572. 

ii. The learning typically slows down in the intermediate layers of deeper UNET models, causing the 

network to ignore the characteristics in the layers with abstract layers. 

iii. Connection skips in the model enforce a constrained fusion approach that results in the accumulation of 

feature maps with the same scale in the encoder and decoder networks. 
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As remedies for these drawbacks, the U-Net++ [50], Attention U-Net [51], and SD-UNet [52] versions of the U-

Net design have all been proposed in the literature.. 

 

2.2.2. VNet.  

The segmentation of medical images is also done using an FCN-based model [53]. Compression and 

decompression networks are the two components of the VNet architecture. At each stage of the compression process, 

convolution layers with residual function are used. The volumetric kernels were used in these convolution layers. The 

decompression network enhances low resolution feature maps' spatial depiction by extracting features. Both the 

foreground and the background regions are given two-channel probabilistic segmentation. 

 

2.3. Regional Convolutional Network 

The task of object recognition and segmentation has been carried out using a regional convolutional network. 

Using a selective search technique, the R-CNN design described in [54] creates region proposal networks for bounding 

boxes. These regional suggestions are sent to a CNN, which will yield a feature vector map after being distorted to 

standard squares. To categorize the objects contained in the region proposal network, features from the image are 

extracted into the output dense layer and input into a classification algorithm. To increase the precise suggestion for 

the region's level or bounding box, the program also forecasts the offset values. The operational steps of In Figure 4, 

the R-CNN design is displayed.. The employment of the fundamental model of RCN is constrained by the next factors: 

i. Because it takes the network about 47 seconds to train for a classification assignment involving 2000 

area suggestions in a test image, it cannot be used in real time. 

ii. A predetermined method was used for selective search. As a result, no learning is happening at that time. 

This could lead to the establishment area of unfavourable candidate suggestions. 

The literature has suggested various R-CNN variants, such as fast R-CNN, faster R-CNN, and mask R-CNN, to 

overcome these disadvantages. 

 

2.3.1. Fast R-CNN 

The proposed regions of the image overlap in R-CNN are carried out repeatedly along with the identical CNN 

computations. An input image and a list of object suggestions are fed into the rapid R-CNN described by [55]. 

Following that, the CNN produces convolutional feature maps. Each object suggestion is then reshaped into a vector  

of feature with a defined size by the ROI pooling layer. The model's final fully linked layers get the feature vectors. 

Finally, the Softmax layer receives the ROI feature vector calculated in order to predict the proposed region's class and 

offset values [56]. The fast R-CNN is delayed because a selective search algorithm is being used. 

 

2.3.2. Faster R-CNN 

The suggested regions were developed through a prolonged, selective search procedure in R-CNN and fast R-

CNN. A single convolutional network was therefore used in the faster R-CNN architecture described by [57] to 

complete the region proposal and classification tasks. A region proposal network (RPN) is used by the model to pass 

the CNN feature map's sliding pane at the top as a whole. K different possible boundary boxes are generated for each 

window, with each box's score corresponding to the position of the object. The precise categorization boxes are 

produced by Rapid R-CNN received these bounding frames. 

 

2.3.3.  Mask R-CNN 

He and his colleagues expanded quicker R-CNN will show Mask R-CNN for example segmentation in [58]. The 

model is capable of identifying an image's components and creating a superior segmentation mask for every item. To 

preserve the precise spatial coordinates of the provided image, RoI-Align layer is used. Using a CNN, the region 

proposal network (RPN) produced several RoIs. Multiple warped bounding boxes with fixed size are produced by the 

RoI-Align network. using a softmax layer to generate classification, the previously calculated warped features are sent 

to a fully linked layer. The model comprises three branches of output, the first of which computes the bounding box 

coordinates, the second of which establishes the related classes, and the third of which assesses the binary mask for 

each RoI. The model unifies the training for all branches. Regression modelling is used to enhance the bounded boxes. 

For each RoIa binary mask is produced by the mask algorithm. 
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Figure 4: R-CNN architecture 

 

2.4. DeepLab Model.  

For extracting the features from an image, the DeepLab model uses the ResNet-101/VGG-16 is a pretrained CNN 

model with arous convolution [59]. When atrous convolutions are used, the following benefits occur: 

i. It regulates how CNNs' feature replies are resolved. 

ii. It does so without requiring the learning of any additional parameters, turning the a dense feature 

extractor from image classification network. 

iii. Uses conditional random field (CRF) to create output that is finely segmented. 

In the literature, a number of DeepLab variations DeepLabv1, DeepLabv2, DeepLab3, and DeepLabv3+ have all 

been suggested. 

The source image is routed via a one or two deep convolution layers with a deep CNN layer in DeepLabv1 [60]. 

(Figure 5). A rough map of  feature is produced as a result. After that, the feature map is upsampled. using the bilinear 

interpolation procedure to the size of the source image. To create the interpolated data is applied to a conditional 

random field that is completely connected to create the final segmented image. 

There are numerous atrous convolutions are performed to the input map of feature in the DeepLabv2 model at 

various dilation rates. The outputs are combined in a fuse. The objects are divided into scale-dependent segments using 

atrous spatial pyramid pooling (ASPP). The atrous convolution with various rates of dilation was employed in the 

ResNet model. Atrous convolution allows for the acquisition of data from a vast effective field with a minimal 

Parameter count and computational complexity. 

Enhancing the atrous spatial pyramid pooling (ASPP) module with image-level characteristics makes DeepLabv3 

[61] an improvement over DeepLabv2. Additionally, batch normalisation is used to make it simple to train the network. 

The module of ASPP from DeepLabv3 is combined with an encoder and decoder framework in the DeepLabv3+ 

paradigm. For feature extraction, the model employs the Xception model. In order to compute more quickly, the model 

additionally used atrous and depth-wise separable convolution. The structural details and semantic knowledge that the 

low-level and high-level features, respectively, stand for are 

Encoding and decoding modules make up DeepLabv3+ [62]. Using extensive Convolution and the backbone 

networks like PNASNet, ResNet, Xception, and MobileNetv2, the encoding path obtains the necessary data from the 

input image. With the help of the data from the encoder path, The output is rebuilt with the required dimensions by the 

decoding path. 

 

 

 

 

 

Figure 5: DeepLab architecture. 

2.5. Comparison of Different Deep Learning-Based Segmentation Methods.  
The different deep neural networks discussed in the above sections are employed for different applications. Each 

model has its own advantages and limitations. Table 1 gives a brief comparison between different deep learning-

based image segmentation algorithms. Table 2 gives a summary on deep learning-based medical image segmentation 

methods 
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Table 1: Comparison between different image segmentation algorithms. 

Deep learning algorithm Algorithm description Advantages Limitations 

CNN 

It consists of three main 

neural layers, which are 

convolutional layers, 

pooling layers, and fully 

connected layers 

(a) It is simple 

(b) It involves feeding 

segments of an image as 

input to the network, 

which labels the pixels 

(a) It cannot manage 

different input sizes 

(b) Fixed size of output 

layer causes difficulty in 

segmentation task 

FCN 

All fully connected layers 

of CNN are replaced with 

the fully convolutional 

layers 

The model outputs a 

spatial segmentation map 

instead of classification 

scores 

It is hard to train a FCN 

model to get good 

performance 

U-Net 

It combines the location 

information obtained from 

the downsampling path 

and the contextual 

information obtained from 

upsampling path to 

predict segmentation map 

It can perform efficient 

segmentation of images 

using limited number of 

labelled training images 

(a)Input image size is 

limited to 572 × 572. 

(b) (e skip connections of 

the model impose a 

restrictive fusion scheme 

causing accumulation of 

the same scale feature 

maps of the network 

VNet 

It uses selective search 

algorithm to extract 2000 

regions from the image 

called region proposals 

(a) It predicts the presence 

of an object within the 

region proposals (b) It 

also predicts four offset 

values to increase the 

precision of the bounding 

box 

(a) Huge amount of time 

is needed to train network 

to classify 2000 region 

proposals per image 

(b) It cannot be 

implemented in real time 

(c) Selective search 

algorithm is a fixed 

algorithm 

Fast R-CNN 

It uses selective search 

algorithm which takes the 

whole image and region 

proposals as input in its 

CNN architecture in one 

forward propagation 

It improves mean average 

precision (mAP) as 

compared to R-CNN 

There is high computation 

time due to selective 

search region proposal 

generation algorithm 

Faster R-CNN 
It uses region proposal 

network 

It generates the bounding 

boxes of 

different shapes and sizes 

There is lower 

computation time 

Mask R-CNN 

It gives three outputs for 

each object in the image: 

its class, bounding box 

coordinates, and object 

mask 

a) It is simple and flexible 

approach 

b) It is current state-of-

the-art 

technique for image 

segmentation task 

There is high training 

time 

DeepLabv1 

a) It uses atrous 

convolution to extract the 

features from an image 

b) It also uses conditional 

random field 

(CRF) to capture fine 

details 

a) (ere is high speed due 

to 

atrous convolution 

b) Localization of object 

boundaries improved by 

combining DCNNs and 

probabilistic graphical 

models 

Use of CRFs makes 

algorithm slow 

DeepLabv2 

It uses atrous spatial 

pyramid pooling (ASPP) 

and applies multiple 

atrous convolutions with 

Atrous spatial pyramid 

pooling (ASPP) robustly 

segments objects at 

multiple scales 

There are challenges in 

capturing fine object 

boundaries 
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different sampling rates to 

the input feature map and 

fuses them together 

DeepLabv3 

It uses atrous separable 

convolution to capture 

sharper object boundaries 

It can segment sharper 

targets 

It still needs more 

refinement for object 

boundaries 

DeepLabv3+ 

It extends DeepLabv3 by 

adding a decoder 

module to refine the 

segmentation results 

along the object 

boundaries 

There is better 

segmentation performance 

as compared to deepLabv3 

It is a large model with 

number of parameters to 

train. So, while training 

on higher resolution 

images and batch sizes, it 

needs large GPU memory. 

 

 

Table 2: Summary on deep learning-based medical image segmentation methods. 

Organ 
Segmented 

area 

Model 

utilized 
Dataset Modality Remarks Accuracy 

Cardiac 

Cardiac, left, 

and right 

ventricular 

cavities and 

myocardium 

[63] 

2D/3d CNN ADC2017 
Cardiac MR 

images 
-- 

95.0 (LV), 89.3 (R

V), and 89.9 (Myo) 

 Heart [64] RFCN 

MICCAI2 

2009 challenge 

dataset 

Cardiac MR 

images 

RFCN 

reduces 

computational 

time, 

simplifies 

segmentation, 

and enables 

real time 

applications 

93.5(Dice) 

 Heart [65] U-Net -- 
DT-CMR 

images 

U-Net 

automated the 

DT-CMR 

postprocessin

g, supporting 

real time 

results 

93(Dice) 

Brain Brain [66] 
Binary 

UNet 
LGG MRI -- 99.7 

 Brain [67] 
Transformer 

Backbone 
LGG MRI -- 99.6 

 
Brain tumor 

[68] 
DeepLab  CT images 

DeepLab with 

conditional 

random fields 

produces high 

accuracy 

85.74 

Lungs  
Pneumonia 

[69] 
Iyke-Net CXR 

Chest X-ray 

images 
-- 87 

 

Pneumothora

x 

segmentation 

[70] 

FC-

DenseNet 

with SCSE 

module 

PACS 
Chest X-ray 

image 

Spatial 

weighted 

cross-entropy 

loss function 

improves 

93 
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precision at 

boundaries 

 

Pneumothora

x 

segmentation 

[71] 

Mask R-

CNN 
SIIM-ACR 

Chest X-ray 

images 

Bounding box 

regression 

helps in 

improving 

classification 

82(Dice) 

Liver 

Liver and 

tumor 

segmentation 

[72] 

Cascaded 

FCN 

DIRCAD 

dataset 

CT and MRI 

images 

Separate set 

of filters 

applied at 

each stage 

improves 

segmentation 

91,94.3 

 

Liver 

segmentation 

[73] 

HED-mask 

R- CNN 

CHAOS 

challenge 

CT and MR 

images 

High 

segmentation 

accuracy 

obtaine 

94, 89 and 91 

Digestiv

e system 

Pancreas 

[74] 

Recurrent 

NN (LSTM) 

NIH-CT-82, 

uflmri-79 

Abdominal 

CT 

and MRI 

images 

RNN 

performs 

better than 

HNN and 

UNET 

91.0, 90.5 

Breast 
Breast 

masses [75] 

DBN + 

CRF/ 

SSVM 

DDSM-BCRP, 

INbreast 

databases 

Mammogra

ms 

CRF model is 

faster than 

SSVM 

90 

Eyes 

Retinal 

blood vessels 

[76] 

U-Net with 

modificatio

ns 

DRIVE/STAR

E 

Retinal 

images 

Modification 

allows precise 

and faster 

segmentation 

of blood 

vessels 

95.9, 96.1 

 

Retinal 

blood vessels 

[77] 

U-Net, 

LadderNet 

DRIVE/STAR

E/ 

CHASE 

Retinal 

images 
-- 

97.06, 97.77, and 

97.73 

 

 

3. Techniques of Network Training 

3.1. Deeply Supervised 

The fundamental principle of deep supervision is to directly supervise the hidden levels and disseminate that 

supervision down to lower layers as opposed to only doing so at the output layer. By including the complementary 

objective role of hidden layers, this idea has been used for non-medical purposes in [78]. A 22 layer network's two 

hidden levels were also overseen in GoogleNet [79]. 

Deeply supervised techniques were used by Dou et al. in [80] in order to divide the 3D liver CT volumes. Such 

was accomplished by utilising deconvolution layers to upsample the classification output is densely packed using the 

lower and intermediate level features and the softmax layer. In addition to higher convergence, their results also display 

lower training and validation error. 

Three classifiers were injected in a similar manner [81] to categorise the mid-level output characteristics from a 

U-Net-like structure's contracting section. At training stage, the classification outcomes served as a controller. The 

multi-level environmental data of the network aided in enhancing localization and discriminating skills. Additionally, 

the Additional classifier improved the gradient's reverse expansion flow during training. 

 

3.2. Weakly Supervised 

Existing supervised methods for segmenting medical images automatically call for pixel level (or voxel level in 

the case of 3D) annotation, which isn't always feasible. Making such annotations will also be time-consuming and 
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costly [82]. This issue was solved in general image processing by employing services for outsourced labelling similar 

to Amazon MTurk, which is clearly unsuitable for medical image production. An innovative solution to this problem 

is to use image-labeled data, such as data with a binary identifier that denotes whether a pattern is present or not. 

In order to lessen the system's reliance on fully labelled images, this concept was implemented in [83] by using 

"point labels," which are simply single pixels indicating the existence of a nodule. Using the statistical data about the 

nodules, They used the position of that pixel and its surroundings as the positive sample for training by retrieving the 

volume around it. For instance, the nodules are typically displayed in slices that are 3–7 slices apart and range in width 

from 3 to 28 pixels. With samples that were only weakly labelled, the method had a respectable sensitivity of 80%. 

Segmenting pulmonary nodules entirely automatically from data with poor labelling was achieved by Feng et al. 

[84] using a CNN. Their approach is based on a finding from [85] that showed CNN's aptitude at locating 

discriminative zones. In order to do this, they utilised a CNN categorization to identify the pieces of that included 

nodules, and they also utilised discriminatory area using features to separate the slice's discriminatory areas, creating 

what is known as a diagram of nodule activation (NAM). A multi-GAP CNN was also created to take advantage of 

NAMs from shallower layers with better spatial precision, following the idea of [86].The outcome, a 0.55 Dice score, 

was comparable to completely supervised methods but less accurate. Deeply supervised approaches' dominance was 

expected because they use pixel-level annotation, which provides essential information to deal with a variety of 

intensity patterns, especially at the edges. Contrary to [83], which relied more on strict hypotheses about the size and 

shape of the nodules that were derived from statistical data, the proposed method aids in the more automatic extraction 

of the nodule-containing areas. 

 

3.3. Transfer Learning 

Transfer learning is the ability of a system to recognise and use information obtained in one domain to another 

[87,88]. 

Transfer learning can be accomplished in two ways: by fine-tuning a network that has already been trained on 

generic images [89] or by A network that has already been trained on medical images is being fine-tuned for a new 

target organ or job. Transfer learning occurs when the duties of the source and target networks are more similar Transfer 

learning occurs when the duties of the source and target networks are more similar. Transfer learning occurs when the 

duties of the source and target networks are more similar. has been shown to perform better, but even transferring the 

weights of responsibilities that are widely apart has outperformed random initialization[90]. The weights in [91] are 

adjusted for prenatal ultrasound image segmentation using weights from a generic network (VGG16).Similar to [92], 

the original weights were added to the polyp detection process after being retrieved from a remote application. The 

layers had to all be adjusted as a consequence. They discovered that increasing the sensitivity by 25% required fine-

tuning all levels as opposed to just the top layer. Nevertheless, some experiments that were created from start also 

produced better results than those that involved perfecting an already learned network [93]. 

Three main layers can be used to implement transfer learning: 

(1) Complete network adaptation entails updating all of the weights throughout training while initialising them using 

a pre-trained network (as opposed to a random initialization) [94, 95].  

(2) Partially adapted networks, which entails initialising the network parameter coming from a previously trained 

network while the weights freezed for the first layers and updating the last layers while training [96-98].  

(3) Zero adaptation entails starting the network's overall weights from a pre-trained model and making no other 

changes. Due to the enormous variance in how an organ (or target) looks, it is generally not advised to use a 

medical network adopted a zero adaptation approach.  

When providers have received training in generic images, it is especially not advised. Furthermore, because the objects 

in biomedical images may differ greatly in size and look from one another, segmentation results may not be affected 

by transfer learning from models with vastly different organ appearances. 

 

3.3.1. Network Structure 

However, the network structure also affects the technique that is used. Full adaptation improves performance for 

shallower networks, whereas partial adaptation will speed up convergence and lighten the computational strain for 

deeper networks [92]. 

 

3.3.2. Organ and Modality 

The intended organ and images of it modalities are another essential component of transfer learning. For instance, 

in [99] they used partial transfer for the T2 modality and complete weight transfer for the T1 MRI. Since the modality 
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has many noises and the organ has a wide range in appearance, results of [100] demonstrate that the completely 

adaptation method's average Dice score is higher (ADS) [101] compared to no adaptation and limited adaptation in 

kidney segmentation by ultrasonography. 

 

3.3.3. Dataset Size 

A parameter for role-playing used for determining the degree of transfer learning is the size of the intended dataset. 

Overfitting could occur if complete adaptation is used with a limited target dataset and many parameters (deeper 

networks). Therefore, limited adaptation is preferable. On the other hand, overfitting won't be a problem and full 

adaptation can function properly if the target dataset is comparatively small in size larger. The impact of dataset size 

on a full adaptation approach was examined by Tajbakhsh et al. in [92]. By expanding the training dataset from a 

quarter to its entire size, the results show a 10% improvement in sensitivity (from 62 to 72%). 

 

4. Metrics for Segmentation Evaluation and Data Sets 

4.1. Evaluation Metrics 

You need a reliable objective indication to judge an algorithm's quality. Hand-drawn annotations by physicians 

are often the gold standard for medical segmentation algorithms (ground truth(GT)). The predictions are another 

another outcome of the algorithm segmentation (Rseg, SEG for short). Both pixel-based and overlap-based techniques 

are used to evaluate segmentation of medical images. 

 

Dice index: The formula for determining similarity is called the dice coefficient. It is typically applied to determine 

how identical or overlapped two samples are. It's also the one that gets used the most. Its possible values are 0 to 1. 

The segmentation impact improves as the value approaches 1. The metrics is defined as follows given two groups A 

and B: 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) = 2
|𝐴 ∩ 𝐵|

|𝐴 +|𝐵|
 

(1) 

 

Jaccard index: The Jaccard index and die coefficient are comparable. The metrics are described as: given two sets A 

and  

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝐴, 𝐵) =
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
 

(2) 

 

Segmentation Accuracy (SA): The percentage of the actual region in the GT image is represented by the area of 

accurate segmentation. Among them, Rs stands for the segmented image's reference region that was painstakingly 

drawn by the expert. Ts indicates the actual area of the image as determined by the segmentation algorithm. The 

quantity of incorrectly segmented pixels is denoted by |Rs - Ts|. 

𝑆𝐴 = (1 −
|𝑅𝑠 − 𝑇𝑠|

𝑅𝑠

) × 100% 
(3) 

Oversegmentation Rate: The following equation is used to determine how many pixels are split into the GT image's 

reference area: 

𝑂𝑅 =
𝑂𝑠

𝑅𝑠 + 𝑂𝑠
 

(4) 

In contrast to the theoretical segmented image Rs, in Os, the pixels are present the divided image the divided image 

that was actually created. R stands for the segmented image's reference area that was by the professional, manually 

drawn. 

Undersegmentation Rate: the proportion of the segmentation's output to the GT image's missing pixels. figured out as 

follows: 

𝑈𝑅 =
𝑈𝑠

𝑅𝑠 + 𝑂𝑠
 

(5) 

Although the segmented image Rs contains the pixels in the split image Us, the segmented image Us does not. Both 

Rs and Os fall under the same classification. 

Hausdorff distance: The distance between the two boundaries of the ground truth and the segmentation result input to 

the network is described here as a measure of the degree of similarity between two groups of points. sensitive to the 
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dividing line  

𝐻 = (max
𝑖∈𝑠𝑒𝑔

(min
𝑗∈𝑔𝑡

(𝑑(𝑖, 𝑗))) ,max
𝑗∈𝑔𝑡

(min
𝑖∈𝑠𝑒𝑔

(𝑑(𝑖, 𝑗)))) 
(6) 

 

where, i and j are points belonging to different sets. d represents the distance between i and j. 

 

4.2. Medical Image Segmentation Data Sets 

It is essential to gather enough data for the data set before using any deep learning model segmentation. The 

experts' high-quality image data and data set with matching label standards, which allows for fair system comparison, 

are what determine the segmentation algorithm's quality[81]. The public data sets that are frequently used in the 

segmentation of medical images will be introduced in this section. 

 

Medical Segmentation Decathlon (MSD):A sizable, a collection of different anatomical sections' open source, 

manually annotated medical images was produced by Simpson et al. [102]. Through thorough benchmarks, Using this 

data set impartially assess segmentation generally techniques while opening up availability of medical images to the 

general public. The data set includes 2633 three-dimensional medical images from various sources and real-world 

clinical uses of different anatomical parts. There are ten categories in total: 
1. Task01, BrainTumor: In total, there are 750 labels, which are divided into two categories: edoema and glioma 

(necrotic/active cancer). It is an MRI scan that was obtained in the course of routine therapeutic practise. 

2. Task02, Heart: There are thirty in total, and the placard specifically mentions the left atrium. These figures 

are taken from the Left Atrial Segmentation Challenge. (LASC). Images were created using a 1.5T Achieva 

scanning and had voxel resolution of 1.25 1.25 2.7 mm3. 

3. Task03, Liver: There are 201 sheets in total, with markings divided into sections for the liver and tumours. 

The diagnostic technique is known as CT. For the pictures, in-plane resolution varied from 0.5 to 1.0 mm and 

slice thickness from 0.45 to 6.0 mm. 

4. Task04, Hippocampus: With the labels hippocampus, cranium, and body, there are 394 in total. The technique 

is called MRI imaging. The data set included MRI scans from 105 people with nonaffective psychotic 

disorders and 90 adults in good health. 

5. Task05, Prostate: There are 48 in total, and the markings read: Central gland of the prostate, peripheral zone. 

The technique is MRI imaging. 48 multiparametric MRI scans from Radboud University (The Netherlands) 

were part of the prostate data set and had earlier been distributed and segmented. 

6. Task06, Lung: Lung tumour is the designation for all 96 of them. The technique is CT radiography. Patients 

from Stanford University with non-small-cell lung cancer made up the lung data collection. On a typical CT 

cross section, an expert thoracic radiologist marked the tumour position using OsiriX. 

7. Task07 Pancreas: has 420 labels total, with the pancreas and pancreatic mass labels being separated. CT 

imaging is the method. Patients whose pancreatic masses were removed made up the pancreas data set. 

8. Task08 HepaticVessel: The labels for the 443 total liver vessels are "hepatic vessels." CT imaging is the 

method. Patients with various primary and metastatic liver tumours made up the second liver data set. 

9. Task09 Spleen: The spleen is the label for 61 different items. CT imaging is the method. Patients at Memorial 

Sloan Kettering Cancer Center receiving chemotherapy for liver metastases made up the spleen data set. 

10. Task10 Colon: The label for all 190 cases is "colon cancer." CT imaging is the method. 

 

Segmentation in Chest Radiographs (SCR):The JSRT database serves as the source for all chest radiographs. The 

SCR database was developed to make it easier to compare the segmentation of the heart, clavicle, and lung field in 

conventional posterior chest radiographs [103]. The database's entire data set has been carefully split to offer 

benchmarks. With a grayscale of 12 bits and a spatial resolution of 0.175 mm/pixel, the image is scanned from film to 

a resolution of 2048 2048 pixels. There are no lung nodules in any of the other 93 images, but all 154 images contain 

at least one lung nodule. 

 

Brain Tumor Segmentation (BRATS): This data set is a combination of the MICCAI conference and a brain tumor 

data set for the segmentation challenge [104]. Since 2012, it has been held annually to assess the most effective 

techniques for segmenting brain tumours and to contrast various techniques. The data set is published as a result. 

Necrotic region, healthy brain tissue, edoema area, tumor areas for enhancement and non-enhancement are the five 

different sorts of labelling. Every year, There are new training sets introduced. 

 

Digital Database for Screening Mammography (DDSM): The field of mammography image analysis study makes 
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extensive use of the resource DDSM [105]. The database has over 2500 studies in it. Two breast images from each 

study are included, along with some pertinent patient and image data. 

 
Ischemic Stroke Lesion Segmentation (ISLES):This offers MRI images with several precise stroke samples and 

associated clinical data. To assess predicting clinical outcomes and stroke histology in precise MRI scan images, this 

challenge is set up. 

 

Liver Tumor Segmentation (LiTS):For the segmentation of the liver and liver tumours, various clinical locations from 

around the world have contributed these data and segmentations. 130 CT scans are included in the training data set, 

while 70 scans are included in the test data set [106]. 

 

Prostate MR Image Segmentation (PROMISE12): For prostate segmentation, the data collection is used. Patients 

with prostate cancer and benign illnesses such benign prostatic hyperplasia are included in these statistics. These 

examples feature a transverse T2-weighted MR prostate image. 

 

Lung Image Database Consortium Image Collection (LIDC-IDRI):This data set consists of lesion labels that 

correlate to diagnosis results for chest medical image files (such as CT and X-ray). Studying early cancer detection in 

high-risk populations is the goal. There are 1018 study examples in all. Four seasoned The diagnostic and annotation 

process was done in two stages by thoracic radiologists on the images in each scenario [107]. 

 

Open Access Series of Imaging Studies (OASIS):The goal of this initiative is to make it possible for the provision of 

brain MRI data sets by the scholarly community without charging anything. There is now a third generation available. 

The 30-year-old The WUSTL Knight ADRC's OASIS-3 is a retrospective compilation of data from more than 1000 

participants in a number of ongoing projects. OASIS-3 is a longitudinal data collection for Alzheimer's disease and 

normal ageing that includes neuroimaging, clinical, cognitive, and biomarker information. Participants ranged in age 

from 42 to 95 [108] and included 609 adults with normal cognitive function and 489 people in varying stages of 

cognitive decline. 

 

Digital Retinal Images for Vessel Extraction (DRIVE): The data set is used for comparing how blood vessels are 

segmented in retinal images. The 40 images that made up the DRIVE database were chosen at random from a Dutch 

experiment to screen for diabetic retinopathy. 33 of them showed no symptoms of diabetic retinopathy, while seven 

had modest early symptoms in those circumstances. 8 bits per colour plane are used to capture each image at a 

resolution of 768 by 584 pixels. Each image has a circular field of view with a diameter of roughly 540 pixels [109]. 

 

Mammographic Image Analysis Society (MIAS):A British research organisation established the MIAS breast cancer 

X-ray imaging database in 1995. Eight bits of grayscale make up each pixel. 322 images in total, including 208 images 

of healthy breasts, 63 benign breast cancer images and 51 malignant breast cancer images, are available in the MIAS 

database for the left and right breasts of 161 individuals. Experts have calibrated the lesion area's border as well [110]. 

 

Sunnybrook Cardiac Data (SCD): The dataset, also referred to as the 2009 cardiac MR left ventricle segmentation 

challenge data, comprises of 45 cine-MRI images of patients with a range of pathologies, including healthy subjects, 

patients with hypertrophic heart disease, patients with heart failure with and without an infarction, and patients with 

heart failure without an infarction [111]. 

In addition to the numerous data sets that are commonly used for medical image segmentation, as discussed above, 

there are several competition data sets that support the excellence of the algorithm provided by the renowned medical 

image challenge competition. 

 

Grand Challenges in Biomedical Image Analysis: It was made to assist people in resolving problems related to 

international development and health. It addresses every difficulty related to study of medical images, including 

processing of medical images. The development of many good algorithms has been sparked by this, which also presents 

the greatest challenge in the area of medical image processing. 

 
Liver Tumor Segmentation Challenge: This contest aims to motivate researchers to investigate liver lesion 

segmentation techniques. Different clinical sites throughout the world give the data and slices for the challenger 

tournament. There are 130 CT scans in the training data set and 70 in the test data set. 

 

2019 Kidney and Kidney Tumor Segmentation Challenge (KiTS19):In contrast-enhanced CT images, the semantic 
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segmentation of kidneys and kidney cancers is the KiTS19 challenge. 300 individuals having preoperative arterial-

phase abdominal CTs that had been expertly annotated made up the data set. Of them, 210 (70%) were made available 

as a training set, and the remaining 90 (30%) were saved for the test set. The data sets for segmenting medical image 

are shown in Table 3. 

 

Table 3. Medical image segmentation data sets. 

Data Set Modalities Objects URL 

ISLES MRI Brain http://www.isles-challenge.org/ 

LiTS CT Liver https://competitions.codalab.org/competitions/17094 

PROMISE12 MRI Prostate https://promise12.grand-challenge.org/ 

LIDC-IDRI CT Lung https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI 

MSD MRI, CT Various http://medicaldecathlon.com/ 

BRATS MRI Brain https://www.med.upenn.edu/sbia/brats2018/data.html 

DDSM Mammography Breast http://www.eng.usf.edu/cvprg/Mammography/Database.html 

OASIS MRI, PET Brain https://www.oasis-brains.org/ 

DRIVE Funduscopy Eye https://drive.grand-challenge.org/ 

STARE Funduscopy Eye http://homes.esat.kuleuven.be/~mblaschk/projects/retina/ 

CHASEDB1 Funduscopy Eye https://blogs.kingston.ac.uk/retinal/chasedb1/ 

MIAS X-ray Breast https://www.repository.cam.ac.uk/handle/1810/250394?show=full 

SCD MRI Cardiac http://www.cardiacatlas.org/studies/ 

SKI10 MRI Knee http://www.ski10.org/ 

HVSMR2018 CMR Heart http://segchd.csail.mit.edu/ 

 

 

 

5. Major Challenges and State-of-the-Art Solutions 

Deep learning has benefited the field of medical image segmentation, although it is still difficult to use deep 

neural networks for the following reasons. 

 

5.1. Data set challenges 

The following are some of the several dataset-related challenges: 

 

Limited Annotated Dataset. Large amounts of data are needed for deep learning network models. The training-related 

data is richly annotated. In many DL-based medical procedures, the dataset is crucial [112]. It can be challenging to 

gather a lot of annotated medical images for use in medical image processing [113]. Additionally, annotating new 

medical images is time-consuming, expensive, and complicated. Several sizable datasets are openly accessible. More 

difficult datasets are still required in order to improve DL model training and support managing dense objects. Larger 

and more challenging datasets are required because the majority of the existing 3D datasets [114] are not very large 

and very few of them are generated. 

The size of the current medical image libraries can be increased by using image augmentation techniques like 

cropping and shearing. Other techniques include rotating an image at various angles and flipping it vertically or 

diagonally. The performance of the system can be enhanced by these techniques. (b) Transfer learning from powerful 

models can be applied to the problem of insufficient data. (c) Combining data from various sources is the last stage 

[115]. 

 

Class Imbalance in Datasets. There is inherent class inequality in many publicly accessible medical image collections. 

Where the disease is highly prevalent in patient data uncommon and affects just 10% of patients examined, a severely 

imbalanced data set makes model accuracy misleading and makes training DL models very challenging. Since most 

patients are free of the disease and would achieve a local minimum the overall planned model accuracy would be high 

[116, 117]. 

Class imbalance can be resolved in one of two ways: (a) oversampling the data, the amount of which is based on 

the dataset's degree of class inequality. (b) Secondly, the issue of dataset imbalance can be solved by altering the 

https://competitions.codalab.org/competitions/17094
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://www.med.upenn.edu/sbia/brats2018/data.html
http://www.eng.usf.edu/cvprg/Mammography/Database.html
https://www.repository.cam.ac.uk/handle/1810/250394?show=full
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assessment or performance metric. (c) New data samples can be produced using approaches for data augmentation. 

(d) By combining minority classes, the issue of dataset class disparity can also be resolved. 

 

Sparse Annotations. Fully annotating 3D images requires work and is not always possible. So, 3D image information 

segments are partially labelled. It is extremely difficult to train models using these sporadic 3D annotations [113]. The 

dataset can be subjected to weighted loss function in the case of a sparsely annotated dataset. To learn just from the 

labelled pixels, The dataset's unlabeled data has all of its weights assigned to zero. 

 

Intensity Inhomogeneities. Inhomogeneities in colour and intensity are prevalent in pathology images [118]. Shading 

is a result of intensity inhomogeneities over the image. In the segmentation of MR images, it is more precise. 

Additionally, because nonuniform support films are present, the brightness of the TEM images varies. These variations 

make segmentation laborious. 

In the literature, different nonparametric strategies are proposed and various algorithms are used, to adjust intensity 

inhomogeneities [118]. To eliminate inhomogeneities, segmentation can be performed prior to prefiltering. 

Additionally, improvements in scanning technology address intensity inhomogeneities. 

 

Complexities in Image Texture. Various artefacts from image editing may be visible in medical images. Noise is 

introduced into the image by the various sensors and electronic parts employed to capture it [10,119]. There may be 

weak image boundaries and grey levels that are quite close to one another in the obtained image. Tissue overlap may 

be visible in dermoscopic images, as well as abnormalities like skin lines and hair. It is challenging to identify the 

region of interest in medical imaging because of all these complexity. 

Before segmentation, a variety of image enhancing techniques are performed to eliminate various noises and 

artefacts in the image. The image enhancement approach reduces image noise while maintaining the sharpness of the 

image's edges. 

 

5.2. DL Models Challenges  

The following are the significant difficulties in training DNN to reliable the medical images segmentation: 

 

Overfitting the Model, The model being overfit occurs when it learns Compared to the situation of unprocessed data, 

the training dataset contains the details and regularities with a high degree of accuracy. The majority of the time, it 

occurs when training a model with sparse training data[120] . 

With the use of augmentation techniques, the size of the dataset can be increased, which can be used to [116] 

address overfitting. (b) Dropout strategies [121] assist manage overfitting by discarding some of the output from a 

random group of neurons of network throughout every cycle. 

 

Memory Efficient Models, Models for segmenting medical images need a lot of memory [122]. These models must 

be simplified in order to be compatible with particular devices, such as mobile phones. 

The amount of memory needed for a DL model The amount of memory needed for a DL model The amount of 

memory needed for a DL model can be decreased by using simpler models and model compression techniques. 

 

Training Time. Deep neural network architecture training takes time. Fast convergence of the deep NN training time 

is necessary for image segmentation. 

Applying batch normalisation is one way to solve this issue [122]. By deducting the pixel values of the image's 

mean value, it refers to finding the pixels close to 0. It works well at enabling quick convergence. Convergence can 

also be accelerated by adding pooling layers to decrease parameter dimension. 

 

Vanishing Gradient. Vanishing gradient is a challenge for deep neural networks [123]. It happens because It is 

impossible to revert to previous layers if the final gradient is lost.. In 3D models, the vanishing gradient issue is more 

obvious. 

The gradient disappearing issue has a number of solutions. (a) The gradient value is strengthened by combining 

the auxiliary losses and the initial loss of the hidden layers and upscaling the intermediary hidden layer output using 

deconvolution and softmax [118]. (b) We can also avoid vanishing gradient by carefully initialising the weights [124] 

for the network. 

 

Computational Complexity. High computing efficiency is required for feature analysis performed by deep learning 

algorithms. High performance computer systems and GPU are required for these methods [125]. Some of the more 



 

(ASWJST / Volume 3, issue 1/ June 2023)                                                                               Page   102 

 

 

(ASWJST 2023/ printed ISSN: 2735-3087 and on-line ISSN: 2735-3095)        https://journals.aswu.edu.eg/stjournal 

advanced algorithms could need supercomputers for model training, which might not be available. In order to 

overcome these problems, the researcher must take into account a specified set of factors in order to achieve a certain 

level of accuracy. 

 

Conclusion 

The most common network architectures used for medical image segmentation are firstly listed in this 

research.Then, we provided a summary of the primary training methods for the segmentation of medical image, 

together with their benefits and shortcomings.A summary of the numerous medical image datasets used for illness 

segmentation as well as the various performance measures used to assess the effectiveness of the image segmentation 

algorithm are also provided.Finally, we concentrated on the primary difficulties with deep learning-based approaches 

to medical image segmentation. Deep learning is becoming increasingly relevant in image segmentation as a result of 

technological advancements.The current work will aid scientists in developing neural network architectures for disease 

diagnosis in the medical field. Additionally, the researchers will get knowledge about the cutting-edge solutions and 

potential difficulties in the field of segmenting medical images using deep learning. 

The paper has several contributions which are as follows: Firstly, the present study provides an overview of the 

current state of the deep neural network structures utilized for medical image segmentation. Secondly, the paper 

describes the publicly available techniques of Network Training. Thirdly, it presents the various performance metrics 

employed for evaluating the deep learning segmentation models and the medical image segmentation  datasets. Finally, 

the paper also gives an insight into the major challenges faced in the field of image segmentation and their state-of-

the-art solutions 
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