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NUMERICAL SOLUTIONS OF

BENJAMIN-BONA-MAHONY-BURGERS EQUATION VIA

NONSTANDARD FINITE DIFFERENCE SCHEME

N. H. SWEILAM, M. M. ABOU HASAN, A. O. ALBALAWI

Abstract. The aim of this paper is to construct an unconditionally stable
numerical scheme for the Benjamin-Bona-Mahony-Burgers (BBMB) equation.

Kind of nonstandard finite difference discretization is used to achieve this goal.

Stability analysis of this scheme is studied using John von Neumann technique,
moreover, the accuracy of the proposed scheme is proved. The convergent

of the proposed scheme is secured depending on Lax equivalence theorem.
Numerical results with comparisons are given to confirm the reliability of the

proposed method for BBMB equation.

1. Introduction

BBMB equation has been proposed in [1] as a model to study the propagation of
unidirectional long waves of small-amplitudes in water, which is an alternative to
the Korteweg-de Vries equation. This equation is used in many branches of science
and engineering, for more details on both the mathematical theory and the physical
significance of this model we refer to [2] and [3], and the references therein.

The BBMB model has been tackled and inspected by many authors. Manickam
et al. used a spline collocation method for approximating the solutions of BBMB in
[4]. Crank-Nicolson-type finite difference method is used in [5] to solve numerically
BBMB by Omrani et al.. Kadri et al. used finite element methods to study this
problem in [6]. Also, Fardi et al. in [7] used homotopy analysis method to give
analytic solution of BBMB. The tanh method with the aid of symbolic computa-
tional system is employed to investigate exact solutions of BBMB equation in [8]
and [9]. Recently, Zarebnia et al. in [10] used cubic B-spline collocation method
to approximate the solutions of BBMB, and more recently, Zarebnia and Parvaz in
[11] used quadratic B-spline collocation method to solve this problem.

On the other hand, the nonstandard finite difference method (NSFDM) is pro-
posed by Mickens ([12]-[16]) for improving special discretizations of some terms in
the differential equations, such that depending on the denominator function and
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the specific discretization this method be more accurate and more stable than stan-
dard method ([17], [18]), in addition this method can be easy to formulate [19]. The
positive applications of the NSFDM can be found in the fields of physics, chemistry,
engineering ([20], [21], [22] and [23]). Especially, the most attractive applications
are in mathematical biology and ecology ([24], [25]) such that the merit of the
NSFDM has been shown prominently.

The main goal of this manuscript is to constract a novel nonstandard finite
difference scheme (NSFDS) for solving numerically the following BBMB ([10], [11]):

ut − uxxt − αuxx + (β + u)ux = 0, x ∈ [a, b], t ∈ [0, T ], (1)

subject to the following Dirichlet boundary conditions:

u(a, t) = 0, u(b, t) = 0, (2)

and initial condition:

u(x, 0) = f(x), x ∈ [a, b], (3)

where α and β are positive constants.
Also, In order to highlight the accuracy of the proposed algorithm, some numer-

ical examples and comparisons are introduced.
The remainder of the paper is organized as follows. In the next section, we

recall the preliminaries of the NSFDM. In Section 3, we develop a NSFDS of the
BBMB equation. Section 4 is devoted to study the stability analysis of the proposed
scheme and to study the truncating error of this scheme. In Section 5, some numer-
ical results are reported to show the efficiency and the accuracy of the suggested
algorithms. Finally, a conclusion is given in Section 6.

2. The Nonstandard Finite Difference Method

The technique of the NSFDM was firstly proposed by Mickens ([12]-[16]). It is
method to construct a numerical discrete scheme for ordinary differential equations
(ODEs) or partial differential equations (PDEs). The NSFDS is able to maintain
the properties of the exact solution of the original ODEs or PDEs with the following
rules [15]:

1. The orders of the discrete derivatives should be equal to the orders of the
corresponding derivatives of the differential equations.

2. Denominator functions for the discrete derivatives must, in general, be
expressed in terms of more complicated functions of the step sizes than
those conventionally used.

3. Nonlinear terms must be approximated in a nonlocal way.
4. Special conditions that hold for the solutions of the differential equations

should also be special discrete for the finite difference scheme.
5. The scheme should not have solutions that do not correspond to solutions

of the differential equations.

When we want to approximate
dy

dt
using Euler method we use

y(t+ h)− y(t)

φ(h)

instead of
y(t+ h)− y(t)

h
, where φ(h) is a continuous function of step size h, and

the function φ(h) satisfies the following conditions:

φ(h) = h+O(h2), 0 < φ(h) < 1, h −→ 0.
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In addition to this replacement, if there are nonlinear terms in the differential
equation, these are replaced by non-local approximation like for example

yx −→

{
ynxn+1,

yn+1xn.

3. Construction of the NSFDS for the BBMB equation

In this section we construct an implict and unconditionally stable NSFDS to
obtain numerical solutions of the BBMB equation (1).

Let M,N be natural numbers and the coordinates of the mesh points are:

xn = nh, n = 0, 1, 2, ..., N, tm = m4t, m = 0, 1, 2, ..., M,

where
h = (b− a)/N, 4t = T/M.

The numerical value of u at the grid point (xn, tm) = (nh,m4t) is denoted by umn
and the nonstandard differences approximations are given as the following:

(ut)
m
n =

um+1
n − um−1n

2ϕ(4t)
+O((ϕ(4t))2), (4a)

(uxxt)
m
n =

um+1
xx − um−1xx

2ϕ(4t)
+O((ϕ(4t))2),

=
um+1
n+1 − 2um+1

n + um+1
n−1 − u

m−1
n+1 + 2um−1n − um−1n−1

2ϕ(4t) · (φ(h))2
+O((φ(h))2 + (ϕ(4t))2),

(4b)

(uxx)mn =
um+1
xx + um−1xx

2
,

=
um+1
n+1 − 2um+1

n + um+1
n−1 + um−1n+1 − 2um−1n + um−1n−1

2(φ(h))2
+O((φ(h))2),

(4c)

((β + u)ux)mn = (β +
um+1
n + umn

2
) · u

m+1
x + umx

2

= (β +
um+1
n + umn

2
) ·
um+1
n+1 − u

m+1
n−1 + umn+1 − umn−1

4(φ(h))
+O((φ(h))2).

(4d)

Substituting these equations (4) into (1), the resulting equations take the form:

um+1
n − um−1n

2ϕ(4t)
−
um+1
n+1 − 2um+1

n + um+1
n−1 − u

m−1
n+1 + 2um−1n − um−1n−1

2ϕ(4t) · (φ(h))2

− α
um+1
n+1 − 2um+1

n + um+1
n−1 + um−1n+1 − 2um−1n + um−1n−1

2(φ(h))2

+ (β +
um+1
n + umn

2
) ·
um+1
n+1 − u

m+1
n−1 + umn+1 − umn−1

4(φ(h))
= Tmn . (5)

The above replacements give rise to an error, the truncation error, denoted here
by Tmn . Its value will be discussed in Section 4.2. Neglecting the truncation error,
the resulting computable difference scheme takes the form:
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um+1
n+1

[ 1

2ϕ(4t) · (φ(h))2
+

α

2(φ(h))2
− 1

4(φ(h))
(β +

um+1
n + umn

2
)
]

=

um+1
n − um−1n

2ϕ(4t)
−
−2um+1

n + um+1
n−1 − u

m−1
n+1 + 2um−1n − um−1n−1

2ϕ(4t) · (φ(h))2

− α
−2um+1

n + um+1
n−1 + um−1n+1 − 2um−1n + um−1n−1

2(φ(h))2

+ (β +
um+1
n + umn

2
) ·
−um+1

n−1 + umn+1 − umn−1
4(φ(h))

. (6)

Scheme (6) with the boundary conditions (2) and the initial condition (3) construct
a nonlinear algebraic system of (N + 1)(M + 1) equation with the unknown umn ,
(n = 0, 1, 2, ..., N, m = 0, 1, 2, ..., M). This system will be solved in this
work using Newton’s iteration methods [26].

4. Stability analysis and truncating error

4.1. Stability analysis. To investigate the stability of scheme (6) we apply the
Jon von Neumann method after linearizing this scheme by considering the term

(β +
um+1
n +um

n

2 ) as a constant D ([27], [28]). Scheme (6) can be written in the
following form:

um+1
n+1 P1 = um+1

n P2+um+1
n−1 P3+umn+1P4+umn−1P5+um−1n+1 P6+um−1n P7+um−1n−1 P8, (7)

where
P1 = 1

2ϕ(4t)·(φ(h))2 + α
2(φ(h))2−

D
4φ(h) , P2 = 1

2ϕ(4t)+
1

ϕ(4t)·(φ(h))2 + α
(φ(h))2 ,

P3 = − 1
2ϕ(4t)·(φ(h))2 −

α
2(φ(h))2 −

D
4φ(h) , P4 = D

4φ(h) , P5 = − D
4φ(h) ,

P6 = 1
2ϕ(4t)·(φ(h))2 −

α
2(φ(h))2 , P7 = −1

2ϕ(4t) −
1

ϕ(4t)·(φ(h))2 + α
(φ(h))2 ,

P8 = 1
2ϕ(4t)·(φ(h))2 −

α
2(φ(h))2 .

According to the Jon von Neumann technique, we have

umn = ξmeinqh, (8)

where i =
√
−1, q ∈ R, ξ ∈ R is the amplification factor. Substituting Eq. (8) in

Eq. (7) then we obtain the following equation:

ξm+1ei(n+1)qhP1 = ξm+1einqhP2 + ξm+1ei(n−1)qhP3 + ξmei(n+1)qhP4 + ξmei(n−1)qhP5

+ ξm−1ei(n+1)qhP6 + ξm−1einqhP7 + ξm−1ei(n−1)qhP8, (9)

Dividing both sides of (9) by ξmeinqh, we can write the following equation:

ξ =
ξ−1(P6e

iqh + P7 + P8e
−iqh) + P4e

iqh + P5e
−iqh

P1eiqh − P2 − P3e−iqh
. (10)

The necessary condition for stability of the difference system (7) is |ξ| ≤ 1 for all q
i.e., ∣∣ξ−1(P6e

iqh + P7 + P8e
−iqh) + P4e

iqh + P5e
−iqh

P1eiqh − P2 − P3e−iqh
∣∣ ≤ 1,
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Using the Eulers formula eiθ = cosθ+ isinθ, and considering the time-independent
limit value ξ = −1 as in ([29], [30]) and under some simplifications we have∣∣A+B cos(qh) + iC sin(qh)

A+B cos(qh)− iC sin(qh)

∣∣ ≤ 1,

where A = −1
ϕ(4t)·(φ(h))2 + α

(φ(h))2 −
1

2ϕ(4t) , B = 1
ϕ(4t)·(φ(h))2 −

α
(φ(h))2 , C = 1

4ϕ(4t) .

From last inequality the Jon von Neumann’s sufficient condition for stability,
max

q
|ξ(q)| ≤ 1, is satisfied for all real q. Hence, the difference scheme (6) is

unconditionally stable.

4.2. Truncating error. From the definition of truncating error given by Eq. (5),
and depending on relations (4) one gets

Tmn = O((ϕ(4t))2 + (φ(h))2),

but we have ϕ(4t) = 4t+O(4t)2 and φ(h) = h+O(h)2,
so

Tmn = O((4t)2 + h2).

Depending on Lax equivalence theorem [27] the propsed NSFDS is convergent to
the exact solution of BBMB equation when h and 4t −→ 0.

5. Numerical simulations

To illustrate the effectiveness of the proposed method in the present paper for
solving BBMB, two test examples are carried out in this section. To justify the
accuracy of the present method in comparison with the other methods, we report
L∞ error using formula L∞ = max|u

exact
(xn, tm) − u

approximation
(xn, tm)| for all

n, m.

Example 1. [10] We consider equation (1) with α = 0, β = 1, a = −40 and b = 60
where

f(x) = 3c sech2(k(x− x0)),

and the exact solution is

u(x, t) = 3c sech2(k(x− vt− x0)).

We compare our results with the cubic B-spline collocation method [10] which
was the most accurate method for solving the BBMB in the literature. For this
purpose, we consider the same parameter values for Eq. (1) as considered in [10],
namely c = 0.1, v = 1 + c, x0 = 0, k =

√
c
4v ,

Take

φ(h) = (e(
√
2h/3) − 2 + e(−

√
2h/3))/(2/9), ϕ(4t) = sinh(dt)

, tables (1, 2) give a comparisons between the proposed NSFDS in this work and
the method in [10].

Figure (1) shows the exact solution and the obtained numerical results by means
of the proposed NSFDS when N = 200, T = 1 and 4t = 0.05.
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Table 1. Comparison of the maximum errors calculated by the
NSFDS and by the method in [10] with 4t = 0.1 for example (1).

T
N = 100 N = 300

Method in [10] Our scheme Method in [10] Our scheme
1 1.7726e-04 8.5290e-06 1.8456e-05 4.9879e-07
2 2.2262e-04 1.6605e-07 2.1289e-05 9.5561e-07
3 2.7444e-04 2.7551e-07 2.5022e-05 1.5831e-07
4 3.3417e-04 4.5642e-07 2.9085e-05 2.3844e-07

Table 2. Comparison of the maximum errors calculated by the
NSFDS and by the method in [10] with N = 400 for example (1).

T
4t = 0.5 4t = 0.1

Method in [10] Our scheme Method in [10] Our scheme
2 5.8464e-05 7.1542e-07 1.0607e-05 2.3482e-07
3 9.6939e-05 9.9297e-07 1.1653e-05 1.5191e-07
5 1.9834e-04 1.8465e-06 1.4465e-05 3.2664e-07
7 2.8452e-04 3.2538e-06 1.7653e-05 6.0026e-07

Figure 1. Comparison between, the numerical solution using our
proposed scheme and the exact solution for example (1)
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Example 2. In this example we will introduce numerical solutions of equation
(1) in the interval [−10, 10] with α = 1 and β = 1 and the initial condition is

u(x, 0) = e−x
2

.

Take φ(h) = (e(
√
2h/3) − 2 + e(−

√
2h/3))/(2/9), ϕ(4t) = sinh(dt), the behavior

of the approximate solution with 4t = 0.01 and N = 200 is presented in Fig. 2.

In order to numerically check the error we consider the inhomogeneous BBMB
equation

ut − uxxt − uxx + ux + uux = g(x), x ∈ [0, 1], t ∈ [0, T ], (11)

where

g(x) = (1 + π2)sin(πx) + πt(πsin(πx) + cos(πx) + 0.5 t sin(2πx)).

The exact solution of (11) is:

u(x, t) = t sin(πx).

In table (3) we find the maximum error of using the proposed scheme for solving
Eq. (11) with different values of N, M.

Table 3. The maximum error for (11).

N = M Max-error
10 1.0606e-04
20 5.9621e-05
40 1.8978e-05
80 4.7084e-06

Figure 2. Approximate solution for example (2) when T = 0.5.
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6. Conclusion

A new numerical unconditional stable scheme is constructed to introduce an
approximate solutions of the BBMB equation. The proposed algorithm is based on
the NSFDM. Stability analysis of this scheme is studied using John von Neumann
technique, also the truncation error is studied. To confirm the efficiently and the
accuracy of the proposed scheme we introduced comparisons between our numerical
solutions of the problem with its exact solutions and with the approximate solutions
that achieved by other methods.
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