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KÖTHE-TOEPLITZ DUALS AND

MATRIX TRANSFORMATIONS OF

GENERALIZED DIFFERENCE SEQUENCE SPACES

S. GUPTA AND V. K. BHARDWAJ

Abstract. Orhan [28, 29] introduced the Cesàro difference sequence spaces

Cp, 1 ≤ p < ∞, and C∞ and determined their generalized Köthe- Toeplitz
duals and some of the related matrix transformations. We here propose to

derive further properties concerning the space C∞ ( which we denote C∞(∆)

for the sake of notational uniformity) along with the introduction of a new dif-
ference sequence space bv(∆). It is shown that the non-absolute type sequence

spaces C∞(∆) and bv(∆) turn out to be BK spaces, the former of which is

inseparable, perfect space and strictly includes the well-known difference se-
quence spaces c0(∆), c(∆) and `∞(∆) of Kizmaz [22], the recently introduced

[6, 7] Cesàro summable difference sequence space C1(∆) and the space bv(∆),

introduced in this paper itself, none of which happens to be perfect. The
Köthe-Toeplitz duals of bv(∆) are computed and as an application, the matrix

classes (bv(∆), `∞), (bv(∆), c) and (bv(∆), c0) are also characterized.

1. Notations and terminology

By ω we shall denote the linear space of all complex sequences over
C (the field of complex numbers). Any vector subspace of ω is called a sequence
space. `∞, c, co, `1 and C1 denote the spaces of all bounded, convergent, null, ab-
solutely summable and (C, 1) summable sequences x = (xk) with complex terms,
respectively. By cs we denote the space of all convergent series and bv denotes
the space of all sequences of bounded variation. Throughout this paper, unless
otherwise specified, we write

∑
k for

∑∞
k=1 and limn for limn→∞.

The following concepts are of long standing [2, 9, 21, 24].

A complete metric linear space is called a Frèchet space. Let X be a linear sub-
space of ω such that X is a Frèchet space with continuous coordinate projections.
Then we say that X is an FK space. If the metric of an FK space is given
by a complete norm then we say that X is a BK space.
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We say that an FK space X has AK, or has the AK property, if (ek), the se-
quence of unit vectors, is a Schauder basis for X.

A sequence space X is called
(i) normal (or solid) if y = (yk) ∈ X whenever |yk| ≤ |xk|, k ≥ 1, for some
x = (xk) ∈ X,
(ii) monotone if it contains the canonical preimages of all its stepspaces,
(iii) sequence algebra if xy = (xkyk) ∈ X whenever x = (xk), y = (yk) ∈ X,
(iv) convergence free when, if x = (xk) is in X and if yk = 0 whenever xk = 0, then
y = (yk) is in X,
(v) symmetric if (xk) ∈ X implies (xπ(k)) ∈ X where π is a permutation on N.

The idea of dual sequence spaces was introduced by Köthe and Toeplitz [23]
whose main results concerned α-duals; the α-dual of X ⊂ ω being defined as

Xα = {a = (ak) ∈ ω :
∑
k

|akxk| <∞ for all x = (xk) ∈ X}.

In the same paper [23], they also introduced another kind of dual, namely, the
β-dual (see [8] also, where it is called the g-dual by Chillingworth ) defined as

Xβ = {a = (ak) ∈ ω :
∑
k

akxk converges for all x = (xk) ∈ X}.

A still more general notion of a dual was introduced by Garling [21] as

Xγ = {a = (ak) ∈ ω : sup
k
|
k∑
i=1

aixi| <∞ for all x = (xk) ∈ X}.

Obviously φ ⊂ Xα ⊂ Xβ ⊂ Xγ , where φ is the well-known sequence space of
finitely non-zero scalar sequences. Also if X ⊂ Y , then Y η ⊂ Xη for η = α, β or
γ. For any sequence space X, we denote (Xδ)η by Xδη where δ, η = α, β or γ. It
is clear that X ⊂ Xηη where η = α, β or γ.

For a sequence space X, if X = Xαα then X is called a Köthe space or a perfect
sequence space.

The notion of difference sequence space was introduced by Kizmaz [22] in 1981
as follows:

X(∆) = {x = (xk) ∈ ω : (∆xk) ∈ X}

for X = `∞, c, c0 ; where ∆xk = xk − xk+1, for all k ∈ N (the set of natural
numbers). For a detailed account of difference sequence spaces one may refer to
[1-7, 10-20, 25-29] where many more references can be found.

2. Introduction

Soon after the introduction of the notion of difference sequence space, Orhan
[28], in the year 1983, applied the same technique of taking differences to the
Cesàro spaces cesp, 1 ≤ p < ∞ and ces∞ of Shiue [30] to introduce the Cesàro
difference sequence spaces Cp, 1 ≤ p <∞, and C∞, although, surprisingly enough,
the reference of the pioneering work of Kizmaz [22] was missing from [28]. Since
the initiation of the study of difference sequence space by Kizmaz, a large amount
of literature has grown. Keeping aside some exceptions ( see, for instance, [ 1, 3 ] )
in most of these works, the underlying spaces have remained the same, i.e., `∞, c,
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or c0. Quite recently, the Cesàro difference sequence space C1(∆) with underlying
space as C1 has been introduced in [6, 7] as follows :

C1(∆) = {x = (xk) ∈ ω : (∆xk) ∈ C1}.

We here propose to derive further properties concerning the space C∞ ( which
we denote C∞(∆) for the sake of notational uniformity) along with the introduction
of a new difference sequence space bv(∆). Recall [6, 7] that neither C1(∆) ⊂ `∞(∆)
nor `∞(∆) ⊂ C1(∆) but c(∆) ⊂ C1(∆) ∩ `∞(∆) i.e., C1(∆) and `∞(∆) overlap
without containing each other. It is worth observing that the difference sequence

space C∞(∆) = {x = (xk) ∈ ω : ( 1
k

∑k
i=1 ∆xi) ∈ `∞} of Orhan [28] strictly includes

the overlapping spaces C1(∆) and `∞(∆). Before proceeding further, we introduce
a new difference sequence space bv(∆) as follows:

bv(∆) = {(xk) ∈ ω : (∆xk) ∈ bv}.
As we shall see, the overall picture regarding inclusions ( strict, of course) among
the already existing spaces c0, c, `∞, `1, bv, C1, c0(∆), c(∆), `∞(∆), `1(∆), C1(∆),
C∞(∆) and the newly introduced space bv(∆) is as shown below:

C1 ⊂ C1(∆)
∪ ∪

`1 ⊂ bv( or c0) ⊂ c ⊂ `∞
∩ ∩ ∩ ∩

`1(∆) ⊂ bv(∆)( or c0(∆)) ⊂ c(∆) ⊂ `∞(∆)
∩ ∩

C1(∆) ⊂ C∞(∆)

One of the interesting features of the difference sequence space C∞(∆) is shown
to be that it is perfect and strictly includes each of the difference sequence spaces
c0(∆), c(∆), `∞(∆), `1(∆), C1(∆) and bv(∆), none of which is itself perfect. In
section 3, apart from discussing certain inclusion relations, we examine various
topological properties of the spaces C∞(∆) and bv(∆). Section 4 is devoted to the
computation of Köthe-Toeplitz and γ− duals of these spaces. As an application,
the matrix classes (bv(∆), `∞), (bv(∆), c) and (bv(∆), c0) are characterized in the
concluding section.

3. Inclusion relations and topological structure

We begin with establishing elementary inclusion relations.

Theorem 3.1. C1(∆) ⊂ C∞(∆), the inclusion being strict.

Proof. Inclusion is obvious. To see that the inclusion is strict, consider the
sequence x = (xk) = (−1, 2,−3, 4,−5, 6, ...).

Theorem 3.2. `∞(∆) ⊂ C∞(∆), the inclusion being strict.

The proof follows from the fact that the sequence of Cesàro means of a bounded
sequence is again bounded. Inclusion is strict in view of the example cited in
Theorem 3.1.

Remark 3.3. In view of Theorem 3.1, Theorem 3.2 and the fact [6, 7] that C1(∆)
and `∞(∆) overlap , it follows that that the difference sequence space C∞(∆) strictly
includes the overlapping spaces C1(∆) and `∞(∆).
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Theorem 3.4. bv ⊂ bv(∆), the inclusion being strict.

Proof. Let (xk) ∈ bv. Then (∆xk) ∈ `1 ⊂ bv. For strict inclusion, consider
the sequence x = (x0, x1, x2, . . .) where

xk =

{
0, for k = 0,

k(−1)− (k − 1) 1
2 − (k − 2) 1

22 . . .− 1
2k−1 , for k ≥ 1.

Theorem 3.5. `1(∆) ⊂ bv(∆) ⊂ c(∆), the inclusions being strict.

Proof. The result follows from the fact that `1 ⊂ bv ⊂ c. For strict inclusion
`1(∆) ⊂ bv(∆), observe that (k) ∈ bv(∆) but (k) /∈ `1(∆). Inclusion bv(∆) ⊂ c(∆)
is strict as (yk) = (0,−1, −1+ 1

2 , −1+ 1
2−

1
3 , . . .) ∈ c(∆) but is missing from bv(∆).

Remark 3.6. In view of Remark 3.3 and Theorem 3.5, we can say that C∞(∆) is
much wider than the difference sequence spaces c0(∆), c(∆), `∞(∆) of Kizmaz as
well as the spaces `1(∆), bv(∆) and C1(∆).

We now propose to study the linear topological structure of the difference se-
quence spaces C∞(∆) and bv(∆). Note that it was already observed by Orhan [28]
that C∞(∆) is a Banach space with the norm

||x||∞ = |x1|+ sup
k

1

k
|

k∑
i=1

∆xi |, x = (xk) ∈ C∞(∆).

We can go ahead and have the following

Theorem 3.7. C∞(∆) and bv(∆) are BK spaces normed by

||x||∞ = |x1|+ sup
k

1

k
|

k∑
i=1

∆xi |, x = (xk) ∈ C∞(∆)

and

||x||bv = |x1|+ |x2|+
∑
k

|∆xk −∆xk+1|, x = (xk) ∈ bv(∆), respectively.

The proof is a routine verification by using ‘standard’ techniques and hence is
omitted.

Theorem 3.8. (i) C1(∆) is a closed subspace of C∞(∆).
(ii) C1(∆) is a nowhere dense subset of C∞(∆).

The proof follows from the fact that C1(∆) is a proper and complete subspace
of C∞(∆).

Theorem 3.9. C∞(∆) is not separable.

Proof. Suppose, if possible, that C∞(∆) is separable, and thatD = {d1, d2, d3, . . .}
is a countable dense subset, where d1 = (d1k) = (d11, d12, . . .), d2 = (d2k) =
(d21, d22, . . .), . . .. Now define x = (xn), where for n ∈ N,

xn =


n+ d11 + dnn − dn1, if |dnn − dn1| ≤ n− 1;

1 + d11, if |dnn − dn1| > n− 1.
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∣∣x1 − xn+1

n

∣∣ =


∣∣ 1+d11−( n+1+d11+d(n+1)(n+1)−d(n+1)1 )

n

∣∣, if |d(n+1)(n+1) − d(n+1)1| ≤ n;

∣∣ 1+d11−(1+d11)
n

∣∣, if |d(n+1)(n+1) − d(n+1)1| > n;

and so
∣∣x1−xn+1

n

∣∣ ≤ 2 for all n ∈ N, which in turn implies that (xk) ∈ C∞(∆).
Clearly, ‖x− d1‖∆ ≥ |x1 − d11| = 1 and for n > 1

‖x− dn‖∆ ≥ sup
k≥1

∣∣ (x1 − dn1)− (xk+1 − dn(k+1))

k

∣∣
≥
∣∣ (x1 − dn1)− (xn − dnn)

n− 1

∣∣
=


| 1+d11−dn1−(n+d11−dn1)

n−1 |, if |dnn − dn1| ≤ n− 1;

| 1+d11−dn1−(1+d11−dnn)
n−1 |, if |dnn − dn1| > n− 1;

=


1, if |dnn − dn1| ≤ n− 1;

|dnn−dn1

n−1 |, if |dnn − dn1| > n− 1;

i.e., ‖x − dn‖∆ ≥ 1. Hence x = (xk) ∈ C∞(∆) is such that no n ∈ N exists such
that ‖x− dn‖∆ < 1, a contradiction as D is dense in C∞(∆).

Corollary 3.10. C∞(∆) does not have Schauder basis.

The result follows from the fact that if a normed space has a Schauder basis,
then it is separable.

Corollary 3.11. C∞(∆) does not have the AK property.

Theorem 3.12. bv(∆) has Schauder basis namely {e, b1, b2, b3, . . .} where e =
(1, 1, 1, . . .) and for n ∈ N, bn = (bkn)k∈N as

bkn =

{
0, if k ≤ n;

k − n otherwise, k ∈ N;

and any x = (xk) ∈ bv(∆) has a unique representation of the form x = x1e −
∆x1b1 +

∑
k(∆xk −∆xk+1)bk+1.

The proof is easy and so omitted.

Corollary 3.13. bv(∆) is a separable space.

The result follows from the fact that if a normed space has a Schauder basis,
then it is separable.

Theorem 3.14. bv(∆) does not have the AK property.

Proof. Let x = (xk) = (1, 2, 3, . . .) ∈ bv(∆). Consider the nth section of the
sequence (xk) as x[n] = (1, 2, 3, . . . , n, 0, 0, . . .). Then

‖x− x[n]‖bv = ‖(0, 0, 0, . . . , n+ 1, n+ 2, . . .)‖bv
= |0|+ |0|+ |n+ 1|+ |n|

which does not tend to 0 as n→∞.
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4. Dual spaces

In the present section, we compute various duals and investigate the perfectness
of C∞(∆) and bv(∆).

Theorem 4.1.

[C∞(∆)]α = [bv(∆)]α = {a = (ak) :
∑
k

k|ak| <∞} = D1.

The proof is easy and so omitted.

Remark 4.2. In view of the fact [6, 7] that [c0(∆)]α = [c(∆)]α = [`∞(∆)]α =
[C1(∆)]α = D1 and Theorem 4.1, we conclude that the α-duals of the difference
sequence spaces c0(∆), c(∆), `∞(∆), C1(∆), bv(∆) and C∞(∆) coincide.

Theorem 4.3.

[C∞(∆)]αα = {a = (ak) : sup
k
k−1|ak| <∞} = D2.

The result follows in view of Remark 4.2 and the fact ([6], Theorem 4.3 ) that
[C1(∆)]αα = D2.

Remark 4.4. It is already known [6, 7, 20, 21] that none of the spaces c0(∆), c(∆),
`∞(∆), `1(∆), and C1(∆) is perfect. We now show that bv(∆) is not perfect whereas
C∞(∆) is. Thus C∞(∆) is a perfect space which strictly includes the non-perfect
spaces c0(∆), c(∆), `∞(∆), `1(∆), C1(∆) and bv(∆).

Theorem 4.5. (i) C∞(∆) is perfect.
(ii) bv(∆) is not perfect.

Proof. (i) It is easy to see that [C∞(∆)]αα = C∞(∆).
(ii)The proof follows at once when we observe that the sequence ((−1)k) ∈ [bv(∆)]αα

but does not belong to bv(∆).

Lemma 4.6. [21] Let X be a sequence space. Then we have
(i) X is perfect ⇒ X is normal ⇒ X is monotone.
(ii) X is normal ⇒ Xα = Xγ .
(iii)X is monotone ⇒ Xα = Xβ.

Using Theorem 4.1, Theorem 4.5 and Lemma 4.6, we have

Corollary 4.7. (i) C∞(∆) is normal as well as monotone.
(ii) [C∞(∆)]β = [C∞(∆)]γ = [C∞(∆)]α = {a = (ak) :

∑
k k|ak| <∞}.

Remark 4.8. The β− dual of C∞(∆) was originally computed by Orhan [28]. Our
opproach is indirect. We have benefited from the perfectness of C∞(∆).

In order to compute the β− dual of bv(∆), we need the following

Lemma 4.9. [22]
∑
k kak is convergent if and only if

∑
k Rk is convergent with

nRn = o(1), where Rn =
∑∞
k=n+1 ak.

Theorem 4.10.

[bv(∆)]β = {a = (ak) :
∑
k

kak is convergent} = D3.
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Proof. The proof follows very closely the lines of proof in [22]. However, for
the sake of completeness we are giving the proof.

Let a = (ak) ∈ D3. Then
∑
k kak is convergent. For x = (xk) ∈ bv(∆), we

have (∆xk) ∈ bv ⊂ c ⊂ `∞ and so there exists M > 0 such that |∆xk| ≤M , for all
k ∈ N. Abel’s summation by parts yields

n∑
k=1

akxk = −
n−1∑
j=1

∆xjRj +Rn

n−1∑
j=1

∆xj + x1

n∑
k=1

ak (4.1)

where Rn =
∑∞
k=n+1 ak and n ∈ N. Obviously the last term on the right in

(4.1) is convergent. As
∑
j jaj is convergent, so by Lemma 4.9, (Rj) ∈ cs. Since

(bv)β = cs and (∆xj) ∈ bv so
∑
j ∆xjRj converges, that is, first term on right in

(4.1) is convergent. Finally

|Rn
n−1∑
j=1

∆xj | ≤ |Rn|
n−1∑
j=1

|∆xj |

≤M |(n− 1)Rn|
→ 0 as n→∞

and so
∑
k akxk converges.

Conversely, let (ak) ∈ [bv(∆)]β . Then
∑
k akxk converges for all x = (xk) ∈ bv(∆).

In particular, taking xk = k, we get
∑
k kak is convergent and so (ak) ∈ D3.

Theorem 4.11. bv(∆) is not monotone.

Proof. Take (xk) = (1, 1, . . .) ∈ bv(∆) and define y = (yk) as

yk =

{
xk, if k is odd;

0, if k is even,

that is, (yk) = (1, 0, 1, 0, . . .). Then (∆yk) = (1,−1, 1,−1, . . .) and so (yk) /∈ bv(∆).

Using Lemma 4.6 and Theorem 4.11, we have

Corollary 4.12. bv(∆) is not normal.

Theorem 4.13. None of the spaces C∞(∆) and bv(∆) is convergence free.

Proof. Let (xk) = (1, 0, 3, 0, 5, 0, 7, 0, . . .) ∈ C∞(∆).
Take (yk) = (12, 0, 32, 0, 52, 0, 72, 0, . . .), then (∆yk) = (12,−32, 32,−52, 52,−72, 72, . . .).
Now

1

k

k∑
i=1

∆yi =

{
1
k , if k is odd;
1−(k+1)2

k , if k is even,

and so (yk) /∈ C∞(∆). This shows that C∞(∆) is not convergence free.

Using Corollary 4.12 and the fact [9] that every convergence free space is normal,
we see that bv(∆) is not a convergence free space.

Next we investigate the symmetry of the spaces C∞(∆) and bv(∆). In checking
the symmetric property of the space C∞(∆), we shall make use of the following

Theorem 4.14. [9] If X is a perfect symmetric space other than φ or ω, then
`1 ⊂ X ⊂ `∞.
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Theorem 4.15. None of the spaces C∞(∆) and bv(∆) is symmetric.

Proof. Let (xk) = (1, 2, 3, 4, . . .) ∈ bv(∆) and (yk) = (2, 1, 4, 3, 6, 5, . . .) be a re-
arrangement of the terms of the sequence (xk). Here (∆yk) = (1,−3, 1,−3, 1,−3, . . .) /∈
bv and so (yk) /∈ bv(∆). This shows that bv(∆) is not a symmetric space.

In view of Theorem 4.5, Theorem 4.14 and the fact that C∞(∆) is not contained
in `∞, it follows at once that C∞(∆) is not a symmetric space.

Theorem 4.16. None of the spaces C∞(∆) and bv(∆) is a sequence algebra.

Proof. The sequences x = y = (k) serve the purpose.

5. Matrix maps

Finally, we characterize certain matrix classes. For any complex infinite matrix
A = (ank), we shall write An = (ank)k∈N for the sequence in the nth row of A.
If X,Y are any two sets of sequences, we denote by (X,Y ) the class of all those
infinite matrices A = (ank) such that the series An(x) =

∑
k ankxk converges for

all x = (xk) ∈ X, (n = 1, 2, . . .) and the sequence Ax = (Anx)n∈N is in Y for all
x ∈ X.

Before proceeding further, we recall the following theorems which will be used
in the sequel.

Theorem 5.1. [31] A ∈ (bv, `∞) if and only if
(i) sup

n
sup
j
|
∑
k=j ank| <∞, or

(ii)sup
n
|
∑
k ank| <∞ and sup

n
sup
j
|
∑j
k=1 ank| <∞.

Theorem 5.2. [31] A = (ank) ∈ (bv, c) if and only if
(i) lim

n
ank exists for each k ∈ N,

(ii) lim
n

∑
k ank exists,

(iii) sup
n

sup
j
|
∑
k=j ank| <∞ ; or sup

n
sup
j
|
∑j
k=1 ank| <∞.

Theorem 5.3. [31] A = (ank) ∈ (bv, c0) if and only if
(i) lim

n
ank = 0 for each k ∈ N,

(ii) lim
n

∑
k ank = 0,

(iii) sup
n

sup
j
|
∑
k=j ank| <∞ ; or sup

n
sup
j
|
∑j
k=1 ank| <∞.

We are now in a position to characterize the matrix classes (bv(∆), `∞), (bv(∆), c)
and (bv(∆), c0).

Theorem 5.4. A ∈ (bv(∆), `∞) if and only if
(i) sup

n
|
∑
k kank| <∞,

(ii) sup
n

sup
j
|
∑
v=j

∑∞
k=v+1 ank| <∞,

(iii) sup
n
|
∑
k ank| <∞.
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Proof. Let the conditions (i)−(iii) hold and suppose that x = (xk) ∈ bv(∆). It
is implicit in (i) that, for each n ∈ N,

∑
k kank converges and so (ank)k ∈ [bv(∆)]β .

This implies that
∑
k ankxk converges for each n ∈ N. As x = (xj) ∈ bv(∆), so

(∆xj) ∈ bv. Further as in in the proof of Theorem 4.10, we have∑
k

ankxk = −
∑
j

∆xj(

∞∑
k=j+1

ank) + x1

∑
k

ank

= −
∑
j

∆xj cnj + x1

∑
k

ank

where cnj =
∑∞
k=j+1 ank, for (n, j = 1, 2, . . .). Making use of (ii), we have

sup
n

sup
j
|
∑
v=j cnv| < ∞ and so by Theorem 5.1, we have matrix C = (cnv) ∈

(bv, `∞). This yields (
∑
j ∆xj cnj) ∈ `∞. Thus A ∈ (bv(∆), `∞).

Conversely, let A ∈ (bv(∆), `∞). Then sup
n
|
∑
k ankxk| < ∞, for all x = (xk) ∈

bv(∆). As (k), e = (1, 1, 1, . . .) ∈ bv(∆), so (i) and (iii) hold. Now suppose if
possible, sup

n
sup
j
|
∑
v=j

∑∞
k=v+1 ank| =∞. Consider the matrix C defined by

cnv =
∑
k=v+1

ank (n, v = 1, 2, . . .).

Then the matrix C = (cnv) /∈ (bv, `∞). Therefore there exists a sequence x =
(xk) ∈ bv such that (

∑
v cnvxv)n /∈ `∞. We define a sequence y = (yv) as

yv = −
v−1∑
j=1

xj + x1 (v = 1, 2, 3, . . .).

Then (∆yv) = (xv) ∈ bv and
∑
v anvyv = x1

∑
v anv −

∑
v xvcnv 6= O(1), a contra-

diction to the fact that A ∈ (bv(∆), `∞).

Theorem 5.5. A = (ank) ∈ (bv(∆), c) if and only if
(i) sup

n
|
∑
k kank| <∞,

(ii) sup
n

sup
j
|
∑
v=j

∑∞
k=v+1 ank | <∞,

(iii) lim
n

∑
j

∑∞
k=j+1 ank = α,

(iv) lim
n

∑
k=j+1 ank = βj for j = 0, 1, 2, . . .

where α, βj ∈ C.

Proof. Let the conditions (i)− (iv) hold and x = (xk) ∈ bv(∆). Using (i) and
arguing in the same way as in Theorem 5.4, we have∑

k

ankxk = −
∑
j

∆xj cnj + x1

∑
k

ank (5.1)

where cnj =
∑∞
k=j+1 ank, for (n, j = 1, 2, . . .). Making use of (ii) − (iv) and

Theorem 5.2, we have matrix C = (cnk) ∈ (bv, c). As (∆xj) ∈ bv, so we have
(
∑
j ∆xjcnj) ∈ c. Therefore it follows from (5.1) that (

∑
k ankxk) ∈ c for all

x = (xk) ∈ bv(∆), i.e., A ∈ (bv(∆), c).
Conversely, it is given that A ∈ (bv(∆), c). So A ∈ (bv(∆), `∞). Then by Theorem
5.4, (i) and (ii) hold. Also we have (

∑
k ankxk) ∈ c for all x = (xk) ∈ bv(∆) .

Taking xk = 1 for all k ∈ N, we get (
∑
k ank) ∈ c. It follows from (5.1) that



264 S. GUPTA AND V. K. BHARDWAJ EJMAA-2018/6(2)

(
∑
j ∆xj (

∑∞
k=j+1 ank ) ) ∈ c, for all x = (xk) ∈ bv(∆). Now for (xj) = (−j) ∈

bv(∆) and (0, 0, 0, . . . , 0, 1, 1, . . .) ∈ bv(∆), having 0’s at first j positions and 1’s
elsewhere (j = 1, 2, . . .), we have (

∑
j(
∑∞
k=j+1 ank ) ) ∈ c and (

∑∞
k=j+1 ank ) ∈ c.

Using the same technique as in Theorem 5.5 and applying Theorem 5.3, we have

Theorem 5.6. A = (ank) ∈ (bv(∆), c0) if and only if
(i) sup

n
|
∑
k kank| <∞,

(ii) sup
n

sup
j
|
∑
v=j

∑∞
k=v+1 ank | <∞,

(iii) lim
n

∑
j

∑∞
k=j+1 ank = 0,

(iv) lim
n

∑
k=j+1 ank = 0 for j = 0, 1, 2, . . ..
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[28] C. Orhan, Cesàro difference sequence spaces and related matrix transformations, Comm. Fac.
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