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ON HADAMARD k-FRACTIONAL INTEGRALS

SANA IQBAL, SHAHID MUBEEN AND MUHARREM TOMAR

Abstract. In this paper, we introduced the Hadamard fractional integral in
terms of a new parameter k > 0. We also proved some properties of this

newly defined k-fractional integral. Some inequalities involving Hadamard k-
fractional integral are also be proved.

1. Introduction

In mathematical analysis, the fractional calculus is a very helpful tool to perform
differentiation and integration with the real number or complex number powers of
the differential or integral operators. This subject has earned the attention of many
researchers and mathematicians during last few decades (see [1, 2, 3, 7, 16, 17]).
There is a large number of the fractional integral operators discussed in literature
but because of their applications in many fields of sciences, the Riemann-Liouville
fractional integral operator and Hadamard fractional integral operator have been
studied extensively.

The Hadamard fractional integral operator was introduced by Hadamard [6]. It
can be defined as follows:
Let f ∈ L1([a, b]), the left and right sided Hadamard fractional integrals of order
α ≥ 0 and a > 0 are defined respectively as

Hα
a+f(x) =

1

Γ(α)

∫ x

a

(
ln
x

t

)α−1

f(t)
dt

t
, 0 < a < x ≤ b (1)

and

Hα
b−f(x) =

1

Γ(α)

∫ b

x

(
ln
t

x

)α−1

f(t)
dt

t
, 0 < a ≤ x < b. (2)

Because of the wide applications of above defined fractional integrals, many
researchers extended their studies to derive more applications, properties and in-
equalities of Hölder, Minkowski, Hermite-Hadamard, Grüss and Ostrowski type
involving left and right sided Hadamard fractional integrals for different types of
functions (see [13, 14, 20, 21, 22, 24]).
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In this paper, we extend the idea of different types of inequalities involving
the Hadamard fractional integral in terms of a new parameter k > 0. For this,
we introduce the k-analogue of Hadamard fractional integral with some properties.
The theory of special k-functions was introduced about a decade ago when Diaz and
Pariguan [5] defined the generalization of the classical gamma and beta functions in
terms of a new parameter k > 0, called gamma and beta k-functions respectively.

Γk(α) =

∫ ∞

0

tα−1e−
tk

k dt, Re(α) > 0.

and

Bk(α, β) =
1

k

∫ 1

0

t
α
k −1(1− t)

β
k−1dt, Re(α) > 0, Re(β) > 0. (3)

This idea of generalization of special functions in terms of some new parameter
fascinated many researchers and mathematicians. Several properties, identities
and inequalities involving special k-functions were proved during past several years
(see for instance [8, 9, 10, 11, 12, 18, 23]).

The functions Γk defined on R+ and Bk(x, y) on (0, 1) hold the following four
properties:

(1) Γk(x+ k) = xΓk(x);
(2) Γk(k) = 1;
(3) Γk(x) is logarithmically convex;

(4) Bk(x, y) =
Γk(x)Γk(y)

Γk(x+ y)
·

For the first time, Mubeen and Habibullah [15] used this special k-functions the-
ory in fractional calculus and introduced the k-fractional integral of the Riemann-
Liouville type as

Iαa,kf(t) =
1

kΓk(α)

∫ t

a

(t− x)
α
k −1f(x)dx, t ∈ [a, b],

where Γk is the Euler gamma k-function.
Later, Romero et al. [19] introduced a new fractional operator called k-Riemann-

Liouville fractional derivative by using gamma k-function. They also proved some
properties of this newly defined fractional operator and found its relationship with
Riemann-Liouville k-fractional integral.

In the subsequent section, we introduce a new fractional integration with pa-
rameter k > 0 which generalizes Hadamard fractional integrals. We also establish
properties of semigroup for this integration. Finally we obtain some weighted Grüss
type inequalities for new Hadamard k-fractional integral operator.

2. Main results

Definition 1 For k > 0, let f ∈ L1([a, b]), the left and right sided k-fractional
integrals of order α ≥ 0 and a > 0 are defined respectively as

Hα
a+,kf(x) =

1

kΓk(α)

∫ x

a

(
ln
x

t

)α
k −1

f(t)
dt

t
, 0 < a < x ≤ b (4)
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and

Hα
b−,kf(x) =

1

kΓk(α)

∫ b

x

(
ln
t

x

)α
k −1

f(t)
dt

t
, 0 < a ≤ x < b. (5)

Throughout this paper we will use Hα
a,k in place of Hα

a+,k.

Theorem 1 For k > 0, let f be continuous on [a, b] and α ≥ 0, β ≥ 0. Then

Hα
a,k[H

β
a,kf(x)] = Hβ

a,k[H
α
a,kf(x)] = Hα+β

a,k f(x). (6)

Proof. By using relation (4) and Dirichlet’s formula, we obtain

Hα
a,k[H

β
a,kf(x)] =

1

kΓk(α)

∫ x

a

(
ln
x

t

)α
k −1

Hβ
a,kf(t)

dt

t

=
1

kΓk(α)

∫ x

a

(
ln
x

t

)α
k −1

(
1

kΓk(β)

∫ t

a

(
ln
t

ξ

) β
k−1

f(ξ)
dξ

ξ

)
dt

t

=
1

k2Γk(α)Γk(β)

∫ x

a

1

ξ
f(ξ)

[∫ x

ξ

(
ln
x

t

)α
k −1

(
ln
t

ξ

) β
k−1

dt

t

]
dξ.(7)

Now by using the change of variables z = ln t
ξ/ ln

x
ξ , we get∫ x

ξ

(
ln
x

t

)α
k −1

(
ln
t

ξ

) β
k−1

dt

t
=

(
ln
x

ξ

)α+β
k −1 ∫ 1

0

(1− z)
α
k −1z

β
k−1dz

= k

(
ln
x

ξ

)α+β
k −1

Bk(α, β). (8)

By using (7) and (8) and relation (3) of beta k-function, we get

Hα
a,k[H

β
a,kf(x)] =

1

kΓk(α+ β)

∫ x

a

(
ln
x

ξ

)α+β
k −1

f(ξ)
dξ

ξ

= Hα+β
a,k f(x). (9)

This completes the proof. �

Theorem 2 Let α, β > 0 and k > 0. Then following identity holds

Hα
a,k

[(
ln
x

a

) β
k−1

]
=
(
ln
x

a

)α+β
k −1 Γk(β)

Γk(α+ β)
(10)

Proof. By using (4) and change of variable u =
ln(x/t)

ln(x/a)
, x ∈ (a, b],

Hα
a,k

[(
ln
x

a

) β
k−1

]
=

1

kΓk(α)

∫ x

a

(
ln
x

t

)α
k −1

(
ln
t

a

) β
k−1

dt

t

=
(
ln
x

a

)α+β
k −1 1

kΓk(α)

∫ 1

0

(1− u)
α
k −1u

β
k−1du

=
(
ln
x

a

)α+β
k −1 Bk(α, β)

Γk(α)

(11)

This completes the proof. �
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Corollary 1 Using definition of Hadamard k-fractional integral and relation (1),
we can easily get

Hα
a,k(1) =

(ln(x/a))
α
k

Γk(α+ k)
, α, k > 0 . (12)

The functions f, g ⊆ R → R are synchronous (asynchronous) on [a, b], a, b ∈ R if

(f(x)− f(y))(g(x)− g(y)) ≥ (≤)0 for all x, y ∈ [a, b].

Theorem 3 Let f and g be two synchronous functions on [a, b], then for all α, β > 0
and x > a the following inequalities for Hadamard k-fractional integral holds:

Hα
a,k[f(x)g(x)] ≥

Γk(α+ k)

(ln(x/a))
α
k
Hα

a,kf(x)Hα
a,kg(x). (13)

and

Hα
a,k[f(x)g(x)]

(ln(x/a))
β
k

Γk(β + k)
+

Γk(α+ k)

(ln(x/a))
α
k
Hβ

a,k[f(x)g(x)]

≥ Hα
a,kf(x)H

β
a,kg(x) +Hα

a,kg(x)H
β
a,kf(x). (14)

Proof. Since f and g are synchronous on [a, b], therefore for all λ, η ∈ [a, b], we have

[f(η)− f(λ)][g(η)− g(λ)] ≥ 0, (15)

that is

f(η)g(η) + f(λ)g(λ) ≥ f(λ)g(η) + f(η)g(λ). (16)

Multiplying both sides by 1
kΓk(α)

(
ln x

η

)α
k −1

1
η and integrating the resultant inequal-

ity with respect to η over (a, x), we get

Hα
a,k[f(x)g(x)] +

Γk(α+ k)

(ln(x/a))
α
k
f(λ)g(λ) ≥ g(λ)Hα

a,kf(x) + f(λ)Hα
a,kg(x). (17)

Now multiplying the above inequality by 1
kΓk(α)

(
ln x

λ

)α
k −1 1

λ and integrating with

respect to λ over (a, x), we obtain inequality (13).

To prove inequality (14), it is sufficient to multiply both sides of inequality (17)

with 1
kΓk(β)

(
ln x

λ

) β
k−1 1

λ and integrate the resultant inequality with respect to λ

over (a, x). �

Theorem 4 Let f and g be two synchronous functions on [a, b] and h ≥ 0, then
for all x > a, α, β > 0, the following inequality for Hadamard k-fractional integral
holds:

Hα
a,k(fgh(x))

(ln(x/a))
β
k

Γk(β + k)
+

Γk(α+ k)

(ln(x/a))
α
k
Hβ

a,k(fgh(x))

≥ Hα
a,k(fh(x))H

β
a,k(g(x)) +Hα

a,k(gh(x))H
β
a,k(f(x))−Hα

a,k(h(x))H
β
a,k(fg(x))

−Hα
a,k(fg(x))H

β
a,k(h(x)) +Hα

a,k(f(x))H
β
a,k(gh(x)) +Hα

a,k(g(x))H
β
a,k(fh(x)).(18)
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Proof. Since f and g are synchronous on [a, b] and h ≥ 0, therefore for all λ, η ∈
[a, b], we have

[f(η)− f(λ)][g(η)− g(λ)][h(η) + h(λ)] ≥ 0.

This implies

f(η)g(η)h(η) + f(λ)g(λ)h(λ) ≥ f(λ)g(η)h(λ) + f(η)g(λ)h(λ)− f(η)g(η)h(λ)

− f(λ)g(λ)h(η) + f(λ)g(η)h(η) + f(η)g(λ)h(η) (19)

Multiplying both sides of the above inequality by 1
kΓk(α)

(
ln x

η

)α
k −1

1
η and integrat-

ing the resultant inequality with respect to η over (a, x), we get

Hα
a,k(fgh(x)) +

(ln(x/a))
α
k

Γk(α+ k)
(f(λ)g(λ)h(λ))

≥ Hα
a,k(fh(x))g(λ) +Hα

a,k(gh(x))f(λ)−Hα
a,k(h(x))f(λ)g(λ)

−Hα
a,k(fg(x))h(λ) +Hα

a,k(f(x))g(λ)h(λ) +Hα
a,k(g(x))f(λ)h(λ). (20)

Now by multiplying both sides of above inequality with 1
kΓk(β)

(
ln x

λ

) β
k−1 1

λ and

integrate the resultant inequality with respect to λ over (a, x), we get the required
inequality. �

Theorem 5 Let f , g and h be three monotone functions defined on [a, b] satis-
fying the inequality

[f(η)− f(λ)][g(η)− g(λ)][h(η)− h(λ)] ≥ 0. (21)

Then for all λ, η ∈ [a, x], x > a and α, β > 0, the following inequality for Hadamard
k-fractional integral holds:

Hα
a,k(fgh(x))

(ln(x/a))
β
k

Γk(β + k)
− Γk(α+ k)

(ln(x/a))
α
k
Hβ

a,k(fgh(x))

≥ Hα
a,k(fh(x))H

β
a,k(g(x)) +Hα

a,k(gh(x))H
β
a,k(f(x))−Hα

a,k(h(x))H
β
a,k(fg(x))

+Hα
a,k(fg(x))H

β
a,k(h(x))−Hα

a,k(f(x))H
β
a,k(gh(x))−Hα

a,k(g(x))H
β
a,k(fh(x)).(22)

Proof. The proof of this theorem is similar to the proof of previous theorem. �

Theorem 6 Let f and g be two functions on [a, b], then for all α, β > 0 and
x > a the following inequalities for Hadamard k-fractional integral holds:

(1) Hα
a,k(f

2(x))Hβ
a,k(1) +

Γk(α+k)

(ln(x/a))
α
k
Hβ

a,k(g
2(x)) ≥ 2Hα

a,k(f(x))H
β
a,k(g(x))

(2) Hα
a,k(f

2(x))Hβ
a,k(1) +

Γk(α+k)

(ln(x/a))
α
k
Hβ

a,k(g
2(x)) ≥ 2Hα

a,k(f(x))H
β
a,k(g(x))

Proof. (1) Since [f(η)− g(λ)]2 ≥ 0, then we have

f2(η) + g2(λ) ≥ 2f(η)g(λ).

Multiplying both sides of above inequality with 1
k2Γk(α)Γk(β)

(
ln x

η

)α
k −1 (

ln x
λ

) β
k−1 1

ηλ

and integrate the resultant inequality with respect to η and λ over (a, x),
we get the required inequality.

(2) Use the inequality [f(η)g(λ)− f(λ)g(η)]
2 ≥ 0.

�
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To obtain weighted Grüss type inequality with one parameter involving Hadamard
k-fractional integral, we need following Lemma.
Lemma 1 Let w be an integrable function on [a, b] with φ < w(x) < Φ and let p
be a positive function on [a, b]. Then for all x, α > 0 we have[

Hα
a,kp(x)

] [
Hα

a,k(pw
2(x))

]
−
[
Hα

a,k(pw(x))
]2

=
[
ΦHα

a,kp(x)−Hα
a,k(pw(x))

] [
Hα

a,k(pw(x))− φHα
a,kp(x)

]
−Hα

a,kp(x)
[
Hα

a,k{(Φ− w(x))(w(x)− φ)p(x)}
]
. (23)

Proof. We use the following equality (see [4])

[Φp(λ)− w(λ)p(λ)][p(η)w(η)− φp(η)] + [Φp(η)− w(η)p(η)][p(λ)w(λ)− φp(λ)]

−p(η)p(λ) [Φ− w(η)] [w(η)− φ]− p(η)p(λ) [Φ− w(λ)] [w(λ)− φ]

= p(λ)w2(η)p(η) + p(η)w2(λ)p(λ)− 2p(λ)w(λ)p(η)w(η). (24)

Multiplying both sides by 1
kΓk(α)

(
ln x

η

)α
k −1

1
η and integrate the resultant inequality

with respect to η over (a, x), we get

[Φp(λ)− w(λ)p(λ)]
[
Hα

a,k(pw(x))− φHα
a,kp(x)

]
+
[
ΦHα

a,kp(x)−Hα
a,k(wp(x))

]
[p(λ)w(λ)− φp(λ)]

−p(λ)Hα
a,k{p(x) [Φ− w(x)] [w(x)− φ]} − p(λ) [Φ− w(λ)] [w(λ)− φ]Hα

a,kp(x)

= p(λ)Hα
a,k(w

2p(x)) + w2(λ)p(λ)Hα
a,kp(x)− 2p(λ)w(λ)Hα

a,k(pw(x)). (25)

Now multiplying both sides by 1
kΓk(α)

(
ln x

λ

)α
k −1 1

λ and integrate the resultant in-

equality with respect to λ over (a, x), we get the required inequality. �

Theorem 7 Let f and g be two integrable functions on [a, b] with φ < f(x) < Φ
and ψ < g(x) < Ψ and let p be a positive function on [a, b], then for all x > a,
α > 0, we have ∣∣Hα

a,kp(x)Hα
a,k(pfg(x))−Hα

a,k(pf(x))Hα
a,k(pg(x))

∣∣
≤

[
Hα

a,kp(x)
]2

2
(Φ− φ)(Ψ− ψ). (26)

Proof. First of all, we define

F (η, λ) = [f(η)− f(λ)][g(η)− g(λ)]

= f(η)g(η) + f(λ)g(λ)− f(η)g(λ)− f(λ)g(η), η, λ ∈ (a, x), a < x < b.(27)

Multiplying both sides of (27) with

1

k2Γ2
k(α)

(
ln
x

η

)α
k −1 (

ln
x

λ

)α
k −1 p(η)p(λ)

ηλ
.

and integrating the resultant inequality with respect to η and λ over (a, x), we get

1

k2Γ2
k(α)

∫ b

a

∫ b

a

(
ln
x

η

)α
k −1 (

ln
x

λ

)α
k −1 p(η)p(λ)

ηλ
F (η, λ)dηdλ

= 2
[
Hα

a,kp(x)
] [
Hα

a,k(pfg(x))
]
− 2

[
Hα

a,k(pf(x))
] [
Hα

a,k(pg(x))
]
. (28)
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Now applying the Cauchy-Schwartz inequality to the left hand side of the equality
(28),
we obtain(

1

k2Γ2
k(α)

∫ b

a

∫ b

a

(
ln
x

η

)α
k −1 (

ln
x

λ

)α
k −1 p(η)p(λ)

ηλ
F (η, λ)dηdλ

)2

≤ 1

k2Γ2
k(α)

∫ b

a

∫ b

a

(
ln
x

η

)α
k −1 (

ln
x

λ

)α
k −1 p(η)p(λ)

ηλ
[f(η)− f(λ)]2dηdλ

× 1

k2Γ2
k(α)

∫ b

a

∫ b

a

(ln
x

η
)

α
k −1

(
ln
x

λ

)α
k −1 p(η)p(λ)

ηλ
[g(η)− g(λ)]

2
dηdλ

=
{
2
[
Hα

a,kp(x)
] [
Hα

a,k(pf
2(x))

]
− 2

[
Hα

a,k(pf(x))
]2}

×
{
2
[
Hα

a,kp(x)
] [
Hα

a,k(pg
2(x))

]
− 2

[
Hα

a,k(pg(x))
]2}

. (29)

From (28) and (29), we can write the following inequality{
2
[
Hα

a,kp(x)
] [
Hα

a,k(pfg(x))
]
− 2

[
Hα

a,k(pf(x))
] [
Hα

a,k(pg(x))
]}2

≤
{
2
[
Hα

a,kp(x)
] [
Hα

a,k(pf
2(x))

]
− 2

[
Hα

a,k(pf(x))
]2}

×
{
2
[
Hα

a,kp(x)
] [

Hα
a,k(pg

2(x))
]
− 2

[
Hα

a,k(pg(x))
]2}

. (30)

If we apply (23) for w = f and then w = g, we obtain the inequalities respectively:[
Hα

a,kp(x)
] [
Hα

a,k(pf
2(x))

]
−
[
Hα

a,k(pf(x))
]2

=
[
ΦHα

a,kp(x)−Hα
a,k(pf(x))

] [
Hα

a,k(pf(x))− φHα
a,kp(x)

]
−Hα

a,kp(x)
[
Hα

a,k{(Φ− f(x))(f(x)− φ)p(x)}
]

(31)

and [
Hα

a,kp(x)
] [

Hα
a,k(pg

2(x))
]
−
[
Hα

a,k(pg(x))
]2

=
[
ΨHα

a,kp(x)−Hα
a,k(pg(x))

] [
Hα

a,k(pg(x))− ψHα
a,kp(x)

]
−Hα

a,kp(x)
[
Hα

a,k{(Ψ− g(x))(g(x)− ψ)p(x)}
]
. (32)

Now since

−Hα
a,kp(x)

[
Hα

a,k{(Φ− f(x))(f(x)− φ)p(x)}
]
≤ 0

and

−Hα
a,kp(x)

[
Hα

a,k{(Ψ− g(x))(g(x)− ψ)p(x)}
]
≤ 0,

then we have [
Hα

a,kp(x) ][Hα
a,k(pf

2(x)) ]−[Hα
a,k(pf(x))

]2
≤

[
ΦHα

a,kp(x)−Hα
a,k(pf(x))

] [
Hα

a,k(pf(x))− φHα
a,kp(x)

]
(33)

and [
Hα

a,kp(x)
] [
Hα

a,k(pg
2(x))

]
−
[
Hα

a,k(pg(x))
]2

≤
[
ΨHα

a,kp(x)−Hα
a,k(pg(x))

] [
Hα

a,k(pg(x))− ψHα
a,kp(x)

]
. (34)
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By using inequalities (30), (33) and (34), we get{
2
[
Hα

a,kp(x)
] [
Hα

a,k(pfg(x))
]
− 2

[
Hα

a,k(pf(x))
] [
Hα

a,k(pg(x))
]}2

≤ 4
{[

ΦHα
a,kp(x)−Hα

a,k(pf(x))
] [

Hα
a,k(pf(x))− φHα

a,kp(x)
]}

×
{[

ΨHα
a,kp(x)−Hα

a,k(pg(x))
] [
Hα

a,k(pg(x))− ψHα
a,kp(x)

]}
. (35)

Since 2cd ≤ (c+ d)2, c, d ∈ R, then it yields

2
{[

ΦHα
a,kp(x)−Hα

a,k(pf(x))
] [

Hα
a,k(pf(x))− φHα

a,kp(x)
]}

≤
[
(Φ− φ)Hα

a,kp(x)
]2

(36)

2
{[

ΨHα
a,kp(x)−Hα

a,k(pg(x))
] [
Hα

a,k(pg(x))− ψHα
a,kp(x)

]}
≤
[
(Ψ− ψ)Hα

a,kp(x)
]2
. (37)

The required inequality can be obtained by taking inequalities (35)–(37) into ac-
count. �

Lemma 2 Let f and g be two integrable functions on [a, b] with φ < f(x) < Φ
and
ψ < g(x) < Ψ and let p and q be two positive functions on [a, b], then for all
α, β > 0 and
x > a, we have{

Hα
a,kp(x)H

β
a,k(qfg(x)) +Hβ

a,kq(x)H
α
a,k(pfg(x))

−Hα
a,k(pf(x))H

β
a,k(qg(x))−Hβ

a,k(qf(x))H
α
a,k(pg(x))

}2

≤
{
Hα

a,kp(x)H
β
a,k(qf

2(x)) +Hα
a,k(pf

2(x))Hβ
a,kq(x)− 2Hα

a,k(pf(x))H
β
a,k(qf(x))

}
×
{
Hα

a,kp(x)H
β
a,k(qg

2(x)) +Hα
a,k(pg

2(x))Hβ
a,kq(x)− 2Hα

a,k(pg(x))H
β
a,k(qg(x))

}
.(38)

Proof. By using (27), we have

1

k2Γk(α)Γk(β)

∫ b

a

∫ b

a

(
ln
x

η

)α
k −1 (

ln
x

λ

) β
k−1 p(η)q(λ)

ηλ
F (η, λ)dηdλ

= Hα
a,kp(x)H

β
a,k(qfg(x)) +Hβ

a,kq(x)H
α
a,k(pfg(x))

−Hα
a,k(pf(x))H

β
a,k(qg(x))−Hβ

a,k(qf(x))H
α
a,k(pg(x)). (39)

By using Cauchy-Schwartz inequality for double integrals in (39), we can write[
1

k2Γk(α)Γk(β)

∫ b

a

∫ b

a

(
ln
x

η

)α
k −1 (

ln
x

λ

) β
k−1 p(η)q(λ)

ηλ
[f(η)− f(λ)][g(η)− g(λ)]dηdλ

]2

≤ 1

k2Γk(α)Γk(β)

∫ b

a

∫ b

a

(
ln
x

η

)α
k −1 (

ln
x

λ

) β
k−1 p(η)q(λ)

ηλ
[f(η)− f(λ)]2dηdλ

× 1

k2Γk(α)Γk(β)

∫ b

a

∫ b

a

(
ln
x

η

)α
k −1 (

ln
x

λ

) β
k−1 p(η)q(λ)

ηλ
[g(η)− g(λ)]2dηdλ

=
[
Hα

a,kp(x)H
β
a,k(qf

2(x)) +Hα
a,k(pf

2(x))Hβ
a,kq(x)− 2Hα

a,k(pf(x))H
β
a,k(qf(x))

]
×
[
Hα

a,kp(x)H
β
a,k(qg

2(x)) +Hα
a,k(pg

2(x))Hβ
a,kq(x)− 2Hα

a,k(pg(x))H
β
a,k(qg(x))

]
. (40)

�
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Lemma 3 Let w be an integrable function on [a, b] with φ < u(x) < Φ and p be
a positive function on [a, b]. Then for all α, β > 0 and x > 0, we have

Hα
a,kp(x)H

β
a,k(pw

2(x)) +Hα
a,k(pw

2(x))Hβ
a,kp(x)− 2Hα

a,k(pw(x))H
β
a,k(pw(x))

=
[
ΦHβ

a,kp(x)−Hβ
a,k(pw(x))

] [
Hα

a,k(pw(x))− φHα
a,kp(x)

]
[
ΦHα

a,kp(x)−Hα
a,k(pw(x))

] [
Hβ

a,k(pw(x))− φHβ
a,kp(x)

]
−Hβ

a,kp(x)
[
Hα

a,k{(Φ− w(x))(w(x)− φ)p(x)}
]

−Hα
a,kp(x)

[
Hβ

a,k{(Φ− w(x))(w(x)− φ)p(x)}
]
. (41)

Proof. Multiplying both sides of (24) with

1

k2Γk(α)Γk(β)

(
ln
x

η

)α
k −1 (

ln
x

λ

) β
k−1 p(η)p(λ)

ηλ

and integrating the resultant inequality with respect to η and λ over (a, x), we get
the desired equality. �

Theorem 8 Let f and g be two integrable functions on [a, b] with φ < f(x) < Φ
and ψ < g(x) < Ψ and let p be a positive function on [a, b], then for all x > a,
α, β > 0, we have{

Hα
a,kp(x)H

β
a,k(pfg(x)) +Hα

a,k(pfg(x))H
β
a,kp(x)

−Hα
a,k(pf(x))H

β
a,k(pg(x))−Hα

a,k(pg(x))H
β
a,k(pf(x))

}2

≤
{ [

ΦHα
a,kp(x)−Hα

a,k(pf(x))
] [

Hβ
a,k(pf(x))− φHβ

a,kp(x)
]

+
[
ΦHβ

a,kp(x)−Hβ
a,k(pf(x))

] [
Hα

a,k(pf(x))− φHα
a,kp(x)

] }
×
{ [

ΨHα
a,kp(x)−Hα

a,k(pg(x))
] [

Hβ
a,k(pg(x))− ψHβ

a,kp(x)
]

+
[
ΨHβ

a,kp(x)−Hβ
a,k(pg(x))

] [
Hα

a,k(pg(x))− ψHα
a,kp(x)

] }
. (42)

Proof. Since

[Φ− f(η)][f(η)− φ] ≥ 0

and

[Ψ− g(η)][g(η)− ψ] ≥ 0.

Then we can write

−Hα
a,kp(x)H

β
a,k[(Φ−f(x))(f(x)−φ)]−Hβ

a,kp(x)H
α
a,k[(Φ−f(x))(f(x)−φ)] ≤ 0 (43)

and

−Hα
a,kp(x)H

β
a,k[(Ψ−g(x))(g(x)−ψ)]−Hβ

a,kp(x)H
α
a,k[(Ψ−g(x))(g(x)−ψ)] ≤ 0. (44)

By using lemma ?? twice for w = f and w = g and then by using (43) and (44),
we obtain the required inequality. �

Theorem 9 Let f and g be two integrable functions on [a, b] satisfying φ <
f(x) < Φ,
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ψ < g(x) < Ψ (φ,Φ, ψ,Ψ ∈ R) and let p and q be two positive functions on [a, b],
then for all α, β > 0 and x > a, we have

Hα
a,k(pfg(x))H

β
a,kq(x) +Hα

a,kp(x)H
β
a,k(qfg(x))−Hα

a,k(pf(x))H
β
a,k(qg(x))

−Hα
a,k(pg(x))H

β
a,k(qf(x)) ≤ Hα

a,kp(x)H
β
a,kq(x) [(Φ− φ)(Ψ− ψ)] . (45)

Proof. Since f and g be two integrable functions defined on [a, b] satisfying the
conditions φ < f(x) < Φ and ψ < g(x) < Ψ on [a, b], so for η, λ ∈ [a, b], we can
write

[f(η)− f(λ)][g(η)− g(λ)] ≤ (Φ− φ)(Ψ− ψ), (46)

that is to say

f(η)g(η) + f(λ)g(λ)− f(η)g(λ)− f(λ)g(η) ≤ (Φ− φ)(Ψ− ψ). (47)

Multiplying both sides of above inequality with

1

k2Γk(α)Γk(β)

(
ln
x

η

)α
k −1 (

ln
x

λ

) β
k−1 p(η)q(λ)

ηλ

integrate the resultant inequality with respect to η and λ over (a, x), we obtain the
required inequality. �

If we use α = β in inequality (45), then we obtain the following inequality.
Corollary 2 Let f and g be two integrable functions on [a, b] satisfying φ < f(x) <
Φ and ψ < g(x) < Ψ (φ,Φ, ψ,Ψ ∈ R) and let p and q be two positive functions on
[a, b], then for all x > a, α > 0, we have

Hα
a,k(pfg(x))Hα

a,kq(x) +Hα
a,kp(x)Hα

a,k(qfg(x))−Hα
a,k(pf(x))Hα

a,k(qg(x))

−Hα
a,k(pg(x))Hα

a,k(qf(x)) ≤ Hα
a,kp(x)Hα

a,kq(x) [(Φ− φ)(Ψ− ψ)] . (48)

Theorem 10 Let f and g be two integrable functions on [a, b] satisfying

|f(η)− f(λ)| ≤ |g(η)− g(λ)| , α > 0 and η, λ ∈ [a, b]. (49)

Also let p and q be two positive functions on [a, b], then for all α, β > 0 and x > a,
we have

Hα
a,k(pfg(x))H

β
a,kq(x) +Hα

a,kp(x)H
β
a,k(qfg(x))

−Hα
a,k(pf(x))H

β
a,k(qg(x))−Hα

a,k(pg(x))H
β
a,k(qf(x))

≤ Hα
a,k(p(x))H

β
a,k(qg

2(x)) +Hα
a,k(pg

2(x))Hβ
a,kq(x)

−2Hα
a,k(pg(x))H

β
a,k(qg(x)). (50)

Proof. Since for all η, λ ∈ [a, b], f and g satisfy the condition (49), we can also write

[f(η)− f(λ)][g(η)− g(λ)] ≤ [g(η)− g(λ)]2. (51)

Multiplying both sides of above inequality with

1

k2Γk(α)Γk(β)

(
ln
x

η

)α
k −1 (

ln
x

λ

) β
k−1 p(η)q(λ)

ηλ

integrate the resultant inequality with respect to η and λ over (a, x), we obtain the
required inequality. �
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If we use α = β in inequality (50), then we obtain the following inequality.
Corollary 3 Let f and g be two integrable functions on [a, b] satisfying the con-
dition (49). Also let p and q be two positive functions on [a, b], then for all x > a,
α > 0, we have

Hα
a,k(pfg(x))Hα

a,kq(x) +Hα
a,kp(x)Hα

a,k(qfg(x))

−Hα
a,k(pf(x))Hα

a,k(qg(x))−Hα
a,k(pg(x))Hα

a,k(qf(x))

≤ Hα
a,k(p(x))Hα

a,k(qg
2(x)) +Hα

a,k(pg
2(x))Hα

a,kq(x)− 2Hα
a,k(pg(x))Hα

a,k(qg(x)).(52)

Theorem 11 Let r ≥ 1 and f and g be two positive functions on [a, b] such that
for all x > a 0 < Hα

a,kf
r,Hα

a,kg
r <∞. If

0 < m ≤ f(η)

g(η)
≤M <∞, η ∈ [a, b], (53)

then for all α > 0 [
Hα

a,k(f
r(x))

] 1
r +

[
Hα

a,k(g
r(x))

] 1
r

≤ 1 +M(m+ 2)

(m+ 1)(M + 1)

[
Hα

a,k((f + g)r(x))
] 1

r . (54)

Proof. By using the condition (53) for all x > a and η ∈ [a, b], we have

1

M
≤ g(η)

f(η)
.

This implies (
1

M
+ 1

)r

≤
(
g(η)

f(η)
+ 1

)r

.

This gives us

(M + 1)rfr(η) ≤Mr(f + g)r(η). (55)

Similarly, we can have

(m+ 1)rgr(η) ≤ (f + g)r(η). (56)

Multiplying both sides of inequalities (55) and (56) with 1
kΓk(α)

(
ln x

η

)α
k −1

1
η and

integrating with respect to η over (a, x), we get the following inequalities respec-
tively [

Hα
a,k(f

r(x))
] 1

r ≤ M

M + 1

[
Hα

a,k((f + g)r(x))
] 1

r (57)

and [
Hα

a,k(g
r(x))

] 1
r ≤ 1

m+ 1

[
Hα

a,k((f + g)r(x))
] 1

r . (58)

By adding inequalities (57) and (58), we get the desired inequality. �
Theorem 12 Let r ≥ 1 and f and g be two integrable functions on [a, b] such

that for all x > a 0 < Hα
a,kf

r,Hα
a,kg

r < ∞. If the condition (53) is satisfied, then
for all α > 0 [

Hα
a,k(f

r(x))
] 2

r +
[
Hα

a,k(g
r(x))

] 2
r

≥
(
(m+ 1)(M + 1)

M
− 2

)[
Hα

a,k(f
r(x))

] 1
r
[
Hα

a,k(g
r(x))

] 1
r . (59)
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Proof. Multiplying the inequalities (57) and (58), we obtain

(m+ 1)(M + 1)

M

[
Hα

a,k(f
r(x))

] 1
r
[
Hα

a,k(g
r(x))

] 1
r ≤

[
Hα

a,k((f + g)r(x))
] 2

r . (60)

By applying the Minkowski’s integral inequality to the right hand side of above
inequality, we obtain the required inequality. �

Remark 1 All these properties and inequalities can be proved for right sided
Hadamard k-fractional integral.
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