KÖTHE-TOEPLITZ DUALS AND MATRIX TRANSFORMATIONS OF GENERALIZED DIFFERENCE SEQUENCE SPACES

S. GUPTA AND V. K. BHARDWAJ

Abstract

Orhan [28, 29] introduced the Cesàro difference sequence spaces $C_{p}, 1 \leq p<\infty$, and C_{∞} and determined their generalized Köthe- Toeplitz duals and some of the related matrix transformations. We here propose to derive further properties concerning the space C_{∞} (which we denote $C_{\infty}(\Delta)$ for the sake of notational uniformity) along with the introduction of a new difference sequence space $b v(\Delta)$. It is shown that the non-absolute type sequence spaces $C_{\infty}(\Delta)$ and $b v(\Delta)$ turn out to be BK spaces, the former of which is inseparable, perfect space and strictly includes the well-known difference sequence spaces $c_{0}(\Delta), c(\Delta)$ and $\ell_{\infty}(\Delta)$ of Kizmaz [22], the recently introduced [6, 7] Cesàro summable difference sequence space $C_{1}(\Delta)$ and the space $b v(\Delta)$, introduced in this paper itself, none of which happens to be perfect. The Köthe-Toeplitz duals of $b v(\Delta)$ are computed and as an application, the matrix classes $\left(b v(\Delta), \ell_{\infty}\right),(b v(\Delta), c)$ and $\left(b v(\Delta), c_{0}\right)$ are also characterized.

1. Notations and terminology

By ω we shall denote the linear space of all complex sequences over \mathbb{C} (the field of complex numbers). Any vector subspace of ω is called a sequence space. $\ell_{\infty}, c, c_{o}, \ell_{1}$ and C_{1} denote the spaces of all bounded, convergent, null, absolutely summable and $(C, 1)$ summable sequences $x=\left(x_{k}\right)$ with complex terms, respectively. By cs we denote the space of all convergent series and $b v$ denotes the space of all sequences of bounded variation. Throughout this paper, unless otherwise specified, we write \sum_{k} for $\sum_{k=1}^{\infty}$ and $\lim _{n}$ for $\lim _{n \rightarrow \infty}$.

The following concepts are of long standing [2, 9, 21, 24].
A complete metric linear space is called a Frèchet space. Let X be a linear subspace of ω such that X is a Frèchet space with continuous coordinate projections. Then we say that X is an FK space. If the metric of an FK space is given by a complete norm then we say that X is a BK space.

[^0]We say that an FK space X has AK , or has the AK property, if $\left(e_{k}\right)$, the sequence of unit vectors, is a Schauder basis for X.

A sequence space X is called
(i) normal (or solid) if $y=\left(y_{k}\right) \in X$ whenever $\left|y_{k}\right| \leq\left|x_{k}\right|, k \geq 1$, for some $x=\left(x_{k}\right) \in X$,
(ii) monotone if it contains the canonical preimages of all its stepspaces,
(iii) sequence algebra if $x y=\left(x_{k} y_{k}\right) \in X$ whenever $x=\left(x_{k}\right), y=\left(y_{k}\right) \in X$,
(iv) convergence free when, if $x=\left(x_{k}\right)$ is in X and if $y_{k}=0$ whenever $x_{k}=0$, then $y=\left(y_{k}\right)$ is in X,
(v) symmetric if $\left(x_{k}\right) \in X$ implies $\left(x_{\pi(k)}\right) \in X$ where π is a permutation on \mathbb{N}.

The idea of dual sequence spaces was introduced by Köthe and Toeplitz [23]
whose main results concerned α-duals; the α-dual of $X \subset \omega$ being defined as

$$
X^{\alpha}=\left\{a=\left(a_{k}\right) \in \omega: \sum_{k}\left|a_{k} x_{k}\right|<\infty \quad \text { for all } \quad x=\left(x_{k}\right) \in X\right\}
$$

In the same paper [23], they also introduced another kind of dual, namely, the β-dual (see [8] also, where it is called the g-dual by Chillingworth) defined as

$$
X^{\beta}=\left\{a=\left(a_{k}\right) \in \omega: \sum_{k} a_{k} x_{k} \quad \text { converges for all } \quad x=\left(x_{k}\right) \in X\right\}
$$

A still more general notion of a dual was introduced by Garling [21] as

$$
X^{\gamma}=\left\{a=\left(a_{k}\right) \in \omega: \sup _{k}\left|\sum_{i=1}^{k} a_{i} x_{i}\right|<\infty \quad \text { for all } \quad x=\left(x_{k}\right) \in X\right\}
$$

Obviously $\phi \subset X^{\alpha} \subset X^{\beta} \subset X^{\gamma}$, where ϕ is the well-known sequence space of finitely non-zero scalar sequences. Also if $X \subset Y$, then $Y^{\eta} \subset X^{\eta}$ for $\eta=\alpha, \beta$ or γ. For any sequence space X, we denote $\left(X^{\delta}\right)^{\eta}$ by $X^{\delta \eta}$ where $\delta, \eta=\alpha, \beta$ or γ. It is clear that $X \subset X^{\eta \eta}$ where $\eta=\alpha, \beta$ or γ.

For a sequence space X, if $X=X^{\alpha \alpha}$ then X is called a Köthe space or a perfect sequence space.

The notion of difference sequence space was introduced by Kizmaz [22] in 1981 as follows:

$$
X(\Delta)=\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta x_{k}\right) \in X\right\}
$$

for $X=\ell_{\infty}, \quad c, \quad c_{0} ;$ where $\Delta x_{k}=x_{k}-x_{k+1}$, for all $k \in \mathbb{N}$ (the set of natural numbers). For a detailed account of difference sequence spaces one may refer to [1-7, 10-20, 25-29] where many more references can be found.

2. Introduction

Soon after the introduction of the notion of difference sequence space, Orhan [28], in the year 1983, applied the same technique of taking differences to the Cesàro spaces ces $_{p}, 1 \leq p<\infty$ and $\operatorname{ces}_{\infty}$ of Shiue [30 to introduce the Cesàro difference sequence spaces $C_{p}, 1 \leq p<\infty$, and C_{∞}, although, surprisingly enough, the reference of the pioneering work of Kizmaz [22] was missing from [28]. Since the initiation of the study of difference sequence space by Kizmaz, a large amount of literature has grown. Keeping aside some exceptions (see, for instance, [1, 3]) in most of these works, the underlying spaces have remained the same, i.e., ℓ_{∞}, c,
or c_{0}. Quite recently, the Cesàro difference sequence space $C_{1}(\Delta)$ with underlying space as C_{1} has been introduced in [6, 7] as follows :

$$
C_{1}(\Delta)=\left\{x=\left(x_{k}\right) \in \omega:\left(\Delta x_{k}\right) \in C_{1}\right\}
$$

We here propose to derive further properties concerning the space C_{∞} (which we denote $C_{\infty}(\Delta)$ for the sake of notational uniformity) along with the introduction of a new difference sequence space $b v(\Delta)$. Recall [6, 7] that neither $C_{1}(\Delta) \subset \ell_{\infty}(\Delta)$ nor $\ell_{\infty}(\Delta) \subset C_{1}(\Delta)$ but $c(\Delta) \subset C_{1}(\Delta) \cap \ell_{\infty}(\Delta)$ i.e., $C_{1}(\Delta)$ and $\ell_{\infty}(\Delta)$ overlap without containing each other. It is worth observing that the difference sequence space $C_{\infty}(\Delta)=\left\{x=\left(x_{k}\right) \in \omega:\left(\frac{1}{k} \sum_{i=1}^{k} \Delta x_{i}\right) \in \ell_{\infty}\right\}$ of Orhan [28] strictly includes the overlapping spaces $C_{1}(\Delta)$ and $\ell_{\infty}(\Delta)$. Before proceeding further, we introduce a new difference sequence space $b v(\Delta)$ as follows:

$$
b v(\Delta)=\left\{\left(x_{k}\right) \in \omega:\left(\Delta x_{k}\right) \in b v\right\} .
$$

As we shall see, the overall picture regarding inclusions (strict, of course) among the already existing spaces $c_{0}, c, \ell_{\infty}, \ell_{1}, b v, C_{1}, c_{0}(\Delta), c(\Delta), \ell_{\infty}(\Delta), \ell_{1}(\Delta), C_{1}(\Delta)$, $C_{\infty}(\Delta)$ and the newly introduced space $b v(\Delta)$ is as shown below:

$$
\begin{array}{ccccccc}
& & & & C_{1} & \subset & C_{1}(\Delta) \\
& & & \cup & & \cup \\
\ell_{1} & \subset & b v\left(\text { or } c_{0}\right) & & \subset & c & \subset \\
\cap & & \cap & \ell_{\infty} \\
\ell_{1}(\Delta) & \subset & b v(\Delta)\left(\text { or } c_{0}(\Delta)\right) & \subset & c(\Delta) & \subset & \ell_{\infty}(\Delta) \\
& & & & & \cap & \\
& & & & C_{1}(\Delta) & \subset & C_{\infty}(\Delta)
\end{array}
$$

One of the interesting features of the difference sequence space $C_{\infty}(\Delta)$ is shown to be that it is perfect and strictly includes each of the difference sequence spaces $c_{0}(\Delta), c(\Delta), \ell_{\infty}(\Delta), \ell_{1}(\Delta), C_{1}(\Delta)$ and $b v(\Delta)$, none of which is itself perfect. In section 3, apart from discussing certain inclusion relations, we examine various topological properties of the spaces $C_{\infty}(\Delta)$ and $b v(\Delta)$. Section 4 is devoted to the computation of Köthe-Toeplitz and γ - duals of these spaces. As an application, the matrix classes $\left(b v(\Delta), \ell_{\infty}\right),(b v(\Delta), c)$ and $\left(b v(\Delta), c_{0}\right)$ are characterized in the concluding section.

3. Inclusion relations and topological structure

We begin with establishing elementary inclusion relations.
Theorem 3.1. $C_{1}(\Delta) \subset C_{\infty}(\Delta)$, the inclusion being strict.
Proof. Inclusion is obvious. To see that the inclusion is strict, consider the sequence $x=\left(x_{k}\right)=(-1,2,-3,4,-5,6, \ldots)$.
Theorem 3.2. $\ell_{\infty}(\Delta) \subset C_{\infty}(\Delta)$, the inclusion being strict.
The proof follows from the fact that the sequence of Cesàro means of a bounded sequence is again bounded. Inclusion is strict in view of the example cited in Theorem 3.1.
Remark 3.3. In view of Theorem 3.1, Theorem 3.2 and the fact [6, 7] that $C_{1}(\Delta)$ and $\ell_{\infty}(\Delta)$ overlap, it follows that that the difference sequence space $C_{\infty}(\Delta)$ strictly includes the overlapping spaces $C_{1}(\Delta)$ and $\ell_{\infty}(\Delta)$.

Theorem 3.4. $b v \subset b v(\Delta)$, the inclusion being strict.
Proof. Let $\left(x_{k}\right) \in b v$. Then $\left(\Delta x_{k}\right) \in \ell_{1} \subset b v$. For strict inclusion, consider the sequence $x=\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ where

$$
x_{k}= \begin{cases}0, & \text { for } k=0 \\ k(-1)-(k-1) \frac{1}{2}-(k-2) \frac{1}{2^{2}} \ldots-\frac{1}{2^{k-1}}, & \text { for } k \geq 1\end{cases}
$$

Theorem 3.5. $\ell_{1}(\Delta) \subset b v(\Delta) \subset c(\Delta)$, the inclusions being strict.
Proof. The result follows from the fact that $\ell_{1} \subset b v \subset c$. For strict inclusion $\ell_{1}(\Delta) \subset b v(\Delta)$, observe that $(k) \in b v(\Delta)$ but $(k) \notin \ell_{1}(\Delta)$. Inclusion $b v(\Delta) \subset c(\Delta)$ is strict as $\left(y_{k}\right)=\left(0,-1,-1+\frac{1}{2},-1+\frac{1}{2}-\frac{1}{3}, \ldots\right) \in c(\Delta)$ but is missing from $b v(\Delta)$.
Remark 3.6. In view of Remark 3.3 and Theorem 3.5, we can say that $C_{\infty}(\Delta)$ is much wider than the difference sequence spaces $c_{0}(\Delta), c(\Delta), \ell_{\infty}(\Delta)$ of Kizmaz as well as the spaces $\ell_{1}(\Delta), b v(\Delta)$ and $C_{1}(\Delta)$.

We now propose to study the linear topological structure of the difference sequence spaces $C_{\infty}(\Delta)$ and $b v(\Delta)$. Note that it was already observed by Orhan [28] that $C_{\infty}(\Delta)$ is a Banach space with the norm

$$
\|x\|_{\infty}=\left|x_{1}\right|+\sup _{k} \frac{1}{k}\left|\sum_{i=1}^{k} \Delta x_{i}\right|, x=\left(x_{k}\right) \in C_{\infty}(\Delta)
$$

We can go ahead and have the following
Theorem 3.7. $C_{\infty}(\Delta)$ and $b v(\Delta)$ are $B K$ spaces normed by

$$
\|x\|_{\infty}=\left|x_{1}\right|+\sup _{k} \frac{1}{k}\left|\sum_{i=1}^{k} \Delta x_{i}\right|, x=\left(x_{k}\right) \in C_{\infty}(\Delta)
$$

and

$$
\|x\|_{b v}=\left|x_{1}\right|+\left|x_{2}\right|+\sum_{k}\left|\Delta x_{k}-\Delta x_{k+1}\right|, x=\left(x_{k}\right) \in b v(\Delta), \text { respectively }
$$

The proof is a routine verification by using 'standard' techniques and hence is omitted.

Theorem 3.8. (i) $C_{1}(\Delta)$ is a closed subspace of $C_{\infty}(\Delta)$.
(ii) $C_{1}(\Delta)$ is a nowhere dense subset of $C_{\infty}(\Delta)$.

The proof follows from the fact that $C_{1}(\Delta)$ is a proper and complete subspace of $C_{\infty}(\Delta)$.

Theorem 3.9. $C_{\infty}(\Delta)$ is not separable.
Proof. Suppose, if possible, that $C_{\infty}(\Delta)$ is separable, and that $D=\left\{d_{1}, d_{2}, d_{3}, \ldots\right\}$ is a countable dense subset, where $d_{1}=\left(d_{1 k}\right)=\left(d_{11}, d_{12}, \ldots\right), d_{2}=\left(d_{2 k}\right)=$ $\left(d_{21}, d_{22}, \ldots\right), \ldots$ Now define $x=\left(x_{n}\right)$, where for $n \in \mathbb{N}$,

$$
x_{n}=\left\{\begin{array}{l}
n+d_{11}+d_{n n}-d_{n 1}, \text { if }\left|d_{n n}-d_{n 1}\right| \leq n-1 \\
1+d_{11}, \text { if }\left|d_{n n}-d_{n 1}\right|>n-1
\end{array}\right.
$$

$\left|\frac{x_{1}-x_{n+1}}{n}\right|=\left\{\begin{array}{l}\left|\frac{1+d_{11}-\left(\overline{n+1}+d_{11}+d_{(n+1)(n+1)}-d_{(n+1) 1}\right)}{n}\right|, \text { if }\left|d_{(n+1)(n+1)}-d_{(n+1) 1}\right| \leq n ; \\ \left|\frac{1+d_{11}-\left(1+d_{11}\right)}{n}\right|, \text { if }\left|d_{(n+1)(n+1)}-d_{(n+1) 1}\right|>n ;\end{array}\right.$
and so $\left|\frac{x_{1}-x_{n+1}}{n}\right| \leq 2$ for all $n \in \mathbb{N}$, which in turn implies that $\left(x_{k}\right) \in C_{\infty}(\Delta)$. Clearly, $\left\|x-d_{1}\right\|_{\Delta} \geq\left|x_{1}-d_{11}\right|=1$ and for $n>1$

$$
\begin{aligned}
\left\|x-d_{n}\right\|_{\Delta} & \geq \sup _{k \geq 1}\left|\frac{\left(x_{1}-d_{n 1}\right)-\left(x_{k+1}-d_{n(k+1)}\right)}{k}\right| \\
& \geq\left|\frac{\left(x_{1}-d_{n 1}\right)-\left(x_{n}-d_{n n}\right)}{n-1}\right| \\
& =\left\{\begin{array}{c}
\left|\frac{1+d_{11}-d_{n 1}-\left(n+d_{11}-d_{n 1}\right)}{n-1}\right|, \text { if }\left|d_{n n}-d_{n 1}\right| \leq n-1 ; \\
\left|\frac{1+d_{11}-d_{n 1}-\left(1+d_{11}-d_{n n}\right)}{n-1}\right|, \text { if }\left|d_{n n}-d_{n 1}\right|>n-1 ;
\end{array}\right. \\
& =\left\{\begin{array}{l}
1, \text { if }\left|d_{n n}-d_{n 1}\right| \leq n-1 ; \\
\left|\frac{d_{n n}-d_{n 1}}{n-1}\right|, \text { if }\left|d_{n n}-d_{n 1}\right|>n-1 ;
\end{array}\right.
\end{aligned}
$$

i.e., $\left\|x-d_{n}\right\|_{\Delta} \geq 1$. Hence $x=\left(x_{k}\right) \in C_{\infty}(\Delta)$ is such that no $n \in \mathbb{N}$ exists such that $\left\|x-d_{n}\right\|_{\Delta}<1$, a contradiction as D is dense in $C_{\infty}(\Delta)$.

Corollary 3.10. $C_{\infty}(\Delta)$ does not have Schauder basis.
The result follows from the fact that if a normed space has a Schauder basis, then it is separable.

Corollary 3.11. $C_{\infty}(\Delta)$ does not have the AK property.
Theorem 3.12. bv (Δ) has Schauder basis namely $\left\{e, b_{1}, b_{2}, b_{3}, \ldots\right\}$ where $e=$ $(1,1,1, \ldots)$ and for $n \in \mathbb{N}$, $b_{n}=\left(b_{n}^{k}\right)_{k \in \mathbb{N}}$ as

$$
b_{n}^{k}=\left\{\begin{array}{l}
0, \text { if } k \leq n \\
k-n \text { otherwise }, k \in \mathbb{N}
\end{array}\right.
$$

and any $x=\left(x_{k}\right) \in b v(\Delta)$ has a unique representation of the form $x=x_{1} e-$ $\Delta x_{1} b_{1}+\sum_{k}\left(\Delta x_{k}-\Delta x_{k+1}\right) b_{k+1}$.

The proof is easy and so omitted.
Corollary 3.13. $b v(\Delta)$ is a separable space.
The result follows from the fact that if a normed space has a Schauder basis, then it is separable.

Theorem 3.14. bv (Δ) does not have the $A K$ property.
Proof. Let $x=\left(x_{k}\right)=(1,2,3, \ldots) \in b v(\Delta)$. Consider the $n^{t h}$ section of the sequence $\left(x_{k}\right)$ as $x^{[n]}=(1,2,3, \ldots, n, 0,0, \ldots)$. Then

$$
\begin{aligned}
\left\|x-x^{[n]}\right\|_{b v} & =\|(0,0,0, \ldots, n+1, n+2, \ldots)\|_{b v} \\
& =|0|+|0|+|n+1|+|n|
\end{aligned}
$$

which does not tend to 0 as $n \rightarrow \infty$.

4. DUAL SPACES

In the present section, we compute various duals and investigate the perfectness of $C_{\infty}(\Delta)$ and $b v(\Delta)$.
Theorem 4.1.

$$
\left[C_{\infty}(\Delta)\right]^{\alpha}=[b v(\Delta)]^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k} k\left|a_{k}\right|<\infty\right\}=D_{1} .
$$

The proof is easy and so omitted.
Remark 4.2. In view of the fact [6, 7] that $\left[c_{0}(\Delta)\right]^{\alpha}=[c(\Delta)]^{\alpha}=\left[\ell_{\infty}(\Delta)\right]^{\alpha}=$ $\left[C_{1}(\Delta)\right]^{\alpha}=D_{1}$ and Theorem 4.1, we conclude that the α-duals of the difference sequence spaces $c_{0}(\Delta), c(\Delta), \ell_{\infty}(\Delta), C_{1}(\Delta), b v(\Delta)$ and $C_{\infty}(\Delta)$ coincide.

Theorem 4.3.

$$
\left[C_{\infty}(\Delta)\right]^{\alpha \alpha}=\left\{a=\left(a_{k}\right): \sup _{k} k^{-1}\left|a_{k}\right|<\infty\right\}=D_{2}
$$

The result follows in view of Remark 4.2 and the fact ($[6$, Theorem 4.3) that $\left[C_{1}(\Delta)\right]^{\alpha \alpha}=D_{2}$.
Remark 4.4. It is already known [6, 7, 20, 21] that none of the spaces $c_{0}(\Delta), c(\Delta)$, $\ell_{\infty}(\Delta), \ell_{1}(\Delta)$, and $C_{1}(\Delta)$ is perfect. We now show that $b v(\Delta)$ is not perfect whereas $C_{\infty}(\Delta)$ is. Thus $C_{\infty}(\Delta)$ is a perfect space which strictly includes the non-perfect spaces $c_{0}(\Delta), c(\Delta), \ell_{\infty}(\Delta), \ell_{1}(\Delta), C_{1}(\Delta)$ and $b v(\Delta)$.
Theorem 4.5. (i) $C_{\infty}(\Delta)$ is perfect.
(ii) $b v(\Delta)$ is not perfect.

Proof. (i) It is easy to see that $\left[C_{\infty}(\Delta)\right]^{\alpha \alpha}=C_{\infty}(\Delta)$.
(ii)The proof follows at once when we observe that the sequence $\left((-1)^{k}\right) \in[b v(\Delta)]^{\alpha \alpha}$ but does not belong to $b v(\Delta)$.

Lemma 4.6. 21] Let X be a sequence space. Then we have
(i) X is perfect $\Rightarrow X$ is normal $\Rightarrow X$ is monotone.
(ii) X is normal $\Rightarrow X^{\alpha}=X^{\gamma}$.
(iii) X is monotone $\Rightarrow X^{\alpha}=X^{\beta}$.

Using Theorem 4.1, Theorem 4.5 and Lemma 4.6, we have
Corollary 4.7. (i) $C_{\infty}(\Delta)$ is normal as well as monotone.
(ii) $\left[C_{\infty}(\Delta)\right]^{\beta}=\left[C_{\infty}(\Delta)\right]^{\gamma}=\left[C_{\infty}(\Delta)\right]^{\alpha}=\left\{a=\left(a_{k}\right): \sum_{k} k\left|a_{k}\right|<\infty\right\}$.

Remark 4.8. The $\beta-$ dual of $C_{\infty}(\Delta)$ was originally computed by Orhan [28]. Our opproach is indirect. We have benefited from the perfectness of $C_{\infty}(\Delta)$.

In order to compute the β - dual of $b v(\Delta)$, we need the following
Lemma 4.9. [22] $\sum_{k} k a_{k}$ is convergent if and only if $\sum_{k} R_{k}$ is convergent with $n R_{n}=o(1)$, where $R_{n}=\sum_{k=n+1}^{\infty} a_{k}$.

Theorem 4.10.

$$
[b v(\Delta)]^{\beta}=\left\{a=\left(a_{k}\right): \sum_{k} k a_{k} \text { is convergent }\right\}=D_{3}
$$

Proof. The proof follows very closely the lines of proof in [22]. However, for the sake of completeness we are giving the proof.

Let $a=\left(a_{k}\right) \in D_{3}$. Then $\sum_{k} k a_{k}$ is convergent. For $x=\left(x_{k}\right) \in b v(\Delta)$, we have $\left(\Delta x_{k}\right) \in b v \subset c \subset \ell_{\infty}$ and so there exists $M>0$ such that $\left|\Delta x_{k}\right| \leq M$, for all $k \in \mathbb{N}$. Abel's summation by parts yields

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} x_{k}=-\sum_{j=1}^{n-1} \Delta x_{j} R_{j}+R_{n} \sum_{j=1}^{n-1} \Delta x_{j}+x_{1} \sum_{k=1}^{n} a_{k} \tag{4.1}
\end{equation*}
$$

where $R_{n}=\sum_{k=n+1}^{\infty} a_{k}$ and $n \in \mathbb{N}$. Obviously the last term on the right in (4.1) is convergent. As $\sum_{j} j a_{j}$ is convergent, so by Lemma $4.9,\left(R_{j}\right) \in c s$. Since $(b v)^{\beta}=c s$ and $\left(\Delta x_{j}\right) \in b v$ so $\sum_{j} \Delta x_{j} R_{j}$ converges, that is, first term on right in (4.1) is convergent. Finally

$$
\begin{aligned}
\left|R_{n} \sum_{j=1}^{n-1} \Delta x_{j}\right| & \leq\left|R_{n}\right| \sum_{j=1}^{n-1}\left|\Delta x_{j}\right| \\
& \leq M\left|(n-1) R_{n}\right| \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

and so $\sum_{k} a_{k} x_{k}$ converges.
Conversely, let $\left(a_{k}\right) \in[b v(\Delta)]^{\beta}$. Then $\sum_{k} a_{k} x_{k}$ converges for all $x=\left(x_{k}\right) \in b v(\Delta)$. In particular, taking $x_{k}=k$, we get $\sum_{k} k a_{k}$ is convergent and so $\left(a_{k}\right) \in D_{3}$.
Theorem 4.11. $b v(\Delta)$ is not monotone.
Proof. Take $\left(x_{k}\right)=(1,1, \ldots) \in b v(\Delta)$ and define $y=\left(y_{k}\right)$ as

$$
y_{k}= \begin{cases}x_{k}, & \text { if } \mathrm{k} \text { is odd } \\ 0, & \text { if } \mathrm{k} \text { is even }\end{cases}
$$

that is, $\left(y_{k}\right)=(1,0,1,0, \ldots)$. Then $\left(\Delta y_{k}\right)=(1,-1,1,-1, \ldots)$ and so $\left(y_{k}\right) \notin b v(\Delta)$.
Using Lemma 4.6 and Theorem 4.11, we have
Corollary 4.12. $b v(\Delta)$ is not normal.
Theorem 4.13. None of the spaces $C_{\infty}(\Delta)$ and $b v(\Delta)$ is convergence free.
Proof. Let $\left(x_{k}\right)=(1,0,3,0,5,0,7,0, \ldots) \in C_{\infty}(\Delta)$.
Take $\left(y_{k}\right)=\left(1^{2}, 0,3^{2}, 0,5^{2}, 0,7^{2}, 0, \ldots\right)$, then $\left(\Delta y_{k}\right)=\left(1^{2},-3^{2}, 3^{2},-5^{2}, 5^{2},-7^{2}, 7^{2}, \ldots\right)$.
Now

$$
\frac{1}{k} \sum_{i=1}^{k} \Delta y_{i}= \begin{cases}\frac{1}{k}, & \text { if } \mathrm{k} \text { is odd } \\ \frac{1-(k+1)^{2}}{k}, & \text { if } \mathrm{k} \text { is even }\end{cases}
$$

and so $\left(y_{k}\right) \notin C_{\infty}(\Delta)$. This shows that $C_{\infty}(\Delta)$ is not convergence free.
Using Corollary 4.12 and the fact 9 that every convergence free space is normal, we see that $b v(\Delta)$ is not a convergence free space.

Next we investigate the symmetry of the spaces $C_{\infty}(\Delta)$ and $b v(\Delta)$. In checking the symmetric property of the space $C_{\infty}(\Delta)$, we shall make use of the following

Theorem 4.14. 9] If X is a perfect symmetric space other than ϕ or ω, then $\ell_{1} \subset X \subset \ell_{\infty}$.

Theorem 4.15. None of the spaces $C_{\infty}(\Delta)$ and $b v(\Delta)$ is symmetric.
Proof. Let $\left(x_{k}\right)=(1,2,3,4, \ldots) \in b v(\Delta)$ and $\left(y_{k}\right)=(2,1,4,3,6,5, \ldots)$ be a rearrangement of the terms of the sequence $\left(x_{k}\right)$. Here $\left(\Delta y_{k}\right)=(1,-3,1,-3,1,-3, \ldots) \notin$ $b v$ and so $\left(y_{k}\right) \notin b v(\Delta)$. This shows that $b v(\Delta)$ is not a symmetric space.

In view of Theorem 4.5. Theorem 4.14 and the fact that $C_{\infty}(\Delta)$ is not contained in ℓ_{∞}, it follows at once that $C_{\infty}(\Delta)$ is not a symmetric space.

Theorem 4.16. None of the spaces $C_{\infty}(\Delta)$ and $b v(\Delta)$ is a sequence algebra.
Proof. The sequences $x=y=(k)$ serve the purpose.

5. Matrix maps

Finally, we characterize certain matrix classes. For any complex infinite matrix $A=\left(a_{n k}\right)$, we shall write $A_{n}=\left(a_{n k}\right)_{k \in \mathbb{N}}$ for the sequence in the $n^{t h}$ row of A. If X, Y are any two sets of sequences, we denote by (X, Y) the class of all those infinite matrices $A=\left(a_{n k}\right)$ such that the series $A_{n}(x)=\sum_{k} a_{n k} x_{k}$ converges for all $x=\left(x_{k}\right) \in X,(n=1,2, \ldots)$ and the sequence $A x=\left(A_{n} x\right)_{n \in \mathbb{N}}$ is in Y for all $x \in X$.

Before proceeding further, we recall the following theorems which will be used in the sequel.

Theorem 5.1. 31 $A \in\left(b v, \ell_{\infty}\right)$ if and only if
(i) $\sup _{n} \sup \left|\sum_{k=j} a_{n k}\right|<\infty$, or
(ii) $\sup _{n}\left|\sum_{k} a_{n k}\right|<\infty$ and $\sup _{n} \sup _{j}\left|\sum_{k=1}^{j} a_{n k}\right|<\infty$.

Theorem 5.2. $31 A=\left(a_{n k}\right) \in(b v, c)$ if and only if
(i) $\lim _{n} a_{n k}$ exists for each $k \in \mathbb{N}$,
(ii) $\lim _{n}^{n} \sum_{k} a_{n k}$ exists,
(iii) $\sup _{n} \sup _{j}\left|\sum_{k=j} a_{n k}\right|<\infty$; or $\sup _{n} \sup _{j}\left|\sum_{k=1}^{j} a_{n k}\right|<\infty$.

Theorem 5.3. 31] $A=\left(a_{n k}\right) \in\left(b v, c_{0}\right)$ if and only if
(i) $\lim a_{n k}=0$ for each $k \in \mathbb{N}$,
(ii) $\lim _{n} \sum_{k} a_{n k}=0$,
(iii) $\sup _{n} \sup _{j}\left|\sum_{k=j} a_{n k}\right|<\infty$; or $\sup _{n} \sup _{j}\left|\sum_{k=1}^{j} a_{n k}\right|<\infty$.

We are now in a position to characterize the matrix classes $\left(b v(\Delta), \ell_{\infty}\right),(b v(\Delta), c)$ and $\left(b v(\Delta), c_{0}\right)$.

Theorem 5.4. $A \in\left(b v(\Delta), \ell_{\infty}\right)$ if and only if
(i) $\sup _{n}\left|\sum_{k} k a_{n k}\right|<\infty$,
(ii) sup sup $\left|\sum_{v=j} \sum_{k=v+1}^{\infty} a_{n k}\right|<\infty$,
(iii) $\left.\sup _{n}^{n}\right|_{k} ^{j} \sum_{n k} \mid<\infty$.

Proof. Let the conditions $(i)-(i i i)$ hold and suppose that $x=\left(x_{k}\right) \in b v(\Delta)$. It is implicit in (i) that, for each $n \in \mathbb{N}, \sum_{k} k a_{n k}$ converges and so $\left(a_{n k}\right)_{k} \in[b v(\Delta)]^{\beta}$. This implies that $\sum_{k} a_{n k} x_{k}$ converges for each $n \in \mathbb{N}$. As $x=\left(x_{j}\right) \in b v(\Delta)$, so $\left(\Delta x_{j}\right) \in b v$. Further as in in the proof of Theorem 4.10, we have

$$
\begin{aligned}
\sum_{k} a_{n k} x_{k} & =-\sum_{j} \Delta x_{j}\left(\sum_{k=j+1}^{\infty} a_{n k}\right)+x_{1} \sum_{k} a_{n k} \\
& =-\sum_{j} \Delta x_{j} c_{n j}+x_{1} \sum_{k} a_{n k}
\end{aligned}
$$

where $c_{n j}=\sum_{k=j+1}^{\infty} a_{n k}$, for $(n, j=1,2, \ldots)$. Making use of (ii), we have $\sup \sup \left|\sum_{v=j} c_{n v}\right|<\infty$ and so by Theorem 5.1, we have matrix $C=\left(c_{n v}\right) \in$ $\left(b v, \ell_{\infty}^{j}\right)$. This yields $\left(\sum_{j} \Delta x_{j} c_{n j}\right) \in \ell_{\infty}$. Thus $\overline{A \in}\left(b v(\Delta), \ell_{\infty}\right)$.
Conversely, let $A \in\left(b v(\Delta), \ell_{\infty}\right)$. Then $\sup _{n}\left|\sum_{k} a_{n k} x_{k}\right|<\infty$, for all $x=\left(x_{k}\right) \in$ $b v(\Delta)$. As $(k), e=(1,1,1, \ldots) \in b v(\Delta)$, so (i) and (iii) hold. Now suppose if possible, $\sup _{n} \sup _{j}\left|\sum_{v=j} \sum_{k=v+1}^{\infty} a_{n k}\right|=\infty$. Consider the matrix C defined by

$$
c_{n v}=\sum_{k=v+1} a_{n k}(n, v=1,2, \ldots)
$$

Then the matrix $C=\left(c_{n v}\right) \notin\left(b v, \ell_{\infty}\right)$. Therefore there exists a sequence $x=$ $\left(x_{k}\right) \in b v$ such that $\left(\sum_{v} c_{n v} x_{v}\right)_{n} \notin \ell_{\infty}$. We define a sequence $y=\left(y_{v}\right)$ as

$$
y_{v}=-\sum_{j=1}^{v-1} x_{j}+x_{1}(v=1,2,3, \ldots)
$$

Then $\left(\Delta y_{v}\right)=\left(x_{v}\right) \in b v$ and $\sum_{v} a_{n v} y_{v}=x_{1} \sum_{v} a_{n v}-\sum_{v} x_{v} c_{n v} \neq O(1)$, a contradiction to the fact that $A \in\left(b v(\Delta), \ell_{\infty}\right)$.
Theorem 5.5. $A=\left(a_{n k}\right) \in(b v(\Delta), c)$ if and only if
(i) $\sup _{n}\left|\sum_{k} k a_{n k}\right|<\infty$,
(ii) sup sup $\left|\sum_{v=j} \sum_{k=v+1}^{\infty} a_{n k}\right|<\infty$,
(iii) $\lim _{n}^{n} \sum_{j}^{j} \sum_{k=j+1}^{\infty} a_{n k}=\alpha$,
(iv) $\lim _{n} \sum_{k=j+1} a_{n k}=\beta_{j}$ for $j=0,1,2, \ldots$
where $\alpha, \beta_{j} \in \mathbb{C}$.
Proof. Let the conditions $(i)-(i v)$ hold and $x=\left(x_{k}\right) \in b v(\Delta)$. Using (i) and arguing in the same way as in Theorem 5.4, we have

$$
\begin{equation*}
\sum_{k} a_{n k} x_{k}=-\sum_{j} \Delta x_{j} c_{n j}+x_{1} \sum_{k} a_{n k} \tag{5.1}
\end{equation*}
$$

where $c_{n j}=\sum_{k=j+1}^{\infty} a_{n k}$, for $(n, j=1,2, \ldots)$. Making use of $(i i)-(i v)$ and Theorem 5.2, we have matrix $C=\left(c_{n k}\right) \in(b v, c)$. As $\left(\Delta x_{j}\right) \in b v$, so we have $\left(\sum_{j} \Delta x_{j} c_{n j}\right) \in c$. Therefore it follows from (5.1) that $\left(\sum_{k} a_{n k} x_{k}\right) \in c$ for all $x=\left(x_{k}\right) \in b v(\Delta)$, i.e., $A \in(b v(\Delta), c)$.
Conversely, it is given that $A \in(b v(\Delta), c)$. So $A \in\left(b v(\Delta), \ell_{\infty}\right)$. Then by Theorem 5.4. (i) and (ii) hold. Also we have $\left(\sum_{k} a_{n k} x_{k}\right) \in c$ for all $x=\left(x_{k}\right) \in b v(\Delta)$. Taking $x_{k}=1$ for all $k \in \mathbb{N}$, we get $\left(\sum_{k} a_{n k}\right) \in c$. It follows from (5.1) that
$\left(\sum_{j} \Delta x_{j}\left(\sum_{k=j+1}^{\infty} a_{n k}\right)\right) \in c$, for all $x=\left(x_{k}\right) \in b v(\Delta)$. Now for $\left(x_{j}\right)=(-j) \in$ $b v(\Delta)$ and $(0,0,0, \ldots, 0,1,1, \ldots) \in b v(\Delta)$, having 0 's at first j positions and 1's elsewhere $(j=1,2, \ldots)$, we have $\left(\sum_{j}\left(\sum_{k=j+1}^{\infty} a_{n k}\right)\right) \in c$ and $\left(\sum_{k=j+1}^{\infty} a_{n k}\right) \in c$.

Using the same technique as in Theorem 5.5 and applying Theorem5.3, we have
Theorem 5.6. $A=\left(a_{n k}\right) \in\left(b v(\Delta), c_{0}\right)$ if and only if
(i) $\sup _{n}\left|\sum_{k} k a_{n k}\right|<\infty$,
(ii) sup sup $\left|\sum_{v=j} \sum_{k=v+1}^{\infty} a_{n k}\right|<\infty$,
(iii) $\lim _{n}^{n} \sum_{j}^{j} \sum_{k=j+1}^{\infty} a_{n k}=0$,
(iv) $\lim _{n}^{n} \sum_{k=j+1} a_{n k}=0$ for $j=0,1,2, \ldots$.

Acknowledgements

The authors would like to record their gratitude to the referee for his/her valueable comments and suggestions, which have improved the presentation of the paper.

References

[1] B. Altay and F. Başar, The fine spectrum and the matrix domain of the difference operator Δ on the sequence space ℓ_{p}, Commun. Math. Anal., 2, No. 2(2007), 1-11.
[2] F. Başar, Summability theory and its Applications, Bentham Science Publishers, İstanbul \ddot{U} niv-2011.
[3] F. Başar and B. Altay, On the space of sequences of p-bounded variation and related matrix mappings, Ukranian Math. J., 55, No. 1(2003), 136-147.
[4] Ç. A. Bektaş, M. Et. and R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., 292(2004), 423-432.
[5] V. K. Bhardwaj and I. Bala, Generalized difference sequence space defined by $\left|\bar{N}, p_{k}\right|$ summability and an Orlicz function in seminormed space, Math. Slovaca, 60, No. 2(2010), 257-264.
[6] V. K. Bhardwaj and S. Gupta, Cesáro summable difference sequence space, J. Inequal. Appl., 2013, 2013:315 .
[7] V. K. Bhardwaj and S. Gupta, Correction : Cesáro summable difference sequence space, J. Inequal. Appl., 2014, 2014:11.
[8] H. R. Chillingworth, Generalized "dual" sequence spaces, Nederl. Akad. Wetensch. Indag. Math., 20(1958), 307-315.
[9] R. G. Cooke, Infinite matrices and sequence spaces, Macmillan, London, (1950).
[10] A. Esi, Generalized matrix transformations between some sequence spaces, J. Inst. Math. Comput. Sci. Math. Ser., 14(1) (2001), 11-14.
[11] A. Esi, On a class of new type difference sequence space related to the space ℓ^{p}, Far East J. Math. Sci., 13(2) (2004), 167-172.
[12] A. Esi and A. Esi, Strongly convergent generalized difference sequence spaces defined by a modulus, Acta Univ. Apulensis, 22(2010), 113-122.
[13] A. Esi and M. Isik, Some generalized difference sequence spaces, Thai J. Math., 3(2) (2005), 241-247.
[14] A. Esi and B. C. Tripathy, Generalized strongly difference convergent sequences associated with multiplier sequences, Math. Slovaca, 57(4) (2007), 339-348.
[15] A. Esi, B. C. Tripathy and B. Sarma, On some new type generalized difference sequence spaces, Math. Slovaca, 57(5) (2007), 1-8.
[16] M. Et. and R. Çolak, On some generalized difference sequence spaces, Soochow J. Math., 21, No. 4(1995), 377-386.
[17] M. Et, On some generalized Cesàro difference sequence spaces, İstanbul Üniv. Fen. Fak. Mat. Derg., 55/56, 221-229, (1996/97).
[18] M. Et, Spaces of Cesàro difference sequences of order Δ^{r} - defined by a modulus function in a locally convex space, Taiwanese J. Math., 10(4) (2006), 865-879.
[19] M. Et, Generalized Cesàro difference sequence spaces of non-absolute type involving lacunary sequences, Appl. Math. Comput., 219, No.17(2013), 9372-9376.
[20] M. Et. and A. Esi, On Köthe - Toeplitz duals of generalized difference sequence spaces, Bull. Malaysian Math. Sci. Soc., 23(2000), 1-8.
[21] P. K. Kamthan and M. Gupta, Sequence spaces and series, Marcel Dekker, New York, (1981).
[22] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24, No. 2(1981), 169-176.
[23] G. Köthe and O. Toeplitz, Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. Reine Angew. Math., 171, (1934), 193-226.
[24] I. J. Maddox, Elements of Functional Analysis, Camb. Univ. Press, Second Edition (1988).
[25] E. Malkowsky and S. D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis, 17, No. 1(1997), 87-97.
[26] E. Malkowsky, M. Mursaleen and S. Suantai, The dual spaces of sets of difference sequences of order m and matrix transformations, Acta Math. Sinica, 23, No.3(2007), 521-532.
[27] B. C. Tripathy, A. Esi and B. Tripathy, On a new type of generalized difference Cesaro sequence spaces, Soochow J. Math., 31(3) (2005), 333-340.
[28] C. Orhan, Cesàro difference sequence spaces and related matrix transformations, Comm. Fac. Sci. Üniv. Ankara Sèr. A_{1} Math., 32(1983), 55-63.
[29] C. Orhan, Matrix transformations on Cesàro difference sequence spaces, Comm. Fac. Sci. \ddot{U} niv. Ankara Sèr. A_{1} Math., 33(1984), 1-8.
[30] J. S. Shiue, On the Cesáro sequence spaces, Tamkang J. Math., 1(1970), 19-25.
[31] S. M. Sirajudeen, Matrix transformation of bv into $\ell(q), \ell_{\infty}(q), c_{0}(q)$ and $c(q)$, Indian J. Pure Appl. Math., 23(1), (1992), 55-61.
S. Gupta

Department of Mathematics, Arya P. G. College, Panipat-132103 (India)
E-mail address: sandeep80.gupta@rediffmail.com
V. K. Bhardwaj

Department of Mathematics, Kurukshetra University, Kurukshetra-136119 (India)
E-mail address: vinodk_bhj@rediffmail.com

[^0]: 2010 Mathematics Subject Classification. 40C05, 40A05, 46A45.
 Key words and phrases. sequence space, BK space, Schauder basis, Köthe-Toeplitz duals, matrix map.

 Submitted Jan. 31, 2018. Revised Feb. 24, 2018.

