SOME GEOMETRIC PROPERTIES OF ANALYTIC SERIES WHOSE COEFFICIENTS ARE RECIPROCAL OF FUSS-CATALAN NUMBERS

MANOJ KUMAR SONI, AMIT SONI AND DEEPAK BANSAL

Abstract

In the present investigation we first introduce two parameter family of function namely $\mathbb{E}_{p, r}(z)$ and then find sufficient conditions so that the function $\mathbb{E}_{p, r}(z)$ have certain geometric properties like close-to-convexity and starlikeness in the open unit disk. Some interesting consequences of main results are also pointed out in the form of corollaries.

1. Introduction

Let \mathcal{H} denote the class of analytic functions inside the unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<$ $1\}$ and consider the subclass $\mathcal{A}=\left\{f \in \mathcal{H}: f(0)=f^{\prime}(0)-1=0\right\}$ which consist functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

We denote by \mathcal{S}, the class of all functions $f \in \mathcal{A}$ which are univalent in \mathbb{D} i. e.

$$
\mathcal{S}=\{f \in \mathcal{A} \mid f \text { is one-to-one in } \mathbb{D}\} .
$$

A function $f \in \mathcal{A}$ is called starlike (with respect to 0), denoted by $f \in \mathcal{S}^{*}$ if $t w \in f(\mathbb{D})$ for all $w \in f(\mathbb{D})$ and $t \in[0,1]$. A function $f \in \mathcal{A}$ that maps \mathbb{D} onto a convex domain is called convex function and class of such functions is denoted by \mathcal{K}. For a given $0<\alpha \leq 1$, a function $f \in \mathcal{A}$ is called starlike function of order α, denoted by $\mathcal{S}^{*}(\alpha)$, if

$$
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad z \in \mathbb{D} .
$$

For a given $0<\alpha \leq 1$, a function $f \in \mathcal{A}$ is called convex function of order α, denoted by $\mathcal{K}(\alpha)$, if

$$
\mathfrak{R}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, \quad z \in \mathbb{D}
$$

It is well known that $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$ and $\mathcal{K}(0)=\mathcal{K}$. We recall [5] that the function $z g^{\prime}(z)$ is starlike if and only if the function $g(z)$ is convex.
Given a convex function $g \in \mathcal{K}$ with $g(z) \neq 0$ and $0<\alpha \leq 1$, a function $f \in \mathcal{A}$,

2010 Mathematics Subject Classification. 33E12, 30C45.
Key words and phrases. Univalent, Starlike, Convex and Close-to-convex functions.
Submitted Jan. 16, 2018.
is called close-to-convex of order α with respect to convex function g, denoted by $\mathcal{C}_{g}(\alpha)$, if

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{f^{\prime}(z)}{g^{\prime}(z)}\right\}>\alpha, z \in \mathbb{D} \tag{1.2}
\end{equation*}
$$

The class $\mathcal{C}_{g}(0)$ is the class of functions close-to-convex with respect to g. Geometrically a function $f \in \mathcal{A}$ belongs to \mathcal{C} if the complement E of the image-region $F=\{f(z):|z|<1\}$ is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the rays). The Noshiro-Warschawski theorem implies that close-to-convex functions are univalent in \mathbb{D}, but not necessarily the converse. It is easy to verify that $\mathcal{K} \subset \mathcal{S}^{*} \subset \mathcal{C}$. For more details see [5].

If $f, g \in \mathcal{H}$ where \mathcal{H} denote the class of all holomorphic functions, then the function f is said to be subordinate to g, written as $f(z) \prec g(z)(z \in \mathbb{D})$, if there exists a Schwarz function $w \in \mathcal{H}$ with $w(0)=0$ and $|w(z)|<1(z \in \mathbb{D})$ such that $f(z)=g(w(z))$. In particular, if g is univalent in \mathbb{D}, then we have the following equivalence:

$$
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathbb{D}) \subset g(\mathbb{D})
$$

It is always interesting to find sufficient conditions such that certain class of analytic functions becomes close-to-convex, starlike or convex function. In the present investigation, we are interested in some geometric properties of analytic power series whose coefficients are reciprocal of Fuss-Catalan numbers.
A definition of the Fuss-Catalan numbers: Catalan numbers $\left\{c_{n}\right\}_{n \geq 0}$ are said to be the sequence satisfying the recursive relation

$$
\begin{equation*}
c_{n+1}=c_{0} c_{n}+c_{1} c_{n-1}+\ldots+c_{n} c_{0}, \quad c_{0}=1 \tag{1.3}
\end{equation*}
$$

It is well known that the nth term of Catalan numbers is

$$
c_{n}=\frac{1}{2 n+1}\binom{2 n+1}{n}
$$

i.e. $\left\{c_{n}\right\}_{n \geq 0}=\{1,1,2,5,14,42,132, \ldots\}$. Also, one of many combinatorial interpretations of Catalan numbers is that c_{n} is the number of shortest lattice paths from $(0,0)$ to (n, n) on the 2 -dimensional plane such that those paths lie beneath the line $y=x$. Further generalization of Catalan numbers is Fuss-Catalan numbers $\left\{c_{n}^{(p)}\right\}_{p, n \geq 0}$, which were investigated by Fuss [7] and studied by several other authors $[1,2,3,4]$. The following proposition gives some characteristic properties of FussCatalan numbers:
If n and p are nonnegative integers, the following statements are equivalent:
(1) $c_{n}^{(p)}=\frac{1}{p n+1}\binom{p n+1}{n}$
(2) $c_{n+1}^{(p)}=\sum_{r_{1}+r_{2}+\ldots+r_{p}=n} c_{r_{1}}^{(p)} \times c_{r_{2}}^{(p)} \times \ldots \times c_{r_{p}}^{(p)}, \quad c_{0}^{(p)}=1$
(3) $c_{n}^{(p)}$ is the number of shortest lattice paths from $(0,0)$ to $(n,(p-1) n)$ on the 2 -dimensional plane such that those paths lie beneath $y=(p-1) x$.

Catalan numbers $\left\{c_{n}\right\}$ are special case of Fuss-Catalan numbers $\left\{c_{n}^{(2)}\right\}$ for $p=2$. In combinatorial mathematics and statistics, the two parameter Fuss-Catalan numbers
$A_{n}(p, r)$ are defined in [7] as numbers of the form

$$
\begin{align*}
A_{n}(p, r) & =\frac{r \Gamma(n p+r)}{\Gamma(n+1) \Gamma[n(p-1)+r+1]} \\
& =\frac{r}{n p+r}\binom{n p+r}{n}(n \geq 0, p \in\{2,3, \cdots\}, r \in\{1,2,3, \cdots\}) \tag{1.4}
\end{align*}
$$

The Fuss Catalan numbers $A_{n}(p, r)$ can also be written in the following form

$$
\begin{equation*}
A_{n}(p, r)=\frac{r}{n!} \prod_{i=1}^{n-1}(n p+r-i) \tag{1.5}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
A_{n}(p, r)=A_{n}(p, r-1)+A_{n-1}(p, p+r-1) \tag{1.6}
\end{equation*}
$$

under convention that $A_{-1}(p, r):=0$, and

$$
\begin{equation*}
A_{n}(p, p)=A_{n+1}(p, 1) \tag{1.7}
\end{equation*}
$$

In the present paper, we study geometric properties of two parameter family of functions of the form:

$$
\begin{equation*}
E_{p, r}(z):=\sum_{n=1}^{\infty} \frac{1}{A_{n}(p, r)} z^{n} \quad(z \in \mathbb{D}, p \in\{2,3, \cdots\}, r \in\{1,2,3, \cdots\}) \tag{1.8}
\end{equation*}
$$

Observe that, the function $E_{p, r}(z)$ does not belong to the family \mathcal{A}. Thus, it is natural to consider the following normalization of function $E_{p, r}(z)$ in \mathbb{D} :

$$
\begin{align*}
\mathbb{E}_{p, r}(z) & =A_{1}(p, r) E_{p, r}(z) \\
& =z+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma[n(p-1)+r+1]}{\Gamma(n p+r)} z^{n}, \quad\left(\text { as } A_{1}(p, r)=r\right) \tag{1.9}
\end{align*}
$$

Using (1.5), (1.9) can be written as

$$
\begin{gather*}
\mathbb{E}_{p, r}(z):=z+\sum_{n=2}^{\infty} \frac{n!}{\prod_{i=1}^{n-1}(n p+r-i)} z^{n} . \tag{1.10}\\
(z \in \mathbb{D}, p \in\{2,3, \cdots\}, r \in\{1,2,3, \cdots\})
\end{gather*}
$$

To prove our main results we need following Definition and Lemmas:
Lemma 1.1. (Ozaki [8]). Let $f(z)=z+\sum_{n=2}^{\infty} A_{n} z^{n}$. Suppose

$$
\begin{equation*}
1 \geq 2 A_{2} \geq \cdots \geq n A_{n} \geq(n+1) A_{n+1} \geq \cdots \geq 0 \tag{1.11}
\end{equation*}
$$

or

$$
\begin{equation*}
1 \leq 2 A_{2} \leq \cdots \leq n A_{n} \leq(n+1) A_{n+1} \leq \cdots \leq 2 \tag{1.12}
\end{equation*}
$$

then f is close-to-convex with respect to convex function $-\log (1-z)$ in \mathbb{D}.
Lemma 1.2. (Fejer [6]). Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of non negative real numbers such that $a_{1}=1$. If the quantities

$$
\underline{\Delta} a_{n}=n a_{n}-(n+1) a_{n+1} \quad \text { and } \quad \underline{\Delta} a_{n}^{2}=n a_{n}-2(n+1) a_{n+1}+(n+2) a_{n+2}
$$

are non negative, then the function $f(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ is starlike in \mathbb{D}.

Lemma 1.3. (Fejer [6]). Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of non negative real numbers such that $a_{1}=1$. If $\left\{a_{n}\right\}_{n \geq 2}$ is convex decreasing, i.e. $0 \geq a_{n+2}-a_{n+1} \geq a_{n+1}-a_{n}$, then

$$
\Re\left\{\sum_{n=1}^{\infty} a_{n} z^{n-1}\right\}>\frac{1}{2}, \quad(z \in \mathbb{D})
$$

Definition 1.1. An infinite sequence $\left\{b_{n}\right\}_{1}^{\infty}$ of complex numbers will be called a subordinating factor sequence if whenever

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1.13}
\end{equation*}
$$

is analytic, univalent and convex in \mathbb{U}, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} b_{n} z^{n} \subseteq f(z)\left(z \in \mathbb{D}, a_{1}=1\right) \tag{1.14}
\end{equation*}
$$

Lemma 1.4. (Wilf [9]). The sequence $\left\{b_{n}\right\}_{1}^{\infty}$ is a subordinating factor sequence if and only if

$$
\begin{equation*}
\Re\left\{1+2 \sum_{k=1}^{\infty} b_{k} z^{k}\right\}>0(z \in \mathbb{D}) \tag{1.15}
\end{equation*}
$$

2. Close-to-convexity and Starlikeness

Theorem 2.1. For all $p \geq 2, r \geq 1, \mathbb{E}_{p, r}(z)$ is close-to-convex with respect to convex function $-\log (1-z)$ in \mathbb{D}.

Proof. Using (1.10), we have

$$
\begin{align*}
\Delta a_{n} & =n a_{n}-(n+1) a_{n+1} \\
& =\frac{n n!}{\prod_{i=1}^{n-1}(n p+r-i)}-\frac{(n+1)(n+1)!}{\prod_{i=1}^{n}((n+1) p+r-i)} \\
& =\frac{n!}{\left(\prod_{i=1}^{n-1}(n p+r-i)\right)\left(\prod_{i=1}^{n}((n+1) p+r-i)\right)} X(n) \tag{2.1}
\end{align*}
$$

where

$$
\begin{equation*}
X(n)=n((n+1) p+r-n) \prod_{i=1}^{n-1}((n+1) p+r-i)-(n+1)^{2} \prod_{i=1}^{n-1}(n p+r-i) \tag{2.2}
\end{equation*}
$$

It is easy to see from (2.2) that each term in the first finite product is greater than the corresponding term in the second finite product, also we observe that

$$
n[(n+1) p+r-n] \geq(n+1)^{2}, \quad(\text { for all } n \geq 1 ; p \geq 2 \text { and } r \geq 1)
$$

Thus the sequence $\left\{n a_{n}\right\}$ is non-increasing and applying Lemma 1.1, we get $\mathbb{E}_{p, r}(z)$ is close-to-convex with respect to convex function $-\log (1-z)$ in \mathbb{D}.

Theorem 2.2. For all $p \geq 2$ and $r \geq \max \{1,9-2 p\}, \mathbb{E}_{p, r}(z)$ is starlike in \mathbb{D}.

Proof. From (1.10), we have

$$
\begin{gathered}
\underline{\Delta} a_{n}^{2}=n a_{n}-2(n+1) a_{n+1}+(n+2) a_{n+2} \\
=n!\left[\frac{n}{\prod_{i=1}^{n-1}(n p+r-i)}-\frac{2(n+1)^{2}}{\prod_{i=1}^{n}((n+1) p+r-i)}+\frac{(n+2)^{2}(n+1)}{\prod_{i=1}^{n+1}((n+2) p+r-i)}\right] .
\end{gathered}
$$

The Numerator of the difference of first two term is equal to

$$
\begin{align*}
N r . & =n \prod_{i=1}^{n}((n+1) p+r-i)-2(n+1)^{2} \prod_{i=1}^{n-1}(n p+r-i) \\
& =n((n+1) p+r-1) \prod_{i=2}^{n}((n+1) p+r-i)-2(n+1)^{2} \prod_{i=1}^{n-1}(n p+r-(i) .3) \tag{i2.3}
\end{align*}
$$

Again each term in the first finite product is greater than the corresponding term in the second finite product, also

$$
\begin{aligned}
& n((n+1) p+r-1) \geq 2(n+1)^{2} \\
\Longleftrightarrow & n^{2}(p-2)+n(p+r-5)-2 \geq 0
\end{aligned}
$$

if the above inequality is true for $n=1$ then it will be true for all n provided $p \geq 2$ and hence we get the condition that $r \geq \max \{1,9-2 p\}$. Thus the sequence $\left\{n a_{n}\right\}$ is convex decreasing sequence and hence using Lemma 1.2, we get the required result.

Theorem 2.3. For all $p \geq 2, r \geq 1$, we have

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{\mathbb{E}_{p, r}(z)}{z}\right\}>\frac{1}{2}(z \in \mathbb{D}) \tag{2.4}
\end{equation*}
$$

Proof. We first prove that

$$
\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{\frac{n!}{\prod_{i=1}^{n-1}(n p+r-i)}\right\}_{n=2}^{\infty} ;\left(a_{1}=1\right)
$$

is a non-increasing sequence. Since

$$
\begin{align*}
a_{n}-a_{n+1}= & \frac{n!\left[\prod_{i=1}^{n}((n+1) p+r-i)-(n+1) \prod_{i=1}^{n-1}(n p+r-i)\right]}{\prod_{i=1}^{n-1}(n p+r-i) \prod_{i=1}^{n}((n+1) p+r-i)} \\
= & \frac{n!\left[((n+1) p+r-n) \prod_{i=1}^{n-1}((n+1) p+r-i)-(n+1) \prod_{i=1}^{n-1}(n p+r-i)\right]}{\prod_{i=1}^{n-1}(n p+r-i) \prod_{i=1}^{n}((n+1) p+r-i)} . \tag{2.5}
\end{align*}
$$

which is greater than equal to zero, as in numerator of (2.5), each term in first finite product is greater than the corresponding term in the second finite product,
also

$$
\begin{aligned}
& (n+1) p+r-n \geq n+1 \\
\Longleftrightarrow & n(p-2)+p+r-1 \geq 0
\end{aligned}
$$

which is true for all $n \geq 1, p \geq 2$ and $r \geq 1$. Next we prove that $\left\{a_{n}\right\}_{n=2}^{\infty}$ is a convex decreasing sequence for this we show $a_{n+2}-a_{n+1} \geq a_{n+1}-a_{n}$ for all $n \geq 2$. That is
$a_{n}-2 a_{n+1}+a_{n+2}=n!\left[\frac{1}{\prod_{i=1}^{n-1}(n p+r-i)}-\frac{2(n+1)}{\prod_{i=1}^{n}((n+1) p+r-i)}+\frac{(n+2)(n+1)}{\prod_{i=1}^{n+1}((n+2) p+r-i)}\right]$.
Again the Numerator of the difference of first two term is equal to

$$
\begin{aligned}
N r . & =\prod_{i=1}^{n}((n+1) p+r-i)-2(n+1) \prod_{i=1}^{n-1}(n p+r-i) \\
& =[(n+1) p+r-1] \prod_{i=2}^{n}((n+1) p+r-i)-2(n+1) \prod_{i=1}^{n-1}(n p+r-i)(2.6)
\end{aligned}
$$

Again each term in the first finite product is greater than the corresponding term in the second finite product, also

$$
\begin{aligned}
& (n+1) p+r-1 \geq 2(n+1) \\
\Longleftrightarrow & (n+1)(p-2)+r-1 \geq 0
\end{aligned}
$$

which is true for all $n \geq 2, p \geq 2$ and $r \geq 1$. Thus the sequence $\left\{a_{n}\right\}$ is convex decreasing sequence and in view of Lemma 1.3, we have

$$
\Re\left\{\sum_{n=1}^{\infty} a_{n} z^{n-1}\right\}>\frac{1}{2}, \quad(z \in \mathbb{D})
$$

Which is equivalent to

$$
\mathfrak{R}\left\{\frac{\mathbb{E}_{p, r}(z)}{z}\right\}>\frac{1}{2},(z \in \mathbb{D})
$$

This proves the Theorem 2.3.
Corollary 2.1. For all $p \geq 2, r \geq 1$, then the sequence

$$
\begin{equation*}
\left\{\frac{\Gamma(n+2) \Gamma[(n+1)(p-1)+r+1]}{\Gamma((n+1) p+r)}\right\}_{n=1}^{\infty} \tag{2.7}
\end{equation*}
$$

is a subordinating factor sequence for the class \mathcal{K}.
Proof. From Theorem 2.3, we have

$$
\Re\left\{1+\sum_{n=2}^{\infty} \frac{\Gamma(n+1) \Gamma[n(p-1)+r+1]}{\Gamma(n p+r)} z^{n-1}\right\}>\frac{1}{2}
$$

Multiplying above by 2, changing the summation index to 1 and simplifying, we get

$$
\begin{equation*}
\Re\left\{1+2 \sum_{n=1}^{\infty} \frac{\Gamma(n+2) \Gamma[(n+1)(p-1)+r+1]}{\Gamma((n+1) p+r)} z^{n}\right\}>0 \tag{2.8}
\end{equation*}
$$

Now using Lemma 1.4, we get the required result.

Theorem 2.4. For all $p \geq 2$ and $r \geq \max \{1,9-2 p\}$, then

$$
\Re\left\{\mathbb{E}_{p, r}^{\prime}(z)\right\}>\frac{1}{2}(z \in \mathbb{D})
$$

Proof. From (1.10),

$$
\begin{equation*}
\mathbb{E}_{p, r}^{\prime}(z):=1+\sum_{n=2}^{\infty} \frac{n n!}{\prod_{i=1}^{n-1}(n p+r-i)} z^{n-1} \tag{2.9}
\end{equation*}
$$

We first prove that

$$
\left\{a_{n}\right\}_{n=1}^{\infty}=\left\{\frac{n n!}{\prod_{i=1}^{n-1}(n p+r-i)}\right\}_{n=2}^{\infty} ;\left(a_{1}=1\right)
$$

is a non-increasing sequence. Since

$$
\begin{align*}
a_{n}-a_{n+1} & =\frac{n!\left[n \prod_{i=1}^{n}((n+1) p+r-i)-(n+1)^{2} \prod_{i=1}^{n-1}(n p+r-i)\right]}{\prod_{i=1}^{n-1}(n p+r-i) \prod_{i=1}^{n}((n+1) p+r-i)} \\
& =\frac{n!\left[n((n+1) p+r-n) \prod_{i=1}^{n-1}((n+1) p+r-i)-(n+1)^{2} \prod_{i=1}^{n-1}(n p+r-i)\right]}{\prod_{i=1}^{n-1}(n p+r-i) \prod_{i=1}^{n}((n+1) p+r-i)} . \tag{2.10}
\end{align*}
$$

which is greater than equal to zero, as in numerator of (2.10), each term in first finite product is greater than the corresponding term in the second finite product, also

$$
\begin{array}{r}
n((n+1) p+r-n) \geq(n+1)^{2} \\
\Longleftrightarrow n^{2}(p-2)+n(p+r-2)-1 \geq 0
\end{array}
$$

which is true for all $n \geq 1, p \geq 2$ and $r \geq 1$. Next we prove that $\left\{a_{n}\right\}_{n=2}^{\infty}$ is a convex decreasing sequence for this we show $a_{n+2}-a_{n+1} \geq a_{n+1}-a_{n}$ for all $n \geq 2$. That is

$$
a_{n}-2 a_{n+1}+a_{n+2}=n!\left[\frac{n}{\prod_{i=1}^{n-1}(n p+r-i)}-\frac{2(n+1)^{2}}{\prod_{i=1}^{n}((n+1) p+r-i)}+\frac{(n+2)^{2}(n+1)}{\prod_{i=1}^{n+1}((n+2) p+r-i)}\right]
$$

Again the Numerator of the difference of first two term is equal to

$$
\begin{aligned}
N r . & =n \prod_{i=1}^{n}((n+1) p+r-i)-2(n+1)^{2} \prod_{i=1}^{n-1}(n p+r-i) \\
& =n((n+1) p+r-1) \prod_{i=2}^{n}((n+1) p+r-i)-2(n+1)^{2} \prod_{i=1}^{n-1}(n p+r+2 i .11)
\end{aligned}
$$

Again each term in the first finite product is greater than the corresponding term in the second finite product, also

$$
\begin{aligned}
& n((n+1) p+r-1) \geq 2(n+1)^{2} \\
\Longleftrightarrow & n^{2}(p-2)+n(p+r-5)-2 \geq 0
\end{aligned}
$$

if the above inequality is true for $n=1$ then it will be true for all n provided $p \geq 2$ and hence we get the condition that $r \geq \max \{1,9-2 p\}$. Thus the sequence $\left\{a_{n}\right\}$ is convex decreasing sequence and in view of Lemma 1.3, we have

$$
\Re\left\{\sum_{n=1}^{\infty} a_{n} z^{n-1}\right\}>\frac{1}{2}, \quad(z \in \mathbb{D})
$$

Which is equivalent to

$$
\mathfrak{R}\left\{\mathbb{E}_{p, r}^{\prime}(z)\right\}>\frac{1}{2}, \quad(z \in \mathbb{D})
$$

This proves the Theorem 2.4.
Corollary 2.2. For all $p \geq 2$ and $r \geq \max \{1,9-2 p\}$, then

$$
\begin{equation*}
\left\{\frac{(n+1)(n+1)!}{\prod_{i=1}^{n}[(n+1) p+r-i]}\right\}_{n=1}^{\infty} \tag{2.12}
\end{equation*}
$$

a subordinating factor sequence for the class \mathcal{K}.
Proof. From Theorem 2.4, we have

$$
\mathfrak{R}\left\{1+\sum_{n=2}^{\infty} \frac{n n!}{\prod_{i=1}^{n-1}(n p+r-i)} z^{n-1}\right\}>\frac{1}{2},(z \in \mathbb{D})
$$

Multiplying above equation by 2 , changing summation index to 1 and simplifying, we get

$$
\mathfrak{R}\left\{1+2 \sum_{n=1}^{\infty} \frac{(n+1)(n+1)!}{\prod_{i=1}^{n}((n+1) p+r-i)} z^{n}\right\}>0,(z \in \mathbb{D})
$$

Now using Lemma 1.4, we get the required result.

References

[1] J. C. Aval, Multivariate Fuss-Catalan numbers, Discrete Math. 308(20) (2008), 4660-4669.
[2] E. Catalan, Not sur une equation aux diffeerences finies, Journal de Mathematiques Pures et Appliquees, 3 (1838), 508-516.
[3] W. Chu, A new combinatorial interpretation for generalized Catalan number, Discrete Mathematics, 65(1) (1987), 91-94.
[4] S. J. Dilworth and S. R. Mane, Applications of Fuss-Catalan numbers to success runs of bernoulli trials, Journal of Probability and Statistics (2016), Article ID 2071582, 13 pages .
[5] P. L. Duren, Univalent Functions, Springer-Verlag, 1983.
[6] L. Féjer, Untersuchungen über Potenzreihen mit mehrfach monotoner Koeffizientenfolge, Acta Literarum Sci. 8 (1936), 89-115.
[7] N. I. Fuss, Solutio quaestionis, quot modis polygonum n laterum in polygona m laterum, per diagonales resolvi quaeat, Nova Acta Academi Scientiarum Imperialis Petropolitanae, 9 (1791),243-251.
[8] S. Ozaki, On the theory of multivalent functions, Sci. Rep. Tokyo Bunrika Daigaku A2 (1935), 167-188.
[9] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689-693.

Department of Mathematics, Govt. Engineering College, Bikaner 334004, Rajasthan, India

E-mail address: manojkumarsoni.ecb@gmail.com
Department of Mathematics, Govt. Engineering College, Bikaner 334004, Rajasthan, India

E-mail address: aamitt1981@gmail.com
\ddagger Department of Mathematics, College of Engineering and Technology, Bikaner 334004, Rajasthan, India

E-mail address: deepakbansal_79@yahoo.com

