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SOME GEOMETRIC PROPERTIES OF ANALYTIC SERIES

WHOSE COEFFICIENTS ARE RECIPROCAL OF

FUSS-CATALAN NUMBERS

MANOJ KUMAR SONI, AMIT SONI AND DEEPAK BANSAL

Abstract. In the present investigation we first introduce two parameter fam-
ily of function namely Ep,r(z) and then find sufficient conditions so that the

function Ep,r(z) have certain geometric properties like close-to-convexity and
starlikeness in the open unit disk. Some interesting consequences of main
results are also pointed out in the form of corollaries.

1. Introduction

Let H denote the class of analytic functions inside the unit disc D = {z ∈ C : |z| <
1} and consider the subclass A = {f ∈ H : f(0) = f ′(0) − 1 = 0} which consist
functions of the form

f(z) = z +
∞∑

n=2

anz
n. (1.1)

We denote by S, the class of all functions f ∈ A which are univalent in D i. e.

S = {f ∈ A| f is one-to-one in D}.
A function f ∈ A is called starlike (with respect to 0), denoted by f ∈ S∗ if
tw ∈ f(D) for all w ∈ f(D) and t ∈ [0, 1]. A function f ∈ A that maps D onto a
convex domain is called convex function and class of such functions is denoted by
K. For a given 0 < α ≤ 1, a function f ∈ A is called starlike function of order α,
denoted by S∗(α), if

R

{
zf ′(z)

f(z)

}
> α, z ∈ D.

For a given 0 < α ≤ 1, a function f ∈ A is called convex function of order α,
denoted by K(α), if

R

{
1 +

zf ′′(z)

f ′(z)

}
> α, z ∈ D.

It is well known that S∗(0) = S∗ and K(0) = K. We recall [5] that the function
zg′(z) is starlike if and only if the function g(z) is convex.
Given a convex function g ∈ K with g(z) ̸= 0 and 0 < α ≤ 1, a function f ∈ A,

2010 Mathematics Subject Classification. 33E12, 30C45.
Key words and phrases. Univalent, Starlike, Convex and Close-to-convex functions.
Submitted Jan. 16, 2018.

246



EJMAA-2018/6(2) ON FUSS-CATALAN NUMBERS 247

is called close-to-convex of order α with respect to convex function g, denoted by
Cg(α), if

R

{
f ′(z)

g′(z)

}
> α, z ∈ D (1.2)

The class Cg(0) is the class of functions close-to-convex with respect to g. Geo-
metrically a function f ∈ A belongs to C if the complement E of the image-region
F = {f(z) : |z| < 1} is the union of rays that are disjoint (except that the origin
of one ray may lie on another one of the rays). The Noshiro-Warschawski theorem
implies that close-to-convex functions are univalent in D, but not necessarily the
converse. It is easy to verify that K ⊂ S∗ ⊂ C. For more details see [5].

If f, g ∈ H where H denote the class of all holomorphic functions, then the
function f is said to be subordinate to g, written as f(z) ≺ g(z) (z ∈ D), if there
exists a Schwarz function w ∈ H with w(0) = 0 and |w(z)| < 1 (z ∈ D) such that
f(z) = g(w(z)). In particular, if g is univalent in D, then we have the following
equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(D) ⊂ g(D).

It is always interesting to find sufficient conditions such that certain class of ana-
lytic functions becomes close-to-convex, starlike or convex function. In the present
investigation, we are interested in some geometric properties of analytic power se-
ries whose coefficients are reciprocal of Fuss-Catalan numbers.
A definition of the Fuss-Catalan numbers: Catalan numbers {cn}n≥0 are said
to be the sequence satisfying the recursive relation

cn+1 = c0cn + c1cn−1 + ...+ cnc0, c0 = 1. (1.3)

It is well known that the nth term of Catalan numbers is

cn =
1

2n+ 1

(
2n+ 1

n

)
i.e. {cn}n≥0 = {1, 1, 2, 5, 14, 42, 132, ...}. Also, one of many combinatorial
interpretations of Catalan numbers is that cn is the number of shortest lattice paths
from (0, 0) to (n, n) on the 2-dimensional plane such that those paths lie beneath
the line y = x. Further generalization of Catalan numbers is Fuss-Catalan numbers

{c(p)n }p,n≥0, which were investigated by Fuss [7] and studied by several other authors
[1, 2, 3, 4]. The following proposition gives some characteristic properties of Fuss-
Catalan numbers:
If n and p are nonnegative integers, the following statements are equivalent:

(1) c
(p)
n = 1

pn+1

(
pn+1

n

)
(2) c

(p)
n+1 =

∑
r1+r2+...+rp=n c

(p)
r1 × c

(p)
r2 × ...× c

(p)
rp , c

(p)
0 = 1

(3) c
(p)
n is the number of shortest lattice paths from (0, 0) to (n, (p−1)n) on the
2-dimensional plane such that those paths lie beneath y = (p− 1)x.

Catalan numbers {cn} are special case of Fuss-Catalan numbers {c(2)n } for p = 2. In
combinatorial mathematics and statistics, the two parameter Fuss-Catalan numbers
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An(p, r) are defined in [7] as numbers of the form

An(p, r) =
rΓ(np+ r)

Γ(n+ 1)Γ[n(p− 1) + r + 1]

=
r

np+ r

(
np+ r

n

)
(n ≥ 0, p ∈ {2, 3, · · · }, r ∈ {1, 2, 3, · · · }). (1.4)

The Fuss Catalan numbers An(p, r) can also be written in the following form

An(p, r) =
r

n!

n−1∏
i=1

(np+ r − i). (1.5)

It is easy to see that

An(p, r) = An(p, r − 1) +An−1(p, p+ r − 1), (1.6)

under convention that A−1(p, r) := 0, and

An(p, p) = An+1(p, 1). (1.7)

In the present paper, we study geometric properties of two parameter family of
functions of the form:

Ep,r(z) : =
∞∑

n=1

1

An(p, r)
zn (z ∈ D, p ∈ {2, 3, · · · }, r ∈ {1, 2, 3, · · · }). (1.8)

Observe that, the function Ep,r(z) does not belong to the family A. Thus, it is
natural to consider the following normalization of function Ep,r(z) in D:

Ep,r(z) = A1(p, r)Ep,r(z)

= z +

∞∑
n=2

Γ(n+ 1)Γ[n(p− 1) + r + 1]

Γ(np+ r)
zn, (as A1(p, r) = r) (1.9)

Using (1.5), (1.9) can be written as

Ep,r(z) := z +

∞∑
n=2

n!
n−1∏
i=1

(np+ r − i)

zn. (1.10)

(z ∈ D, p ∈ {2, 3, · · · }, r ∈ {1, 2, 3, · · · })
To prove our main results we need following Definition and Lemmas:

Lemma 1.1. (Ozaki [8]). Let f(z) = z +
∞∑

n=2
Anz

n. Suppose

1 ≥ 2A2 ≥ · · · ≥ nAn ≥ (n+ 1)An+1 ≥ · · · ≥ 0 (1.11)

or

1 ≤ 2A2 ≤ · · · ≤ nAn ≤ (n+ 1)An+1 ≤ · · · ≤ 2. (1.12)

then f is close-to-convex with respect to convex function −log(1− z) in D.

Lemma 1.2. (Fejer [6]). Let {an}n≥1 be a sequence of non negative real numbers
such that a1 = 1. If the quantities

∆an = nan − (n+ 1)an+1 and ∆a2n = nan − 2(n+ 1)an+1 + (n+ 2)an+2

are non negative, then the function f(z) =
∑∞

n=1 anz
n is starlike in D.
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Lemma 1.3. (Fejer [6]). Let {an}n≥1 be a sequence of non negative real numbers
such that a1 = 1. If {an}n≥2 is convex decreasing, i.e. 0 ≥ an+2−an+1 ≥ an+1−an,
then

ℜ

{ ∞∑
n=1

anz
n−1

}
>

1

2
, (z ∈ D).

Definition 1.1. An infinite sequence {bn}∞1 of complex numbers will be called a
subordinating factor sequence if whenever

f(z) =

∞∑
n=1

anz
n (1.13)

is analytic, univalent and convex in U, then
∞∑

n=1

anbnz
n ⊆ f(z) (z ∈ D, a1 = 1). (1.14)

Lemma 1.4. (Wilf [9]). The sequence {bn}∞1 is a subordinating factor sequence if
and only if

ℜ

{
1 + 2

∞∑
k=1

bkz
k

}
> 0 (z ∈ D). (1.15)

2. Close-to-convexity and Starlikeness

Theorem 2.1. For all p ≥ 2, r ≥ 1, Ep,r(z) is close-to-convex with respect to
convex function −log(1− z) in D.

Proof. Using (1.10), we have

∆an = nan − (n+ 1)an+1

=
n n!

n−1∏
i=1

(np+ r − i)

− (n+ 1) (n+ 1)!
n∏

i=1

((n+ 1)p+ r − i)

=
n!(

n−1∏
i=1

(np+ r − i)

)(
n∏

i=1

((n+ 1)p+ r − i)

)X(n), (2.1)

where

X(n) = n((n+ 1)p+ r − n)
n−1∏
i=1

((n+ 1)p+ r − i)− (n+ 1)2
n−1∏
i=1

(np+ r − i). (2.2)

It is easy to see from (2.2) that each term in the first finite product is greater than
the corresponding term in the second finite product, also we observe that

n [(n+ 1)p+ r − n] ≥ (n+ 1)2, ( for all n ≥ 1; p ≥ 2 and r ≥ 1).

Thus the sequence {nan} is non-increasing and applying Lemma 1.1, we get Ep,r(z)
is close-to-convex with respect to convex function −log(1− z) in D. �

Theorem 2.2. For all p ≥ 2 and r ≥ max {1, 9− 2p}, Ep,r(z) is starlike in D.
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Proof. From (1.10), we have

∆a2n = nan − 2(n+ 1)an+1 + (n+ 2)an+2

= n!

 n
n−1∏
i=1

(np+ r − i)

− 2(n+ 1)2

n∏
i=1

((n+ 1)p+ r − i)
+

(n+ 2)2(n+ 1)
n+1∏
i=1

((n+ 2)p+ r − i)

 .

The Numerator of the difference of first two term is equal to

Nr. = n
n∏

i=1

((n+ 1)p+ r − i)− 2(n+ 1)2
n−1∏
i=1

(np+ r − i)

= n((n+ 1)p+ r − 1)
n∏

i=2

((n+ 1)p+ r − i)− 2(n+ 1)2
n−1∏
i=1

(np+ r − i).(2.3)

Again each term in the first finite product is greater than the corresponding term
in the second finite product, also

n((n+ 1)p+ r − 1) ≥ 2(n+ 1)2

⇐⇒ n2(p− 2) + n(p+ r − 5)− 2 ≥ 0,

if the above inequality is true for n = 1 then it will be true for all n provided p ≥ 2
and hence we get the condition that r ≥ max{1, 9− 2p}. Thus the sequence {nan}
is convex decreasing sequence and hence using Lemma 1.2, we get the required
result. �

Theorem 2.3. For all p ≥ 2, r ≥ 1, we have

R

{
Ep,r(z)

z

}
>

1

2
(z ∈ D) (2.4)

Proof. We first prove that

{an}∞n=1 =


n!

n−1∏
i=1

(np+ r − i)


∞

n=2

; (a1 = 1)

is a non-increasing sequence. Since

an − an+1 =

n!

[
n∏

i=1

((n+ 1)p+ r − i)− (n+ 1)
n−1∏
i=1

(np+ r − i)

]
n−1∏
i=1

(np+ r − i)
n∏

i=1

((n+ 1)p+ r − i)

=

n!

[
((n+ 1)p+ r − n)

n−1∏
i=1

((n+ 1)p+ r − i)− (n+ 1)
n−1∏
i=1

(np+ r − i)

]
n−1∏
i=1

(np+ r − i)
n∏

i=1

((n+ 1)p+ r − i)

.

(2.5)

which is greater than equal to zero, as in numerator of (2.5), each term in first
finite product is greater than the corresponding term in the second finite product,
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also

(n+ 1)p+ r − n ≥ n+ 1

⇐⇒ n(p− 2) + p+ r − 1 ≥ 0,

which is true for all n ≥ 1, p ≥ 2 and r ≥ 1. Next we prove that {an}∞n=2 is a
convex decreasing sequence for this we show an+2−an+1 ≥ an+1−an for all n ≥ 2.
That is

an − 2an+1 + an+2 = n!

 1
n−1∏
i=1

(np+ r − i)

− 2(n+ 1)
n∏

i=1

((n+ 1)p+ r − i)
+

(n+ 2)(n+ 1)
n+1∏
i=1

((n+ 2)p+ r − i)

 .

Again the Numerator of the difference of first two term is equal to

Nr. =
n∏

i=1

((n+ 1)p+ r − i)− 2(n+ 1)
n−1∏
i=1

(np+ r − i)

= [(n+ 1)p+ r − 1]
n∏

i=2

((n+ 1)p+ r − i)− 2(n+ 1)
n−1∏
i=1

(np+ r − i).(2.6)

Again each term in the first finite product is greater than the corresponding term
in the second finite product, also

(n+ 1)p+ r − 1 ≥ 2(n+ 1)

⇐⇒ (n+ 1)(p− 2) + r − 1 ≥ 0,

which is true for all n ≥ 2, p ≥ 2 and r ≥ 1. Thus the sequence {an} is convex
decreasing sequence and in view of Lemma 1.3, we have

ℜ

{ ∞∑
n=1

anz
n−1

}
>

1

2
, (z ∈ D).

Which is equivalent to

R

{
Ep,r(z)

z

}
>

1

2
, (z ∈ D).

This proves the Theorem 2.3. �
Corollary 2.1. For all p ≥ 2, r ≥ 1, then the sequence{

Γ(n+ 2)Γ[(n+ 1)(p− 1) + r + 1]

Γ((n+ 1)p+ r)

}∞

n=1

(2.7)

is a subordinating factor sequence for the class K.

Proof. From Theorem 2.3, we have

ℜ

{
1 +

∞∑
n=2

Γ(n+ 1)Γ[n(p− 1) + r + 1]

Γ(np+ r)
zn−1

}
>

1

2
.

Multiplying above by 2, changing the summation index to 1 and simplifying, we
get

ℜ

{
1 + 2

∞∑
n=1

Γ(n+ 2)Γ[(n+ 1)(p− 1) + r + 1]

Γ((n+ 1)p+ r)
zn

}
> 0. (2.8)

Now using Lemma 1.4, we get the required result. �
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Theorem 2.4. For all p ≥ 2 and r ≥ max {1, 9− 2p}, then

ℜ{E′
p,r(z)} >

1

2
(z ∈ D).

Proof. From (1.10),

E′
p,r(z) := 1 +

∞∑
n=2

n n!
n−1∏
i=1

(np+ r − i)

zn−1. (2.9)

We first prove that

{an}∞n=1 =


nn!

n−1∏
i=1

(np+ r − i)


∞

n=2

; (a1 = 1)

is a non-increasing sequence. Since

an − an+1 =

n!

[
n

n∏
i=1

((n+ 1)p+ r − i)− (n+ 1)2
n−1∏
i=1

(np+ r − i)

]
n−1∏
i=1

(np+ r − i)
n∏

i=1

((n+ 1)p+ r − i)

=

n!

[
n((n+ 1)p+ r − n)

n−1∏
i=1

((n+ 1)p+ r − i)− (n+ 1)2
n−1∏
i=1

(np+ r − i)

]
n−1∏
i=1

(np+ r − i)
n∏

i=1

((n+ 1)p+ r − i)

.

(2.10)

which is greater than equal to zero, as in numerator of (2.10), each term in first
finite product is greater than the corresponding term in the second finite product,
also

n((n+ 1)p+ r − n) ≥ (n+ 1)2

⇐⇒ n2(p− 2) + n(p+ r − 2)− 1 ≥ 0,

which is true for all n ≥ 1, p ≥ 2 and r ≥ 1. Next we prove that {an}∞n=2 is a
convex decreasing sequence for this we show an+2−an+1 ≥ an+1−an for all n ≥ 2.
That is

an − 2an+1 + an+2 = n!

 n
n−1∏
i=1

(np+ r − i)

− 2(n+ 1)2

n∏
i=1

((n+ 1)p+ r − i)
+

(n+ 2)2(n+ 1)
n+1∏
i=1

((n+ 2)p+ r − i)

 .

Again the Numerator of the difference of first two term is equal to

Nr. = n
n∏

i=1

((n+ 1)p+ r − i)− 2(n+ 1)2
n−1∏
i=1

(np+ r − i)

= n((n+ 1)p+ r − 1)
n∏

i=2

((n+ 1)p+ r − i)− 2(n+ 1)2
n−1∏
i=1

(np+ r − i).(2.11)
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Again each term in the first finite product is greater than the corresponding term
in the second finite product, also

n((n+ 1)p+ r − 1) ≥ 2(n+ 1)2

⇐⇒ n2(p− 2) + n(p+ r − 5)− 2 ≥ 0,

if the above inequality is true for n = 1 then it will be true for all n provided p ≥ 2
and hence we get the condition that r ≥ max{1, 9− 2p}. Thus the sequence {an}
is convex decreasing sequence and in view of Lemma 1.3, we have

ℜ

{ ∞∑
n=1

anz
n−1

}
>

1

2
, (z ∈ D).

Which is equivalent to

R {E′
p,r(z)} >

1

2
, (z ∈ D).

This proves the Theorem 2.4. �

Corollary 2.2. For all p ≥ 2 and r ≥ max {1, 9− 2p}, then
(n+ 1) (n+ 1)!

n∏
i=1

[(n+ 1)p+ r − i]


∞

n=1

(2.12)

a subordinating factor sequence for the class K.

Proof. From Theorem 2.4, we have

R

1 +

∞∑
n=2

n n!
n−1∏
i=1

(np+ r − i)

zn−1

 >
1

2
, (z ∈ D).

Multiplying above equation by 2, changing summation index to 1 and simplifying,
we get

R

1 + 2

∞∑
n=1

(n+ 1) (n+ 1)!
n∏

i=1

((n+ 1)p+ r − i)
zn

 > 0, (z ∈ D).

Now using Lemma 1.4, we get the required result. �
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